Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 623
Filter
1.
PLoS One ; 19(6): e0303934, 2024.
Article in English | MEDLINE | ID: mdl-38875221

ABSTRACT

The nerve growth factor (NGF) participates in cell survival and glucose-stimulated insulin secretion (GSIS) processes in rat adult beta cells. GSIS is a complex process in which metabolic events and ionic channel activity are finely coupled. GLUT2 and glucokinase (GK) play central roles in GSIS by regulating the rate of the glycolytic pathway. The biphasic release of insulin upon glucose stimulation characterizes mature adult beta cells. On the other hand, beta cells obtained from neonatal, suckling, and weaning rats are considered immature because they secrete low levels of insulin and do not increase insulin secretion in response to high glucose. The weaning of rats (at postnatal day 20 in laboratory conditions) involves a dietary transition from maternal milk to standard chow. It is characterized by increased basal plasma glucose levels and insulin levels, which we consider physiological insulin resistance. On the other hand, we have observed that incubating rat beta cells with NGF increases GSIS by increasing calcium currents in neonatal cells. In this work, we studied the effects of NGF on the regulation of cellular distribution and activity of GLUT2 and GK to explore its potential role in the maturation of GSIS in beta cells from P20 rats. Pancreatic islet cells from both adult and P20 rats were isolated and incubated with 5.6 mM or 15.6 mM glucose with and without NGF for 4 hours. Specific immunofluorescence assays were conducted following the incubation period to detect insulin and GLUT2. Additionally, we measured glucose uptake, glucokinase activity, and insulin secretion assays at 5.6 mM or 15.6 mM glucose concentrations. We observed an age-dependent variation in the distribution of GLUT2 in pancreatic beta cells and found that glucose plays a regulatory role in GLUT2 distribution independently of age. Moreover, NGF increases GLUT2 abundance, glucose uptake, and GSIS in P20 beta cells and GK activity in adult beta cells. Our results suggest that besides increasing calcium currents, NGF regulates metabolic components of the GSIS, thereby contributing to the maturation process of pancreatic beta cells.


Subject(s)
Glucokinase , Glucose Transporter Type 2 , Glucose , Insulin-Secreting Cells , Nerve Growth Factor , Animals , Male , Rats , Cells, Cultured , Glucokinase/metabolism , Glucose/metabolism , Glucose Transporter Type 2/metabolism , Insulin/metabolism , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Rats, Wistar
2.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673723

ABSTRACT

Recent studies have shown that maternal vitamin D deficiency (VDD) causes long-term metabolic changes in offspring. However, little is known about the impact of maternal VDD on offspring endocrine pancreas development and insulin secretion in the adult life of male and female animals. Female rats (Wistar Hannover) were fed either control (1000 IU Vitamin D3/kg), VDD (0 IU Vitamin D3/kg), or a Ca2+-enriched VDD diet (0 IU Vitamin D3/kg + Ca2+ and P/kg) for 6 weeks and during gestation and lactation. At weaning, VDD status was confirmed based on low serum calcidiol levels in dams and pups. Next, male and female offspring were randomly separated and fed a standard diet for up to 90 days. At this age, serum calcidiol levels were restored to normal levels in all groups, but serum insulin levels were decreased in VDD males without affecting glucagon levels, glycemia, or glucose tolerance. Islets isolated from VDD males showed lower insulin secretion in response to different glucose concentrations, but this effect was not observed in VDD females. Furthermore, VDD males, but not females, showed a smaller total pancreatic islet area and lower ß cell mass, an effect that was accompanied by reduced gene expression of Ins1, Ins2, Pdx1, and SLC2A2. The decrease in Pdx1 expression was not related to the methylation profile of the promoter region of this gene. Most of these effects were observed in the male VDD+Ca2+ group, indicating that the effects were not due to alterations in Ca2+ metabolism. These data show that maternal VDD selectively impairs the morphology and function of ß cells in adult male offspring rats and that female offspring are fully protected from these deleterious effects.


Subject(s)
Insulin-Secreting Cells , Insulin , Rats, Wistar , Vitamin D Deficiency , Animals , Female , Insulin-Secreting Cells/metabolism , Male , Vitamin D Deficiency/metabolism , Rats , Pregnancy , Insulin/blood , Insulin/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/etiology , Sex Factors , Insulin Secretion
3.
Mol Metab ; 83: 101922, 2024 May.
Article in English | MEDLINE | ID: mdl-38521184

ABSTRACT

OBJECTIVE: Evaluation of mitochondrial oxygen consumption and ATP production is important to investigate pancreatic islet pathophysiology. Most studies use cell lines due to difficulties in measuring primary islet respiration, which requires specific equipment and consumables, is expensive and poorly reproducible. Our aim was to establish a practical method to assess primary islet metabolic fluxes using standard commercial consumables. METHODS: Pancreatic islets were isolated from mice/rats, dispersed with trypsin, and adhered to pre-coated standard Seahorse or Resipher microplates. Oxygen consumption was evaluated using a Seahorse Extracellular Flux Analyzer or a Resipher Real-time Cell Analyzer. RESULTS: We provide a detailed protocol with all steps to optimize islet isolation with high yield and functionality. Our method requires a few islets per replicate; both rat and mouse islets present robust basal respiration and proper response to mitochondrial modulators and glucose. The technique was validated by other functional assays, which show these cells present conserved calcium influx and insulin secretion in response to glucose. We also show that our dispersed islets maintain robust basal respiration levels, in addition to maintaining up to 89% viability after five days in dispersed cultures. Furthermore, OCRs can be measured in Seahorse analyzers and in other plate respirometry systems, using standard materials. CONCLUSIONS: Overall, we established a practical and robust method to assess islet metabolic fluxes and oxidative phosphorylation, a valuable tool to uncover basic ß-cell metabolic mechanisms as well as for translational investigations, such as pharmacological candidate discovery and islet transplantation protocols.


Subject(s)
Islets of Langerhans , Mitochondria , Oxygen Consumption , Animals , Islets of Langerhans/metabolism , Mice , Rats , Mitochondria/metabolism , Male , Glucose/metabolism , Mice, Inbred C57BL , Insulin Secretion , Cells, Cultured , Oxidative Phosphorylation , Insulin/metabolism , Adenosine Triphosphate/metabolism
4.
Biosystems ; 237: 105138, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340977

ABSTRACT

Pancreatic ß-cells are equipped with the molecular machinery allowing them to respond to high glucose levels in the form of electrical activity and Ca2+ oscillations. These oscillations drive insulin secretion. Two key ionic mechanisms involved in this response are the Store-Operated Current and the current through ATP-dependent K+ channels. Both currents have been shown to be regulated by the protein STIM1, but this dual regulation by STIM1 has not been studied before. In this paper, we use mathematical modelling to gain insight into the role of STIM1 in the ß-cell response. We extended a previous ß-cell model to include the dynamics of STIM1 and described the dependence of the ATP-dependent K+ current on STIM1. Our simulations suggest that the total concentration of STIM1 modifies the bursting frequency, the burst duration and the intracellular Ca2+ levels. These results are in good agreement with experimental reports, and the contribution of the studied currents to electrical activity and Ca2+ dynamics is discussed. The model predicts that in the absence of STIM1 the excitability of the plasma membrane increases and that the glucose threshold for electrical activity is shifted to lower concentrations. These computational predictions may be related to impaired insulin secretion under conditions of reduced STIM1 in the diabetic state.


Subject(s)
Insulin-Secreting Cells , Stromal Interaction Molecule 1 , Adenosine Triphosphate/metabolism , Calcium/metabolism , Calcium Signaling , Cell Membrane/metabolism , Glucose/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Stromal Interaction Molecule 1/metabolism , Humans
5.
Peptides ; 173: 171148, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215942

ABSTRACT

Type 2 diabetes (T2D) is characterized by peripheral insulin resistance and altered insulin secretion due to a progressive loss of ß-cell mass and function. Today, most antidiabetic agents are designed to resolve impaired insulin secretion and/or insulin resistance, and only GLP-1-based formulations contribute to stopping the decline in ß-cell mass. HTD4010, a peptide carrying two modifications of the amino acid sequence of INGAP-PP (N-terminus acetylation and substitution of Asn13 by Ala) showed greater plasma stability and could be a good candidate for proposal as a drug that could improve ß cell mass and function lost in T2D. In the present study, we showed that HTD4010 included in the culture media of normal rat islets at a dose 100 times lower than that used for INGAP-PP was able to modulate, in the same way as the original peptide, both insulin secretion in response to glucose and the expression of key genes related to insular function, insulin and leptin intracellular pathways, neogenesis, apoptosis, and inflammatory response. Our results confirm the positive effect of HTD4010 on ß-cell function and gene expression of factors involved in the maintenance of ß-cell mass. Although new assays in animal models of prediabetes and T2D must be performed to be conclusive, our results are very encouraging, and they suggest that the use of HTD4010 at a dose 100 times lower than that of INGAP-PP could minimize its side effects in a future clinical trial.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Islets of Langerhans , Rats , Animals , Insulin Secretion , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Pancreatitis-Associated Proteins/genetics , Rats, Wistar , Peptide Fragments/pharmacology , Peptides/genetics , Peptides/pharmacology , Peptides/metabolism , Insulin/metabolism , Gene Expression , Islets of Langerhans/metabolism
6.
Food Res Int ; 177: 113850, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225125

ABSTRACT

Interesterified fats have been used to replace trans-fat in ultra-processed foods. However, their metabolic effects are not completely understood. Hence, this study aimed to investigate the effects related to glucose homeostasis in response to interesterified palm oil or refined palm oil intake. Four-week-old male Swiss mice were randomly divided into four experimental groups and fed the following diets for 8 weeks: a normocaloric and normolipidic diet containing refined palm oil (PO group) or interesterified palm oil (IPO group); a hypercaloric and high-fat diet containing refined PO (POHF group) or interesterified PO (IPOHF group). Metabolic parameters related to body mass, adiposity and food consumption showed no significant differences. As for glucose homeostasis parameters, interesterified palm oil diets (IPO and IPOHF) resulted in higher glucose intolerance than unmodified palm oil diets (PO and POHF). Euglycemic-hyperinsulinemic clamp assessment showed a higher endogenous glucose production in the IPO group compared with the PO group. Moreover, the IPO group showed significantly lower p-AKT protein content (in the muscle and liver tissues) when compared with the PO group. Analysis of glucose-stimulated static insulin secretion (11.1 mmol/L glucose) in isolated pancreatic islets showed a higher insulin secretion in animals fed interesterified fat diets (IPO and IPOHF) than in those fed with palm oil (PO and POHF). Interesterified palm oil, including in normolipidic diets, can impair insulin signaling in peripheral tissues and increase insulin secretion by ß-cells, characterizing insulin resistance in mice.


Subject(s)
Insulin Resistance , Male , Animals , Mice , Palm Oil , Plant Oils , Dietary Fats , Insulin Secretion , Fatty Acids/analysis , Diet, High-Fat/adverse effects , Glucose
7.
Rev Endocr Metab Disord ; 25(2): 259-278, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38048021

ABSTRACT

Undernutrition is still a recurring nutritional problem in low and middle-income countries. It is directly associated with the social and economic sphere, but it can also negatively impact the health of the population. In this sense, it is believed that undernourished individuals may be more susceptible to the development of non-communicable diseases, such as diabetes mellitus, throughout life. This hypothesis was postulated and confirmed until today by several studies that demonstrate that experimental models submitted to protein undernutrition present alterations in glycemic homeostasis linked, in part, to the reduction of insulin secretion. Therefore, understanding the changes that lead to a reduction in the secretion of this hormone is essential to prevent the development of diabetes in undernourished individuals. This narrative review aims to describe the main molecular changes already characterized in pancreatic ß cells that will contribute to the reduction of insulin secretion in protein undernutrition. So, it will provide new perspectives and targets for postulation and action of therapeutic strategies to improve glycemic homeostasis during this nutritional deficiency.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Malnutrition , Nutrition Disorders , Humans , Insulin Secretion , Insulin/metabolism
8.
J Endocrinol Invest ; 47(3): 571-583, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37624484

ABSTRACT

PURPOSE: A variable number of tandem repeats (VNTR) in the insulin gene (INS) control region may be involved in type 2 diabetes (T2D). The TH01 microsatellite is near INS and may regulate it. We investigated whether the TH01 microsatellite and INS VNTR, assessed via the surrogate marker single nucleotide polymorphism rs689, are associated with T2D and serum insulin levels in a Mexican population. METHODS: We analyzed a main case-control study (n = 1986) that used univariate and multivariate logistic regression models to calculate the risk conferred by TH01 and rs689 loci for T2D development; rs689 results were replicated in other case-control (n = 1188) and cross-sectional (n = 1914) studies. RESULTS: TH01 alleles 6, 8, 9, and 9.3 and allele A of rs689 were independently associated with T2D, with differences between sex and age at diagnosis. TH01 alleles with ≥ 8 repeats conferred an increased risk for T2D in males compared with ≤ 7 repeats (odds ratio, ≥ 1.46; 95% confidence interval, 1.1-1.95). In females, larger alleles conferred a 1.5-fold higher risk for T2D when diagnosed ≥ 46 years but conferred protection when diagnosed ≤ 45 years. Similarly, rs689 allele A was associated with T2D in these groups. In males, larger TH01 alleles and the rs689 A allele were associated with a significant decrease in median fasting plasma insulin concentration with age in T2D cases; the reverse occurred in controls. CONCLUSION: Larger TH01 alleles and rs689 A allele may potentiate insulin synthesis in males without T2D, a process disabled in those with T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Tyrosine 3-Monooxygenase , Female , Male , Humans , Insulin Secretion , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Minisatellite Repeats , Case-Control Studies , Cross-Sectional Studies , Fasting , Insulin , Microsatellite Repeats/genetics
9.
J Med Food ; 26(7): 521-527, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37405785

ABSTRACT

The aim of this study was to evaluate the effect of fucoxanthin on metabolic syndrome (MetS), insulin sensitivity, and insulin secretion. A randomized, double-blind, placebo-controlled clinical trial was conducted in 28 patients diagnosed with MetS. Patients were randomly assigned to receive 12 mg of fucoxanthin or placebo once a day for 12 weeks. Before and after the intervention, the components of MetS, insulin sensitivity (Matsuda index), first phase of insulin secretion (Stumvoll index), and total insulin secretion were evaluated during a 2-h oral glucose tolerance test. After fucoxanthin administration, significant differences were observed in body weight (BW) (80.6 ± 11.2 vs. 79.16 ± 12.3 kg, P < .01), body mass index (BMI) (31.1 ± 3.6 vs. 30.3 ± 3.7 kg/m2, P < .01), waist circumference (WC) (101.2 ± 9.1 vs. 98.9 ± 9.3 cm, P < .01), systolic blood pressure (SBP) (126.1 ± 10.3 vs. 120.8 ± 9.7 mmHg, P < .01), diastolic blood pressure (DBP) (81.5 ± 6.5 vs. 78.6 ± 6.3 mmHg, P < .01), triglycerides (TG) (2.2 ± 0.7 vs. 2.1 ± 0.7 mmol/L, P < .01), Stumvoll index (2403 ± 621 vs. 2907 ± 732, P < .05), and total insulin secretion (0.84 ± 0.31 vs. 1.02 ± 0.32, P < .05). In conclusion, fucoxanthin administration leads to a decrease in BW, BMI, WC, SBP, DBP, TG, as well as increase in the first phase of insulin secretion and total insulin secretion in patients with MetS. Clinical Trial Registration number: NCT03613740.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Humans , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Insulin Secretion , Insulin/metabolism , Blood Glucose/metabolism , Triglycerides , Body Weight , Body Mass Index
10.
Biochimie ; 212: 85-94, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37080419

ABSTRACT

A chalcone analogue, (E)-3-(phenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (DMU 101), was synthesized using classic base catalysis and Claisen-Schmidt condensation, and then screened for its antidiabetic properties. The compound's effects on glucose and lipid metabolism were assayed in rats that were treated acutely and for a short time to elucidate its mechanism of action, evaluating glucose tolerance and lactate dehydrogenase activity in response to chalcone analogue administration. The chalcone's in vitro and ex vivo effects on glycogen, glucose, lipid and lipolysis were also investigated, as well as the mechanism by which it induces 45Ca2+ influx-mediated insulin secretion. The analogue (10 mg/kg) diminished glycemia, without inducing acute cell damage, increased glycogen content in the skeletal muscle and reduced serum triacylglycerol and total cholesterol, but did not alter high-density lipoprotein or low-density lipoprotein. Chalcone (10 µM) stimulated glucose uptake in the soleus muscle and did not modulate in vitro or ex vivo lipolysis. This analogue also increased insulin secretion by triggering calcium influx and blocking ATP-sensitive K+ channels and voltage-dependent calcium channels. However, it also modulated stored calcium via sarco/endoplasmic reticulum calcium ATPase (SERCA) and ryanodine receptor (RYR) activity. These findings indicate that this chalcone may induce cellular repolarization via a mechanism mediated by calcium-dependent potassium channels.


Subject(s)
Chalcones , Glucose , Rats , Animals , Glucose/metabolism , Insulin Secretion , Chalcones/pharmacology , Insulin/metabolism , Calcium/metabolism , Lipid Metabolism , Glycogen/metabolism , Glycogen/pharmacology , Calcium Signaling
11.
Aging Cell ; 22(6): e13827, 2023 06.
Article in English | MEDLINE | ID: mdl-37060190

ABSTRACT

Obesity significantly decreases life expectancy and increases the incidence of age-related dysfunctions, including ß-cell dysregulation leading to inadequate insulin secretion. Here, we show that diluted plasma from obese human donors acutely impairs ß-cell integrity and insulin secretion relative to plasma from lean subjects. Similar results were observed with diluted sera from obese rats fed ad libitum, when compared to sera from lean, calorically restricted, animals. The damaging effects of obese circulating factors on ß-cells occurs in the absence of nutrient overload, and mechanistically involves mitochondrial dysfunction, limiting glucose-supported oxidative phosphorylation and ATP production. We demonstrate that increased levels of adiponectin, as found in lean plasma, are the protective characteristic preserving ß-cell function; indeed, sera from adiponectin knockout mice limits ß-cell metabolic fluxes relative to controls. Furthermore, oxidative phosphorylation and glucose-sensitive insulin secretion, which are completely abrogated in the absence of this hormone, are restored by the presence of adiponectin alone, surprisingly even in the absence of other serological components, for both the insulin-secreting INS1 cell line and primary islets. The addition of adiponectin to cells treated with plasma from obese donors completely restored ß-cell functional integrity, indicating the lack of this hormone was causative of the dysfunction. Overall, our results demonstrate that low circulating adiponectin is a key damaging element for ß-cells, and suggest strong therapeutic potential for the modulation of the adiponectin signaling pathway in the prevention of age-related ß-cell dysfunction.


Subject(s)
Insulin Resistance , Insulin-Secreting Cells , Mice , Humans , Rats , Animals , Adiponectin/metabolism , Insulin Secretion , Insulin/metabolism , Obesity/metabolism , Insulin-Secreting Cells/metabolism , Glucose/metabolism , Insulin Resistance/physiology
12.
Adv Exp Med Biol ; 1370: 293-303, 2022.
Article in English | MEDLINE | ID: mdl-35882804

ABSTRACT

Bile acid tauroursodeoxycholic (TUDCA), formed from the association of ursodeoxycholic acid (UDCA) with taurine, has already been shown to increase mitochondrial biogenesis and cell survival, in addition to reduce reticulum stress markers in different cell types. However, its mechanism of action upon insulin secretion control in obesity is still unknown. In this sense, we seek to clarify whether taurine, associated with bile acid, could improve the function of the pancreatic ß-cells exposed to fatty acids through the regulation of mitochondrial metabolism. To test this idea, insulin-producing cells (INS1-E) were exposed to a fatty acid mix containing 500 µM of each palmitate and oleate for 48 hours treated or not with 300 µM of TUDCA. After that, glucose-stimulated insulin secretion and markers of mitochondrial metabolism were evaluated. Our results showed that the fatty acid mix was efficient in inducing hyperfunction of INS1-E cells as observed by the increase in insulin secretion, protein expression of citrate synthase, and mitochondrial density, without altering cell viability. The treatment with TUDCA normalized insulin secretion, reducing the protein expression of citrate synthase, mitochondrial mass, and the mitochondrial membrane potential. This effect was associated with a decrease in the generation of mitochondrial superoxide and c-Jun N-terminal kinase (JNK) protein content. The findings are also consistent with the hypothesis that TUDCA normalizes insulin secretion by improving mitochondrial metabolism and redox balance. Thus, it highlights likely mechanisms of the action of this bile acid on the glycemic homeostasis reestablishment in obesity.


Subject(s)
Bile Acids and Salts , Insulin-Secreting Cells , Taurine , Citrate (si)-Synthase/metabolism , Fatty Acids , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Obesity , Taurine/pharmacology , Taurochenodeoxycholic Acid/pharmacology
13.
J Biochem Mol Toxicol ; 36(5): e23007, 2022 May.
Article in English | MEDLINE | ID: mdl-35199402

ABSTRACT

Metformin is the first-line drug to treat type 2 diabetes mellitus. Its mechanism of action is still debatable, and recent studies report that metformin attenuates oxidative stress. This study evaluated the in vitro antioxidant effects of a broad range of metformin concentrations on insulin-producing cells. The cell cycle, metabolism, glucose-stimulated insulin secretion, and cell death were evaluated to determine the biguanide effects on beta-cell function and survival. Antioxidant potential was based on reactive oxygen species (ROS), reduced glutathione (GSH), oxidative stress biomarker levels, and antioxidant enzyme and transcriptional factor Nrf2 activities. The results demonstrate that metformin disrupted GSIS in a concentration-dependent manner, lowered insulin content, and attenuated beta-cell metabolism. At high concentrations, metformin induced cell death and cell cycle arrest as well as increased ROS generation, consequently reducing GSH content. Although carbonylated protein content was elevated, indicating oxidative stress, the antioxidant enzyme and Nrf2 activities were not altered. In conclusion, our results show that metformin disrupts pancreatic beta-cell functionality but does not exert a putative antioxidant effect. It is important to note that the drug could potentially affect beta-cells, especially at high circulating levels.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Metformin , Animals , Antioxidants/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Metformin/pharmacology , Metformin/therapeutic use , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats , Reactive Oxygen Species/metabolism
14.
J Nutr Biochem ; 99: 108864, 2022 01.
Article in English | MEDLINE | ID: mdl-34606907

ABSTRACT

Vitamin D3 is associated with improvements in insulin resistance and glycemia. In this study, we investigated the short-term effect of 1α,25(OH)2 Vitamin D3 (1,25-D3) and cholecalciferol (vitamin D3) on the glycemia and insulin sensitivity of control and dexamethasone-induced insulin-resistance rats. 45Ca2+ influx responses to 1,25-D3 and its role in insulin secretion were investigated in isolated pancreatic islets from control rats. In vivo, 5 d treatment with 1,25-D3 (i.p.) prevented insulin resistance in dexamethasone-treated rats. Treatment with 1,25-D3 improved the activities of hepatic enzymes, serum lipids and calcium concentrations in insulin-resistant rats. 25-D3 (o.g.) does not affect insulin resistance. In pancreatic islets, 1,25-D3 increased insulin secretion and stimulated rapid response 45Ca2+ influx. The stimulatory effect of 1,25-D3 on 45Ca2+ influx was decreased by diazoxide, apamine, thapsigargin, dantrolene, 2-APB, nifedipine, TEA, PKA, PKC, and cytoskeleton inhibitor, while it was increased by glibenclamide and N-ethylmaleimide. The stimulatory effect of 1,25-D3 on 45Ca2+ influx involves the activation of L-type VDCC, K+-ATP, K+-Ca2+, and Kv channels, which augment cytosolic calcium. These ionic changes mobilize calcium from stores and downstream activation of PKC, PKA tethering vesicle traffic and fusion at the plasma membrane for insulin secretion. This is the first study highlighting the unprecedented role of 1,25-D3 (short-term effect) in the regulation of glucose homeostasis and on prevention of insulin resistance. Furthermore, this study shows the intracellular ß-cell signal transduction of 1,25-D3 through the modulation of pivotal ionic channels and proteins exhibiting a coordinated exocytosis of vesicles for insulin secretion.


Subject(s)
Cholecalciferol/analogs & derivatives , Exocytosis/drug effects , Insulin Resistance , Insulin Secretion/drug effects , Insulin/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Cholecalciferol/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Male , Rats , Rats, Wistar
15.
Braz. J. Pharm. Sci. (Online) ; 58: e20065, 2022. graf
Article in English | LILACS | ID: biblio-1403720

ABSTRACT

Abstract Glucose exposure induces toxic effects on the function of the pancreatic islets. Moreover, myricitrin as a flavonoid glycoside may have favorable effects on insulin secretion of Langerhans islets. The present study aimed to investigate the effect of Myricitrin and its solid lipid nanoparticles (SLN) on the insulin secretion as well as the content of isolated pancreatic islets from male mice. In this experimental study, Langerhans islets were separated from adult male NMRI mice using the collagenase method. The insulin secretion and content of islets were assessed in glucose-containing medium (2.8, 5.6, and 16.7mM). Further, islets treated were prepared by the administration of Myricitrin and its SLN (1, 3 and 10µM). Myricitrin 3µM, and SLN containing Myricitrin 3 and 10µM increased insulin secretion in medium containing glucose concentration 2.8mM. Accordingly, this variable increased in Myricitrin 3 and 10µM, SLN containing Myricitrin 1, 3, and 10µM utilization as well as glucose concentration 5.6mM. Afterward, the insulin secretion increased in medium containing 16.7mM glucose after the addition of Myricitrin and SLN containing Myricitrin 1, 3, and 10µM. Also, the insulin content increased in Myricitrin and SLN containing Myricitrin 1, 3, and 10µM administered groups in all medium containing glucose concentrations. Myricitrin and its SLN increased islets insulin secretion and content in low, moderate, and high glucose concentration mediums


Subject(s)
Animals , Male , Mice , Pancreas/drug effects , Islets of Langerhans/abnormalities , Insulin Secretion/immunology , Organization and Administration , Nanoparticles , Insulin/adverse effects
16.
Food Res Int ; 148: 110589, 2021 10.
Article in English | MEDLINE | ID: mdl-34507734

ABSTRACT

Chronic high-glucose levels induce the generation of reactive oxygen species leading to mitochondrial dysfunction, which is one of the pathological triggers in the development of diabetes. This study investigated the alkaloid composition of two fruits of the genus Solanum, fruta-do-lobo (Solanum lycocarpum) and juá-açu (Solanum oocarpum), and their capacity to protect against oxidative damage and defective insulin secretion induced by chronic high-glucose levels. LC-MS and molecular network of fruit crude extracts reveals that juá-açu and fruta-do-lobo contain kukoamines and glycoalkaloids, respectively. Two purification processes were used to enrich those alkaloids. Fruta-do-lobo extract rich in glycoalkaloids showed a strong cytotoxicity effect, however the juá-açu enriched extract was able to protect mitochondrial functionality against glucotoxicity and stimulate insulin secretion even under conditions of hyperglycemia. These results are promising and suggest that juá-açu is a potential source of bioactive compounds for adjuvant/co-adjuvant therapy for diabetes.


Subject(s)
Alkaloids , Solanum , Alkaloids/pharmacology , Fruit , Insulin Secretion , Mitochondria
17.
Front Endocrinol (Lausanne) ; 12: 656978, 2021.
Article in English | MEDLINE | ID: mdl-34140928

ABSTRACT

Type 2 diabetes Mellitus (T2DM) prevalence has significantly increased worldwide in recent years due to population age, obesity, and modern sedentary lifestyles. The projections estimate that 439 million people will be diabetic in 2030. T2DM is characterized by an impaired ß-pancreatic cell function and insulin secretion, hyperglycemia and insulin resistance, and recently the epigenetic regulation of ß-pancreatic cells differentiation has been underlined as being involved. It is currently known that several bioactive molecules, widely abundant in plants used as food or infusions, have a key role in histone modification and DNA methylation, and constituted potential epidrugs candidates against T2DM. In this sense, in this review the epigenetic mechanisms involved in T2DM and protein targets are reviewed, with special focus in studies addressing the potential use of phytochemicals as epidrugs that prevent and/or control T2DM in vivo and in vitro. As main findings, and although some controversial results have been found, bioactive molecules with epigenetic regulatory function, appear to be a potential replacement/complementary therapy of pharmacological hypoglycemic drugs, with minimal side effects. Indeed, natural epidrugs have shown to prevent or delay the T2DM development and the morbidity associated to dysfunction of blood vessels, eyes and kidneys due to sustained hyperglycemia in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Epigenesis, Genetic , Gene Expression Regulation/drug effects , Hypoglycemic Agents/therapeutic use , Insulin Secretion , Phytochemicals/therapeutic use , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans
18.
Front Endocrinol (Lausanne) ; 12: 679492, 2021.
Article in English | MEDLINE | ID: mdl-34054736

ABSTRACT

Hyperinsulinemia is frequently associated with aging and may cause insulin resistance in elderly. Since insulin secretion and clearance decline with age, hyperinsulinemia seems to be maintained, primarily, due to a decrease in the insulin clearance. To investigate these aging effects, 3- and 18-month-old male C57BL/6 mice were subjected to intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT) and, during the ipGTT, plasma c-peptide and insulin were measure to evaluate in vivo insulin clearance. Glucose-stimulated insulin secretion in isolated pancreatic islets was also assessed, and liver samples were collected for molecular analyses (western blot). Although insulin sensitivity was not altered in the old mice, glucose tolerance, paradoxically, seems to be increased, accompanied by higher plasma insulin, during ipGTT. While insulin secretion did not increase, insulin clearance was reduced in the old mice, as suggested by the lower c-peptide:insulin ratio, observed during ipGTT. Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) and insulin-degrading enzyme (IDE), as well as the activity of this enzyme, were reduced in the liver of old mice, justifying the decreased insulin clearance observed in these mice. Therefore, loss of hepatic CEACAM1 and IDE function may be directly related to the decline in insulin clearance during aging.


Subject(s)
Aging/metabolism , Glucose/pharmacology , Insulin Secretion/drug effects , Insulin/metabolism , Islets of Langerhans/drug effects , Animals , Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Glucose Tolerance Test , Insulin/blood , Insulin Resistance/physiology , Insulin Secretion/physiology , Insulysin/metabolism , Islets of Langerhans/metabolism , Liver/metabolism , Male , Mice
19.
Glycobiology ; 31(8): 908-915, 2021 09 09.
Article in English | MEDLINE | ID: mdl-33978732

ABSTRACT

Type-2 diabetes mellitus (T2DM) is an expanding global health problem, involving defective insulin secretion by pancreatic ß-cells and peripheral insulin resistance, leading to impaired glucose regulation. Galectin-1-an endogenous lectin with affinity for N-acetyllactosamine (LacNAc)-containing glycans-has emerged as a regulator of inflammatory and metabolic disorders. However, the role of galectin-1 in glucose homeostasis and pancreatic ß-cell function, independently of hypercaloric diets, has not been explored. Here, we identified a phenotype compatible with T2DM, involving alterations in glucose metabolism and pancreatic insulin release, in female but not male mice lacking galectin-1 (Lgals1-/-). Compared with age-matched controls, Lgals1-/- female mice exhibited higher body weight and increased food intake ad libitum as well as after fasting and acute re-feeding. Although fasted serum insulin levels and insulin sensitivity were similar in both genotypes, Lgals1-/- female mice presented altered glucose tolerance and higher basal glucose levels depending on the fasting period. Insulin response to glucose overload was impaired, while pancreatic insulin content was enhanced in the absence of galectin-1. Accordingly, recombinant galectin-1 enhanced glucose-stimulated insulin release in vitro. Our study identifies a role for galectin-1 in regulating glucose metabolism through modulation of pancreatic insulin secretion, highlighting novel opportunities to control T2DM.


Subject(s)
Insulin Resistance , Insulin , Animals , Female , Galectin 1/genetics , Galectin 1/metabolism , Glucose/metabolism , Homeostasis , Insulin/metabolism , Insulin Secretion , Male , Mice
20.
Mol Cell Biochem ; 476(8): 3127-3139, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33844157

ABSTRACT

Obesity and type 2 diabetes (T2D) are growing health problems associated with a loss of insulin sensitivity. Both conditions arise from a long-term energy imbalance, and frequently, lifestyle measures can be useful in its prevention, including physical activity and a healthy diet. Pancreatic ß-cells are determinant nutrient sensors that participate in energetic homeostasis needs. However, when pancreatic ß-cells are incapable of secreting enough insulin to counteract the reduced sensitivity, the pathology evolves to an insulin resistance condition. The primary nutrient that stimulates insulin secretion is glucose, but also, there are multiple dietary and hormonal factors influencing that response. Many studies of the physiology of ß-cells have highlighted the importance of glucose, fructose, amino acids, and free fatty acids on insulin secretion. The present review summarizes recent research on how ß-cells respond to the most abundant nutrients that influence insulin secretion. Taken together, understand the subjacent mechanisms of each nutrient on ß-cells can help to unravel the effects of mixed variables and complexity in the context of ß-cell pathology.


Subject(s)
Insulin Secretion/drug effects , Insulin-Secreting Cells/physiology , Insulin/metabolism , Nutrients/pharmacology , Animals , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL