Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
1.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126011

ABSTRACT

The clinical manifestations of atopic dermatitis (AD) and chronic nodular prurigo (CNPG) include pruritus and eczema/lesions, posing significant challenges for patients. Th2 cells and ILC2, marked by cytokine production-particularly IL-4/13-are crucial therapeutic targets. Despite displaying a dose-dependent lack of pruritus induction post-injection, IL-13 acts through the IL-13Rα1 and IL-13Rα2 receptor system. Our study focused on investigating ex vivo skin biopsies in AD (n = 17), CNPG (n = 14) and healthy controls (HC; n = 10), examining the gene expression landscape of interleukins linked with pruritus (IL-13, IL-4, IL-31) and their corresponding receptors. Compared to HC, results revealed a significant upregulation of IL-4, IL-13, and IL-13RA1 in AD, whereas CNPG did not show increased IL13 expression. Notably, the decoy receptor IL-13RA2 displayed intriguing patterns, with AD showing a marked increase compared to both HC and CNPG. Positive correlations between receptor expression and itch intensity and hyperkinesis sensation underscore clinical relevance, potentially serving as biomarkers. The findings suggest a pivotal role of IL-4 and IL-13, along with IL-13RA1, in pruritus pathogenesis in both entities, while IL-13 upregulation in AD is countered by IL-13RA2. The comparable expression of IL-13RA2 to HC in CNPG suggests the absence of this regulatory mechanism, potentially worsening the disease and leading to prolonged scratching behavior. These insights illuminate the intricate interplay of interleukins and receptors in different pruritus phenotypes, laying the groundwork for understanding underlying mechanisms and offering avenues for therapeutic intervention.


Subject(s)
Dermatitis, Atopic , Interleukin-13 , Interleukins , Prurigo , Pruritus , Humans , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Dermatitis, Atopic/immunology , Prurigo/metabolism , Prurigo/pathology , Prurigo/genetics , Female , Adult , Male , Interleukin-13/metabolism , Interleukin-13/genetics , Interleukins/metabolism , Interleukins/genetics , Pruritus/metabolism , Pruritus/genetics , Middle Aged , Interleukin-4/metabolism , Interleukin-4/genetics , Chronic Disease , Skin/metabolism , Skin/pathology , Young Adult , Interleukin-13 Receptor alpha1 Subunit/metabolism , Interleukin-13 Receptor alpha1 Subunit/genetics , Interleukin-13 Receptor alpha2 Subunit/metabolism , Interleukin-13 Receptor alpha2 Subunit/genetics
2.
Clin Transl Med ; 14(5): e1664, 2024 May.
Article in English | MEDLINE | ID: mdl-38685487

ABSTRACT

BACKGROUND: Previously, we discovered that human solid tumours, but not normal human tissues, preferentially overexpress interleukin-13Receptor alpha2, a high binding receptor for IL-13. To develop novel anti-cancer approaches, we constructed a chimeric antigen receptor construct using a high binding and codon optimised scFv-IL-13Rα2 fragment fused with CD3ζ and co-stimulatory cytoplasmic domains of CD28 and 4-1BB. METHODS: We developed a scFv clone, designated 14-1, by biopanning the bound scFv phages using huIL-13Rα2Fc chimeric protein and compared its binding with our previously published clone 4-1. We performed bioinformatic analyses for complementary determining regions (CDR) framework and residue analyses of the light and heavy chains. This construct was packaged with helper plasmids to produce CAR-lentivirus and transduced human Jurkat T or activated T cells from peripheral blood mononuclear cells (PBMCs) to produce CAR-T cells and tested for their quality attributes in vitro and in vivo. Serum enzymes including body weight from non-tumour bearing mice were tested for assessing general toxicity of CAR-T cells. RESULTS: The binding of 14-1 clone is to IL-13Rα2Fc-chimeric protein is ∼5 times higher than our previous clone 4-1. The 14-1-CAR-T cells grew exponentially in the presence of cytokines and maintained phenotype and biological attributes such as cell viability, potency, migration and T cell activation. Clone 14-1 migrated to IL-13Rα2Fc and cell free supernatants only from IL-13Rα2+ve confluent glioma tumour cells in a chemotaxis assay. scFv-IL-13Rα2-CAR-T cells specifically killed IL-13Rα2+ve but not IL-13Rα2-ve tumour cells in vitro and selectively caused significant release of IFN-γ only from IL-13Rα2+ve co-cultures. These CAR-T cells regressed IL-13Rα2+ve glioma xenografts in vivo without any general toxicity. In contrast, the IL-13Rα2 gene knocked-down U251 and U87 xenografts failed to respond to the CAR-T therapy. CONCLUSION: Taken together, we conclude that the novel scFv-IL-13Rα2 CAR-T cell therapy may offer an effective therapeutic option after designing a careful pre-clinical and clinical study.


Subject(s)
Glioma , Interleukin-13 Receptor alpha2 Subunit , Humans , Interleukin-13 Receptor alpha2 Subunit/metabolism , Interleukin-13 Receptor alpha2 Subunit/genetics , Mice , Glioma/immunology , Glioma/therapy , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Animals , Immunotherapy, Adoptive/methods , Disease Models, Animal , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology
3.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612592

ABSTRACT

Breast cancer (BCA) remains the leading cause of cancer-related mortality among women worldwide. This review delves into the therapeutic challenges of BCA, emphasizing the roles of interleukin-13 receptor α2 (IL-13Rα2) and erythropoietin-producing hepatocellular receptor A2 (EphA2) in tumor progression and resistance. Highlighting their overexpression in BCA, particularly in aggressive subtypes, such as Her-2-enriched and triple-negative breast cancer (TNBC), we discuss the potential of these receptors as targets for chimeric antigen receptor T-cell (CAR-T) therapies. We examine the structural and functional roles of IL-13Rα2 and EphA2, their pathological significance in BCA, and the promising therapeutic avenues their targeting presents. With an in-depth analysis of current immunotherapeutic strategies, including the limitations of existing treatments and the potential of dual antigen-targeting CAR T-cell therapies, this review aims to summarize potential future novel, more effective therapeutic interventions for BCA. Through a thorough examination of preclinical and clinical studies, it underlines the urgent need for targeted therapies in combating the high mortality rates associated with Her-2-enriched and TNBC subtypes and discusses the potential role of IL-13Rα2 and EphA2 as promising candidates for the development of CAR T-cell therapies.


Subject(s)
Immunotherapy, Adoptive , Interleukin-13 Receptor alpha2 Subunit , Receptors, Chimeric Antigen , Triple Negative Breast Neoplasms , Female , Humans , Interleukin-13 Receptor alpha2 Subunit/genetics , Receptors, Erythropoietin , Triple Negative Breast Neoplasms/therapy
4.
Nat Med ; 30(5): 1320-1329, 2024 May.
Article in English | MEDLINE | ID: mdl-38480922

ABSTRACT

Recurrent glioblastoma (rGBM) remains a major unmet medical need, with a median overall survival of less than 1 year. Here we report the first six patients with rGBM treated in a phase 1 trial of intrathecally delivered bivalent chimeric antigen receptor (CAR) T cells targeting epidermal growth factor receptor (EGFR) and interleukin-13 receptor alpha 2 (IL13Rα2). The study's primary endpoints were safety and determination of the maximum tolerated dose. Secondary endpoints reported in this interim analysis include the frequency of manufacturing failures and objective radiographic response (ORR) according to modified Response Assessment in Neuro-Oncology criteria. All six patients had progressive, multifocal disease at the time of treatment. In both dose level 1 (1 ×107 cells; n = 3) and dose level 2 (2.5 × 107 cells; n = 3), administration of CART-EGFR-IL13Rα2 cells was associated with early-onset neurotoxicity, most consistent with immune effector cell-associated neurotoxicity syndrome (ICANS), and managed with high-dose dexamethasone and anakinra (anti-IL1R). One patient in dose level 2 experienced a dose-limiting toxicity (grade 3 anorexia, generalized muscle weakness and fatigue). Reductions in enhancement and tumor size at early magnetic resonance imaging timepoints were observed in all six patients; however, none met criteria for ORR. In exploratory endpoint analyses, substantial CAR T cell abundance and cytokine release in the cerebrospinal fluid were detected in all six patients. Taken together, these first-in-human data demonstrate the preliminary safety and bioactivity of CART-EGFR-IL13Rα2 cells in rGBM. An encouraging early efficacy signal was also detected and requires confirmation with additional patients and longer follow-up time. ClinicalTrials.gov identifier: NCT05168423 .


Subject(s)
ErbB Receptors , Glioblastoma , Immunotherapy, Adoptive , Interleukin-13 Receptor alpha2 Subunit , Receptors, Chimeric Antigen , Humans , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Interleukin-13 Receptor alpha2 Subunit/immunology , Middle Aged , Male , Receptors, Chimeric Antigen/immunology , Female , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/pathology , Adult , Aged , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Injections, Spinal , Maximum Tolerated Dose
6.
Cell Commun Signal ; 22(1): 81, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291404

ABSTRACT

BACKGROUND: Previous research has revealed that the 18 glycoside hydrolase gene family (GH18) member Chitinase 3-like 1 (Chi3l1) can regulate osteoclast differentiation and bone resorption. However, its downstream receptors and molecular mechanisms during osteoclastogenesis have yet to be elucidated. METHODS: Initially, we conducted a comprehensive investigation to evaluate the effects of recombinant Chi3l1 protein or Chi3l1 siRNA on osteoclast differentiation and the RANKL-induced MAPK/AKT signaling pathways. Moreover, we used immunofluorescence and immunoprecipitation assays to identify IL13Rα2 as the downstream receptor of Chi3l1. Subsequently, we investigated the impact of IL13Rα2 recombinant protein or IL13Rα2-siRNA on osteoclast differentiation and the associated signaling pathways. Finally, we performed in vivo experiments to examine the effect of recombinant IL13Rα2 protein in an LPS-induced mouse model of cranial osteolysis. RESULTS: Our findings highlight that the administration of recombinant Chi3l1 protein increased the formation of osteoclasts and bolstered the expression of several osteoclast-specific genes (TRAP, NFATC1, CTR, CTSK, V-ATPase d2, and Dc-STAMP). Additionally, Chi3l1 significantly promoted the RANKL-induced MAPK (ERK/P38/JNK) and AKT pathway activation, whereas Chi3l1 silencing inhibited this process. Next, using immunofluorescence and co-immunoprecipitation assays, we identified IL13Rα2 as the binding partner of Chi3l1 during osteoclastogenesis. IL13Rα2 recombinant protein or IL13Rα2-siRNA also inhibited osteoclast differentiation, and IL13Rα2-siRNA attenuated the RANKL-induced activation of the MAPK (ERK/P38/JNK) and AKT pathways, similar to the effects observed upon silencing of Chi3l1. Moreover, the promoting effect of recombinant Chi3l1 protein on osteoclastogenesis and the activation of the MAPK and AKT pathways was reversed by IL13Rα2 siRNA. Finally, recombinant LI13Rα2 protein significantly attenuated the LPS-induced cranial osteolysis and the number of osteoclasts in vivo. CONCLUSIONS: Our findings suggested that IL13Rα2 served as a crucial receptor for Chi3l1, enhancing RANKL-induced MAPK and AKT activation to promote osteoclast differentiation. These findings provide valuable insights into the molecular mechanisms of Chi3l1 in osteoclastogenesis, with potential therapeutic implications for osteoclast-related diseases. Video Abstract.


Subject(s)
Bone Resorption , Interleukin-13 Receptor alpha2 Subunit , Osteolysis , Animals , Mice , Bone Resorption/drug therapy , Cell Differentiation , Chitinase-3-Like Protein 1/metabolism , Interleukin-13 Receptor alpha2 Subunit/metabolism , Interleukin-13 Receptor alpha2 Subunit/therapeutic use , Lipopolysaccharides/pharmacology , NFATC Transcription Factors/metabolism , Osteoclasts , Osteolysis/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RANK Ligand/metabolism , Recombinant Proteins/pharmacology , RNA, Small Interfering/metabolism
7.
Cell Death Dis ; 14(11): 742, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37963919

ABSTRACT

Interleukin 13 receptor alpha 2 (IL13Rα2) is a relevant therapeutic target in glioblastoma (GBM) and other tumors associated with tumor growth and invasion. In a previous study, we demonstrated that protein tyrosine phosphatase 1B (PTP1B) is a key mediator of the IL-13/IL13Rα2 signaling pathway. PTP1B regulates cancer cell invasion through Src activation. However, PTP1B/Src downstream signaling mechanisms that modulate the invasion process remain unclear. In the present research, we have characterized the PTP1B interactome and the PTP1B-associated phosphoproteome after IL-13 treatment, in different cellular contexts, using proteomic strategies. PTP1B was associated with proteins involved in signal transduction, vesicle transport, and with multiple proteins from the NF-κB signaling pathway, including Tenascin-C (TNC). PTP1B participated with NF-κB in TNC-mediated proliferation and invasion. Analysis of the phosphorylation patterns obtained after PTP1B activation with IL-13 showed increased phosphorylation of the transcription factor Schnurri-3 (SHN3), a reported competitor of NF-κB. SHN3 silencing caused a potent inhibition in cell invasion and proliferation, associated with a down-regulation of the Wnt/ß-catenin pathway, an extensive decline of MMP9 expression and the subsequent inhibition of tumor growth and metastasis in mouse models. Regarding clinical value, high expression of SHN3 was associated with poor survival in GBM, showing a significant correlation with the classical and mesenchymal subtypes. In CRC, SHN3 expression showed a preferential association with the mesenchymal subtypes CMS4 and CRIS-B. Moreover, SHN3 expression strongly correlated with IL13Rα2 and MMP9-associated poor prognosis in different cancers. In conclusion, we have uncovered the participation of SNH3 in the IL-13/IL13Rα2/PTP1B pathway to promote tumor growth and invasion. These findings support a potential therapeutic value for SHN3.


Subject(s)
Interleukin-13 Receptor alpha2 Subunit , Neoplasms , Animals , Mice , Interleukin-13 , Interleukin-13 Receptor alpha2 Subunit/genetics , Interleukin-13 Receptor alpha2 Subunit/metabolism , Matrix Metalloproteinase 9/metabolism , Neoplasms/genetics , NF-kappa B/metabolism , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Proteomics
8.
Phytother Res ; 37(12): 5947-5957, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37748098

ABSTRACT

Therapy with chimeric antigen receptor T (CAR-T) cells involves using reformative T lymphocytes that have three domains, antigen recognition, transmembrane, and costimulating to achieve the therapeutic purpose. CAR-T therapy on malignant hematologic has been successful; however, its effectiveness in patients with solid tumors is still limited. Few studies exist confirming the efficacy of natural products on the function of CAR-T cells. The purpose of this study is to assess the effect of gastrodin (GAS) on CAR-T cells that target interleukin-13 receptor α2 antigen (IL-13Rα2 CAR-T) in the brain against glioblastoma multiforme. Migration of IL-13Rα2 CAR-T was evaluated using the Transwell assay. The effects of GAS on IL-13Rα2 CAR-T cells were assessed both in vitro and situ glioblastoma models. The cytoskeleton was stained with Fluorescein 5-isothiocyanate (FITC)-phalloidin. Cytokines expression in cells was determined by flow cytometry and ELISA assay. Western blotting was used to detect the S1P1 expression, and quantitative PCR assay was used to determine the IL-13Rα2 gene level. GAS increased the migratory and destructive capacity of IL-13Rα2 CAR-T cells with no effect on cytokine release. By increasing the expression of S1P1, GAS encouraged the entry of CAR-T cells into the brain and bone marrow. Transcriptomic analysis revealed that genes related to skeletal migration such as add2 and gng8 showed increased expression in GAS-treated CAR-T cells. We found that GAS synergistically improves the mobility of IL-13Rα2 CAR-T, enhancing their ability to recognize the tumor antigen of glioblastoma, which could be advantageous for the application of CAR-T for the treatment of solid tumors.


Subject(s)
Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Receptors, Chimeric Antigen , Humans , Glioblastoma/therapy , Glioblastoma/genetics , Receptors, Chimeric Antigen/metabolism , Interleukin-13 Receptor alpha2 Subunit/genetics , Interleukin-13 Receptor alpha2 Subunit/metabolism , T-Lymphocytes , Brain/metabolism
9.
Toxicol In Vitro ; 92: 105651, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37482138

ABSTRACT

Targeting cell surface receptors with immunotoxins provides a novel, unique and highly potent treatment against cancers. A high expression of interleukin-13 (IL13) receptor α2 (IL13Rα2) has been reported in different types of cancers including glioblastoma multiforme (GBM). In this paper, to target IL13Rα2 on GBM cells, a fusion protein was generated comprising human IL13 and staphylococcal enterotoxin B (SEB), termed IL13-linker-SEB. The fusion protein was cloned into pET28a(+) and expressed in Escherichia coli strain BL21 (DE3); U251 (IL13Rα2-positive) and T98G (IL13Rα2-negative) GBM cell lines were employed and the functional activity of IL13-linker-SEB was evaluated by cell ELISA, cytotoxicity (MTT and LDH), apoptosis (flow cytometry and caspase-3 activity), adhesion, scratch and RT-PCR tests. SEB and chemotherapeutic drugs were employed to be compared to IL13-linker-SEB function. The IL13-linker-SEB exhibited higher binding affinity and cytotoxicity compared to SEB on U251 cells, although both recombinant proteins had shown similar behavior regarding T98G cells. Furthermore, the highest induction of apoptosis was observed in U251 cells treated with IL13-linker-SEB which was confirmed by Bax/Bcl-2 ratio. The expression of MMP2, MMP9 and VEGFR2 in U251 cells experienced a significant reduction after treatment with IL13-linker-SEB compared to SEB and T98G treated cells. The data showed that IL13-linker-SEB can be considered as a novel potential agent for GBM treatment; however, further research is needed to investigate the efficacy.


Subject(s)
Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Interleukin-13/genetics , Interleukin-13/pharmacology , Interleukin-13/metabolism , Interleukin-13 Receptor alpha2 Subunit/genetics , Interleukin-13 Receptor alpha2 Subunit/metabolism , Interleukin-13 Receptor alpha2 Subunit/therapeutic use , Recombinant Proteins
10.
Cells ; 12(13)2023 06 25.
Article in English | MEDLINE | ID: mdl-37443750

ABSTRACT

Glioblastoma (GBM) is a lethal brain tumor with limited therapeutic options. Bi-specific killer cell engagers (BiKEs) are novel immunotherapies designed to engage natural killer (NK) cells against cancer. We designed a BiKE molecule consisting of a single-domain CD16 antibody, an interleukin-15 linker, and a single-chain variable antibody against the glioma-associated antigen interleukin 13 receptor alpha 2 (IL13Rα2). Recombinant BiKE protein was expressed in HEK cells and purified. Flow cytometric analysis of co-cultures of peripheral blood-derived NK cells with GBM6 and GBM39 patient-derived xenograft lines revealed significantly increased activation of NK cells (CD25+CD69+) and increased glioma cell killing following BiKE treatment compared to controls (n = 4, p < 0.01). Glioma cell killing was also confirmed via immunofluorescence staining for cleaved caspase-3 (p < 0.05). In vivo, intracranial delivery of NK cells with BiKE extended median survival in mice bearing GBM6 (p < 0.01) and GBM12 (p < 0.01) tumors compared to controls. Finally, histological analysis of brain tissues revealed a higher frequency of peritumoral NK cells in mice treated with BiKE than with NK cells alone (p < 0.05). In conclusion, we demonstrate that a BiKE generated in a mammalian expression system is functional in augmenting NK cell targeting of IL13Rα2-positive gliomas.


Subject(s)
Brain Neoplasms , Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Humans , Animals , Mice , Interleukin-13 Receptor alpha2 Subunit/metabolism , Killer Cells, Natural , Immunotherapy , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Mammals
11.
J Mol Med (Berl) ; 101(7): 813-828, 2023 07.
Article in English | MEDLINE | ID: mdl-37166517

ABSTRACT

Chitinase-3-like 1 protein (CHI3L1) is a secreted glycoprotein, strongly correlated with fibrosis severity in chronic liver diseases including non-alcoholic steatohepatitis (NASH). However, the mechanisms by which CHI3L1 contributes to fibrogenesis remain undefined. Here, we showed that infiltrating monocyte-derived liver macrophages represent the main source of CHI3L1 in murine NASH. We developed a floxed CHI3L1 knock-out (KO) mouse to further study the cell-specific role of CHI3L1 ablation. Wildtype (WT) and myeloid cell-specific CHI3L1 KO mice (CreLyz) were challenged with a highly inflammatory and fibrotic dietary model of NASH by administering choline-deficient high-fat diet for 10 weeks. Macrophage accumulation and inflammatory cell recruitment were significantly ameliorated in the CreLyz group compared to WT (F4/80 IHC p < 0.0001, CD11b IHC p < 0.0001). Additionally, hepatic stellate cell (HSC) activation and fibrosis were strongly decreased in this group (α-SMA IHC p < 0.0001, picrosirius red staining p < 0.0001). In vitro studies were performed stimulating bone marrow derived macrophages, THP-1 (human monocytes) and LX2 (human HSCs) cells with recombinant CHI3L1 to dissect its relationship with fibrosis development. Results showed an important role of CHI3L1 regulating fibrosis-promoting factors by macrophages (TGFB1 p < 0.05, CTGF p < 0.01) while directly activating HSCs (ACTA2 p < 0.01, COL1A1 p < 0.01), involving IL13Rα2 as the potential mediator. Our findings uncovered a novel role of CHI3L1 derived from liver macrophages in NASH progression and identifies this protein as a potential anti-fibrotic therapeutic target. KEY MESSAGES: We showed that CHI3L1 expression is increased in murine CDAA-HFAT diet NASH model, and that infiltrating macrophages are a key source of CHI3L1 production. Myeloid cell-specific CreLyz CHI3L1 knock-out in mice fed with CDAA-HFAT diet improved the NASH phenotype, with significantly reduced accumulation of pro-inflammatory macrophages and neutrophils compared with WT group. DEG and qPCR analysis of genes in CreLyz CHI3L1 knock-out mouse liver showed the mechanistic role of CHI3L1 in cellular chemotaxis. HSC is directly activated by CHI3L1 via receptor IL13Rα2, leading to upregulation of collagen deposition and pro-fibrotic gene, TIMP-1 and TIMP-2 release in whole liver. Direct stimulation of macrophages with CHI3L1 leads to upregulated expression of HSC-activation factors, suggesting its role in modulating macrophage-HSC crosstalk.


Subject(s)
Chitinases , Interleukin-13 Receptor alpha2 Subunit , Non-alcoholic Fatty Liver Disease , Mice , Humans , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Chitinases/metabolism , Interleukin-13 Receptor alpha2 Subunit/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism , Diet, High-Fat/adverse effects , Mice, Knockout , Mice, Inbred C57BL , Disease Models, Animal
12.
Cancer Immunol Immunother ; 72(7): 2393-2403, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36991262

ABSTRACT

Chimeric antigen receptor (CAR)-modified T (CAR-T) cell therapy has been proven to be a powerful tool for the treatment of cancer, however, the limits are obvious, especially for solid tumors. Therefore, constantly optimizing the structure of CAR to improve its therapeutic effect is necessary. In this study, we generated three different third-generation CARs targeting IL13Rα2, with the same scFv, but different transmembrane domains (TMDs) from CD4, CD8 or CD28 (IL13-CD4TM-28.BB.ζ, IL13-CD8TM-28.BB.ζ and IL13-CD28TM-28.BB.ζ). CARs were transduced into primary T cells using retroviruses. The anti-GBM efficacy of CAR-T cells was monitored by flow cytometry and real-time cell analysis (RTCA) in vitro and examined in two xenograft mouse models. The differentially expressed genes related to different anti-GBM activity were screened by high throughput RNA sequencing. We observed that T cells transduced with these three CARs have similar anti-tumor activity when co-cultured with U373 cells which expressed higher IL13Rα2 but exhibited different anti-tumor activity when co-cultured with U251 cells that expressed lower IL13Rα2. All the three groups of CAR-T cells can be activated by U373 cells, but only IL13-CD28TM-28.BB.ζ CAR-T cells could be activated and expressed increased IFN-γ after co-culturing with U251 cells. IL13-CD28TM-28.BB.ζ CAR-T cells exhibited the best anti-tumor activity in xenograft mouse models which can infiltrate into the tumors. The superior anti-tumor efficacy of IL13-CD28TM-28.BB.ζ CAR-T cells was partially owing to differentially expressed extracellular assembly, extracellular matrix, cell migration and adhesion-related genes which contribute to the lower activation threshold, increased cell proliferation, and elevated migration capacity.


Subject(s)
Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Animals , Humans , Mice , CD28 Antigens , Cell Line, Tumor , Disease Models, Animal , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/therapy , Immunotherapy, Adoptive , Interleukin-13 , Interleukin-13 Receptor alpha2 Subunit/genetics , Interleukin-13 Receptor alpha2 Subunit/immunology , T-Lymphocytes , Xenograft Model Antitumor Assays
13.
Cancer Res Commun ; 3(1): 66-79, 2023 01.
Article in English | MEDLINE | ID: mdl-36968221

ABSTRACT

Chimeric antigen receptor (CAR) T cell immunotherapy is emerging as a powerful strategy for cancer therapy; however, an important safety consideration is the potential for off-tumor recognition of normal tissue. This is particularly important as ligand-based CARs are optimized for clinical translation. Our group has developed and clinically translated an IL13(E12Y) ligand-based CAR targeting the cancer antigen IL13Rα2 for treatment of glioblastoma (GBM). There remains limited understanding of how IL13-ligand CAR design impacts the activity and selectivity for the intended tumor-associated target IL13Rα2 versus the more ubiquitous unintended target IL13Rα1. In this study, we functionally compared IL13(E12Y)-CARs incorporating different intracellular signaling domains, including first-generation CD3ζ-containing CARs (IL13ζ), second-generation 4-1BB (CD137)-containing or CD28-containing CARs (IL13-BBζ or IL13-28ζ), and third-generation CARs containing both 4-1BB and CD28 (IL13-28BBζ). In vitro coculture assays at high tumor burden establish that second-generation IL13-BBζ or IL13-28ζ outperform first-generation IL13ζ and third-generation IL13-28BBζ CAR designs, with IL13-BBζ providing superior CAR proliferation and in vivo antitumor potency in human xenograft mouse models. IL13-28ζ displayed a lower threshold for antigen recognition, resulting in higher off-target IL13Rα1 reactivity both in vitro and in vivo. Syngeneic mouse models of GBM also demonstrate safety and antitumor potency of murine IL13-BBζ CAR T cells delivered systemically after lymphodepletion. These findings support the use of IL13-BBζ CARs for greater selective recognition of IL13Rα2 over IL13Rα1, higher proliferative potential, and superior antitumor responsiveness. This study exemplifies the potential of modulating factors outside the antigen targeting domain of a CAR to improve selective tumor recognition. Significance: This study reveals how modulating CAR design outside the antigen targeting domain improves selective tumor recognition. Specifically, this work shows improved specificity, persistence, and efficacy of 4-1BB-based IL13-ligand CARs. Human clinical trials evaluating IL13-41BB-CAR T cells are ongoing, supporting the clinical significance of these findings.


Subject(s)
Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Receptors, Chimeric Antigen , Humans , Mice , Animals , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Immunotherapy, Adoptive/methods , Interleukin-13 Receptor alpha2 Subunit/genetics , Interleukin-13/genetics , CD28 Antigens/genetics , Ligands , Glioblastoma/therapy , Disease Models, Animal
14.
Biomolecules ; 13(2)2023 02 12.
Article in English | MEDLINE | ID: mdl-36830725

ABSTRACT

The IL-13Rα2 cell surface receptor is highly expressed in tumours such as prostate cancer. In this report, we evaluated the hypothesis that prostate cancer cells with enhanced IL-13Rα2 expression are a suitable target for the hybrid lytic peptide (Pep-1-Phor21) peptide, which is generated by fusing the IL-13Rα2 specific ligand (Pep-1) and a cell membrane disrupting lytic peptide (Phor21). The expression of IL-13Rα2 mRNA and protein in prostate cancer tissues and cell lines was assessed via real-time PCR (RT-PCR) and immunoblotting. The effect of Pep-1-Phor21 on the viability of prostate cancer cells grown in monolayers (2D) and microtissue spheroids (3D) was assessed via CellTox green cytotoxic assay. IL-13Rα2 expression and Pep-1-Phor21-mediated killing were also determined in the cells treated with epigenetic regulators (Trichostatin A (TSA) and 5-aza-2 deoxycytidine (5-Aza-dC)). The hybrid lytic peptide cytotoxic activity correlated with the expression of IL-13Rα2 in prostate cancer cell lines cultured as monolayers (2D) or 3D spheroids. In addition, TSA or 5-Aza-dC treatment of prostate cancer cells, particularly those with low expression of IL-13Rα2, enhanced the cells' sensitivity to the lytic peptide by increasing IL-13Rα2 expression. These results demonstrate that the Pep-1-Phor21 hybrid lytic peptide has potent and selective anticancer properties against IL-13Rα2-expressing prostate cancer cells.


Subject(s)
Antineoplastic Agents , Interleukin-13 Receptor alpha2 Subunit , Prostatic Neoplasms , Male , Humans , Interleukin-13 Receptor alpha2 Subunit/metabolism , Peptides/chemistry , Azacitidine
15.
J Immunother Cancer ; 11(2)2023 02.
Article in English | MEDLINE | ID: mdl-36759014

ABSTRACT

INTRODUCTION: The immunosuppressive tumor microenvironment (TME) is a major barrier to the efficacy of chimeric antigen receptor T cells (CAR-T cells) in glioblastoma (GBM). Transgenic expression of IL15 is one attractive strategy to modulate the TME. However, at present, it is unclear if IL15 could be used to directly target myeloid-derived suppressor cells (MDSCs), a major cellular component of the GBM TME. Here, we explored if MDSC express IL15Rα and the feasibility of exploiting its expression as an immunotherapeutic target. METHODS: RNA-seq, RT-qPCR, and flow cytometry were used to determine IL15Rα expression in paired peripheral and tumor-infiltrating immune cells of GBM patients and two syngeneic murine GBM models. We generated murine T cells expressing IL13Rα2-CARs and secretory IL15 (CAR.IL15s) or IL13Rα2-CARs in which IL15 was fused to the CAR to serve as an IL15Rα-targeting moiety (CAR.IL15f), and characterized their effector function in vitro and in syngeneic IL13Rα2+glioma models. RESULTS: IL15Rα was preferentially expressed in myeloid, B, and dendritic cells in patients' and syngeneic GBMs. In vitro, CAR.IL15s and CAR.IL15f T cells depleted MDSC and decreased their secretion of immunosuppressive molecules with CAR.IL15f T cells being more efficacious. Similarly, CAR.IL15f T cells significantly improved the survival of mice in two GBM models. TME analysis showed that treatment with CAR.IL15f T cells resulted in higher frequencies of CD8+T cells, NK, and B cells, but a decrease in CD11b+cells in tumors compared with therapy with CAR T cells. CONCLUSIONS: We demonstrate that MDSC of the glioma TME express IL15Ra and that these cells can be targeted with secretory IL15 or an IL15Rα-targeting moiety incorporated into the CAR. Thus, IL15-modified CAR T cells act as a dual targeting agent against tumor cells and MDSC in GBM, warranting their future evaluation in early-phase clinical studies.


Subject(s)
Glioblastoma , Glioma , Interleukin-13 Receptor alpha2 Subunit , Myeloid-Derived Suppressor Cells , Animals , Mice , Glioma/drug therapy , Interleukin-13 Receptor alpha2 Subunit/therapeutic use , Interleukin-15 , Myeloid-Derived Suppressor Cells/metabolism , Tumor Microenvironment , T-Lymphocytes
16.
Cancer Rep (Hoboken) ; 6(2): e1701, 2023 02.
Article in English | MEDLINE | ID: mdl-36806727

ABSTRACT

BACKGROUND: Several treatment strategies use upfront chemotherapy or androgen receptor axis-targeting therapies for metastatic prostate cancer. However, there are no useful biomarkers for selecting appropriate patients who urgently require these treatments. METHODS: Novel patient-derived xenograft (PDX) castration-sensitive and -resistant models were established and gene expression patterns were comprehensively compared. The function of a gene highly expressed in the castration-resistant models was evaluated by its overexpression in LNCaP prostate cancer cells. Protein expression in the tumors and serum of patients was examined by immunohistochemistry and ELISA, and correlations with castration resistance were analyzed. RESULTS: Expression of the α2 chain of interleukin-13 receptor (IL13Rα2) was higher in castration-resistant PDX tumors. LNCaP cells overexpressing IL13Rα2 acquired castration resistance in vitro and in vivo. In tissue samples, IL13Rα2 expression levels were significantly associated with castration-resistant progression (p < 0.05). In serum samples, IL13Rα2 levels could be measured in 5 of 28 (18%) castration-resistant prostate cancer patients. CONCLUSION: IL13Rα2 was highly expressed in castration-resistant prostate cancer PDX models and was associated with the castration resistance of prostate cancer cells. It might be a potential tissue and serum biomarker for predicting castration resistance in prostate cancer patients.


Subject(s)
Interleukin-13 Receptor alpha2 Subunit , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Interleukin-13 Receptor alpha2 Subunit/therapeutic use , Heterografts , Orchiectomy , Biomarkers
17.
J Neurooncol ; 160(3): 743-752, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36436150

ABSTRACT

PURPOSE: Glioblastoma (GBM) is the most common and deadliest brain tumor with unrelenting and rapid disease progression. The standard of care for GBM is surgical excision followed by radiation with concurrent and adjuvant temozolomide-centered chemotherapy (TMZ). Treatment failure and resistance is the rule and despite advances in imaging technology, early detection of treatment failure or impending resistance remains a challenge. There is a dire, unmet, need in clinical practice for minimally-invasive diagnostic tools to enable timely understanding of disease progression and treatment response. Here, we aim to address this clinical need by leveraging a unique characteristic of GBM: the overexpression of the α2 variant of the IL-13 receptor in over 75% of GBM tumors. METHODS: In this study we examined patients with primary GBM from Penn State and Cleveland Clinic compared to healthy controls. RESULTS: IL13Rα2 was detectable in plasma of GBM patients using ELISA but detection could be optimized by PEG precipitation to enrich for extracellular vesicles (EVs). Patients with GBM had elevated levels of plasma IL13Rα2, which correlated to levels of this receptor in the tumor tissue. Elevated plasma levels of IL13Rα2 predicted longer overall survival (OS) (19.8 vs. 13.2 months). Similarly, detection of IL13Rα2 + cells in tumor tissue also predicted longer OS (22.1 vs. 12.2 months). CONCLUSION: These findings strongly suggest that expression of the IL13Rα2 receptor confer survival advantage in GBM patients, which can be determined through a minimally-invasive liquid biopsy. Detection of plasma IL13Rα2 can also be used to select GBM patients for targeted tumor therapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Humans , Glioblastoma/drug therapy , Interleukin-13 Receptor alpha2 Subunit/metabolism , Brain Neoplasms/metabolism , Temozolomide/therapeutic use , Liquid Biopsy , Biomarkers , Disease Progression
18.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188802, 2022 09.
Article in English | MEDLINE | ID: mdl-36152905

ABSTRACT

Interleukin 13 receptor alpha 2 (IL13Rα2) is increasingly recognized as a relevant player in cancer invasion and metastasis. Despite being initially considered a decoy receptor for dampening the levels of interleukin 13 (IL-13) in diverse inflammatory conditions, accumulating evidences in the last decades indicate the capacity of IL13Rα2 for mediating IL-13 signaling in cancer cells. The biological reasons behind the expression of this receptor with such extremely high affinity for IL-13 in cancer cells remain unclear. Elevated expression of IL13Rα2 is commonly associated with invasion, late stage and cancer metastasis that results in poor prognosis for glioblastoma, colorectal or breast cancer, among others. The discovery of new mediators and effectors of IL13Rα2 signaling has been critical for deciphering its underlying molecular mechanisms in cancer progression. Still, many questions about the effects of inflammation, the cancer type and the tumor degree in the expression of IL13Rα2 remain largely uncharacterized. Here, we review and discuss the current status of the IL13Rα2 biology in cancer, with particular emphasis in the role of inflammation-driven expression and the regulation of different signaling pathways. As IL13Rα2 implications in cancer continue to grow exponentially, we highlight new targeted therapies recently developed for glioblastoma, colorectal cancer and other IL13Rα2-positive tumors.


Subject(s)
Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Glioblastoma/pathology , Humans , Inflammation , Interleukin-13/therapeutic use , Interleukin-13 Receptor alpha2 Subunit/genetics , Interleukin-13 Receptor alpha2 Subunit/metabolism , Interleukin-13 Receptor alpha2 Subunit/therapeutic use , Signal Transduction
20.
Proc Natl Acad Sci U S A ; 119(33): e2112006119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939683

ABSTRACT

IL13Rα2 is an attractive target due to its overexpression in a variety of cancers and rare expression in healthy tissue, motivating expansion of interleukin 13 (IL13)-based chimeric antigen receptor (CAR) T cell therapy from glioblastoma into systemic malignancies. IL13Rα1, the other binding partner of IL13, is ubiquitously expressed in healthy tissue, raising concerns about the therapeutic window of systemic administration. IL13 mutants with diminished binding affinity to IL13Rα1 were previously generated by structure-guided protein engineering. In this study, two such variants, termed C4 and D7, are characterized for their ability to mediate IL13Rα2-specific response as binding domains for CAR T cells. Despite IL13Rα1 and IL13Rα2 sharing similar binding interfaces on IL13, mutations to IL13 that decrease binding affinity for IL13Rα1 did not drastically change binding affinity for IL13Rα2. Micromolar affinity to IL13Rα1 was sufficient to pacify IL13-mutein CAR T cells in the presence of IL13Rα1-overexpressing cells in vitro. Interestingly, effector activity of D7 CAR T cells, but not C4 CAR T cells, was demonstrated when cocultured with IL13Rα1/IL4Rα-coexpressing cancer cells. While low-affinity interactions with IL13Rα1 did not result in observable toxicities in mice, in vivo biodistribution studies demonstrated that C4 and D7 CAR T cells were better able to traffic away from IL13Rα1+ lung tissue than were wild-type (WT) CAR T cells. These results demonstrate the utility of structure-guided engineering of ligand-based binding domains with appropriate selectivity while validating IL13-mutein CARs with improved selectivity for application to systemic IL13Rα2-expressing malignancies.


Subject(s)
Immunotherapy, Adoptive , Interleukin-13 Receptor alpha2 Subunit , Interleukin-13 , Neoplasms , Animals , Cell Line, Tumor , Humans , Immunotherapy, Adoptive/methods , Interleukin-13/genetics , Interleukin-13/pharmacokinetics , Interleukin-13/therapeutic use , Interleukin-13 Receptor alpha2 Subunit/antagonists & inhibitors , Mice , Neoplasms/therapy , Protein Engineering , Tissue Distribution , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL