Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.926
Filter
1.
Proc Natl Acad Sci U S A ; 121(33): e2318190121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39106307

ABSTRACT

We developed a highly sensitive assay for detecting protein-protein interaction using chimeric receptors comprising two molecules of interest in the extracellular domain and interferon alpha and beta receptor subunit 1 or 2 (IFNAR1/2) in the intracellular domain. This intracellular IFNAR1/2 reconstitution system (IFNARRS) proved markedly more sensitive than the NanoBiT system, currently considered one of the best detection systems for protein interaction. Employing chimeric receptors with extracellular domains from the IFNγ or IL-2 receptor and the intracellular domains of IFNAR1/2, the IFNARRS system effectively identifies low IFNγ or IL-2 levels. Cells stably expressing these chimeric receptors responded to IFNγ secreted by activated T cells following various stimuli, including a specific peptide-antigen. The activation signals were further enhanced by the expression of relevant genes, such as costimulators, via IFN-stimulated response elements in the promoters. Besides IFNγ or IL-2, the IFNARRS system demonstrated the capability to detect other cytokines by using the corresponding extracellular domains from these target cytokine receptors.


Subject(s)
Interferon-gamma , Interleukin-2 , Receptor, Interferon alpha-beta , T-Lymphocytes , Humans , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Interleukin-2/metabolism , Interferon-gamma/metabolism , Receptors, Interleukin-2/metabolism , Receptors, Interleukin-2/genetics , Protein Binding , Lymphocyte Activation , HEK293 Cells
2.
BMC Cancer ; 24(1): 980, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118069

ABSTRACT

BACKGROUND: Lytic Epstein-Barr virus (EBV) infection plays a major role in the pathogenesis of nasopharyngeal carcinoma (NPC). For patients with recurrent or metastatic NPC and resistant to conventional therapies, adoptive cell therapy using EBV-specific cytotoxic T cells (EBV-CTLs) is a promising option. However, the long production period (around 3 to 4 weeks) and low EBV-CTL purity (approximately 40% of total CD8 T cells) in the cell product limits the application of EBV-CTLs in clinics. Thus, this study aimed to establish a protocol for the rapid production of EBV-CTLs. METHODS: By culturing peripheral blood mononuclear cells (PBMCs) from EBV-seropositive donors with EBV-specific peptides and interleukin (IL)-2, IL-15, and interferon α (IFN-α) for 9 days, we identified that IL-15 can enhance IL-2-mediated CTL activation and significantly increase the yield of CTLs. RESULTS: When IFN-α was used in IL-2/IL-15-mediated CTL production from days 0 to 6, the productivity of EBV-CTLs and EBV-specific cytotoxicity significantly were reinforced relative to EBV-CTLs from IL-2/IL-15 treatment. Additionally, IFN-α-induced production improvement of virus-specific CTLs was not only the case for EBV-CTLs but also for cytomegalovirus-specific CTLs. CONCLUSION: We established a novel protocol to rapidly expand highly pure EBV-CTLs from PBMCs, which can produce EBV-CTLs in 9 days and does not require feeder cells during cultivation.


Subject(s)
Herpesvirus 4, Human , T-Lymphocytes, Cytotoxic , Humans , T-Lymphocytes, Cytotoxic/immunology , Herpesvirus 4, Human/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Interleukin-2/metabolism , Interleukin-2/pharmacology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Interleukin-15/metabolism , Interferon-alpha/metabolism , Cytotoxicity, Immunologic , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/virology , Nasopharyngeal Neoplasms/pathology , Lymphocyte Activation/immunology , Immunotherapy, Adoptive/methods
3.
Nat Commun ; 15(1): 6976, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143070

ABSTRACT

Regulatory T cells (Treg) are critical players of immune tolerance that develop in the thymus via two distinct developmental pathways involving CD25+Foxp3- and CD25-Foxp3lo precursors. However, the mechanisms regulating the recently identified Foxp3lo precursor pathway remain unclear. Here, we find that the membrane-bound lymphotoxin α1ß2 (LTα1ß2) heterocomplex is upregulated during Treg development upon TCR/CD28 and IL-2 stimulation. We show that Lta expression limits the maturational development of Treg from Foxp3lo precursors by regulating their proliferation, survival, and metabolic profile. Transgenic reporter mice and transcriptomic analyses further reveal that medullary thymic epithelial cells (mTEC) constitute an unexpected source of IL-4. We demonstrate that LTα1ß2-lymphotoxin ß receptor-mediated interactions with mTEC limit Treg development by down-regulating IL-4 expression in mTEC. Collectively, our findings identify the lymphotoxin axis as the first inhibitory checkpoint of thymic Treg development that fine-tunes the Foxp3lo Treg precursor pathway by limiting IL-4 availability.


Subject(s)
Forkhead Transcription Factors , Interleukin-4 , Lymphotoxin beta Receptor , Lymphotoxin-alpha , Signal Transduction , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Interleukin-4/metabolism , Mice , Lymphotoxin-alpha/metabolism , Lymphotoxin-alpha/genetics , Lymphotoxin beta Receptor/metabolism , Lymphotoxin beta Receptor/genetics , Thymus Gland/immunology , Thymus Gland/cytology , Thymus Gland/metabolism , Epithelial Cells/metabolism , Mice, Inbred C57BL , Cell Differentiation , Mice, Transgenic , Interleukin-2/metabolism , Cell Proliferation , Lymphotoxin alpha1, beta2 Heterotrimer/metabolism , Lymphotoxin alpha1, beta2 Heterotrimer/genetics
4.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999946

ABSTRACT

The tumor cells reprogram their metabolism to cover their high bioenergetic demands for maintaining uncontrolled growth. This response can be mediated by cytokines such as IL-2, which binds to its receptor and activates the JAK/STAT pathway. Some reports show a correlation between the JAK/STAT pathway and cellular metabolism, since the constitutive activation of STAT proteins promotes glycolysis through the transcriptional activation of genes related to energetic metabolism. However, the role of STAT proteins in the metabolic switch induced by cytokines in cervical cancer remains poorly understood. In this study, we analyzed the effect of IL-2 on the metabolic switch and the role of STAT5 in this response. Our results show that IL-2 induces cervical cancer cell proliferation and the tyrosine phosphorylation of STAT5. Also, it induces an increase in lactate secretion and the ratio of NAD+/NADH, which suggest a metabolic reprogramming of their metabolism. When STAT5 was silenced, the lactate secretion and the NAD+/NADH ratio decreased. Also, the expression of HIF1α and GLUT1 decreased. These results indicate that STAT5 regulates IL-2-induced cell proliferation and the metabolic shift to aerobic glycolysis by regulating genes related to energy metabolism. Our results suggest that STAT proteins modulate the metabolic switch in cervical cancer cells to attend to their high demand of energy required for cell growth and proliferation.


Subject(s)
Cell Proliferation , Interleukin-2 , STAT5 Transcription Factor , Uterine Cervical Neoplasms , Humans , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Female , Cell Proliferation/drug effects , Cell Line, Tumor , Interleukin-2/metabolism , Interleukin-2/pharmacology , Glycolysis/drug effects , Energy Metabolism/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Phosphorylation/drug effects , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , NAD/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Signal Transduction/drug effects , Lactic Acid/metabolism
5.
Front Cell Infect Microbiol ; 14: 1410015, 2024.
Article in English | MEDLINE | ID: mdl-38957797

ABSTRACT

Background: Tuberculosis (TB) persists as a global health challenge, with its treatment hampered by the side effects of long-term combination drug therapies and the growing issue of drug resistance. Therefore, the development of novel therapeutic strategies is critical. This study focuses on the role of immune checkpoint molecules (ICs) and functions of CD8+ T cells in the search for new potential targets against TB. Methods: We conducted differential expression genes analysis and CD8+ T cell functional gene analysis on 92 TB samples and 61 healthy individual (HI) samples from TB database GSE83456, which contains data on 34,603 genes. The GSE54992 dataset was used to validated the findings. Additionally, a cluster analysis on single-cell data from primates infected with mycobacterium tuberculosis and those vaccinated with BCG was performed. Results: The overexpression of LAG-3 gene was found as a potentially important characteristic of both pulmonary TB (PTB) and extrapulmonary TB (EPTB). Further correlation analysis showed that LAG-3 gene was correlated with GZMB, perforin, IL-2 and IL-12. A significant temporal and spatial variation in LAG-3 expression was observed in T cells and macrophages during TB infection and after BCG vaccination. Conclusion: LAG-3 was overexpressed in TB samples. Targeting LAG-3 may represent a potential therapeutic target for tuberculosis.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Lymphocyte Activation Gene 3 Protein , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , CD8-Positive T-Lymphocytes/immunology , Tuberculosis/immunology , Tuberculosis/microbiology , Animals , Antigens, CD/genetics , BCG Vaccine/immunology , Macrophages/immunology , Macrophages/microbiology , Interleukin-2/metabolism , Interleukin-2/genetics , Gene Expression Profiling , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Interleukin-12/genetics , Interleukin-12/metabolism , Perforin/genetics , Perforin/metabolism , Male
6.
J Obstet Gynaecol ; 44(1): 2372682, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39034630

ABSTRACT

BACKGROUND: Interleukin (IL)-2 is a key cytokine capable of modulating the immune response by activating natural killer (NK) cells. This study was recruited to explore the therapeutic potential of IL-2-activated NK-92 cells in endometriosis in vitro. METHODS: Ectopic endometrial stromal cells (EESCs) were isolated and co-cultured with IL-2-activated NK-92 cells at varying effector-to-target (E:T) ratios (1:0 [Control], 1:1, 1:3, and 1:9). The viability, cytotoxicity, and cell surface antigen expression of IL-2-activated NK-92 cells were assessed. The viability, apoptosis, invasion, and migration ability of EESCs co-cultured with NK-92 cells at different ratios were evaluated. The apoptosis-related proteins, invasion and migration-related proteins as well as MEK/ERK pathway were examined via western blot. Each experiment was repeated three times. RESULTS: IL-2 activation enhanced NK-92 cytotoxicity in a concentration-dependent manner. Co-culturing EESCs with IL-2-activated NK-92 cells at E:T ratios of 1:1, 1:3, and 1:9 reduced EESC viability by 20%, 45%, and 70%, respectively, compared to the control group. Apoptosis rates in EESCs increased in correlation with the NK-92 cell proportion, with the highest rate observed at a 1:9 ratio. Moreover, EESC invasion and migration were significantly inhibited by IL-2-activated NK-92 cells, with a 60% reduction in invasion and a 50% decrease in migration at the 1:9 ratio. Besides, the MEK/ERK signalling pathway was down-regulated in EESCs by IL-2-activated NK-92 cells. CONCLUSION: IL-2-activated NK-92 cells exhibit potent cytotoxic effects against EESCs. They promote EESC apoptosis and inhibit viability, invasion, and migration through modulating the MEK/ERK signalling pathway.


Endometriosis is a common chronic systemic disease affecting approximately 190 million women worldwide. However, clinical treatments for endometriosis remain challenging due to the scarcity of high-quality scientific evidence and conflicting available guidelines. This research was designed to explore whether interleukin (IL)-2 affected the progression of endometriosis by modulating endometrial stromal cell apoptosis and natural killer (NK) cell-mediated cytotoxicity, thereby providing new therapeutic methods for endometriosis.


Subject(s)
Apoptosis , Coculture Techniques , Endometriosis , Interleukin-2 , Killer Cells, Natural , Humans , Endometriosis/pathology , Endometriosis/immunology , Female , Interleukin-2/pharmacology , Interleukin-2/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Apoptosis/drug effects , Adult , Endometrium/drug effects , Cell Movement/drug effects , Stromal Cells/drug effects , Disease Progression , Cell Survival/drug effects , MAP Kinase Signaling System/drug effects , Cells, Cultured
7.
Front Immunol ; 15: 1406716, 2024.
Article in English | MEDLINE | ID: mdl-39044836

ABSTRACT

Introduction: Older recipient age is associated with a significant decreased risk for rejection after kidney transplantation which is incompletely understood. Methods: In a longitudinal study, circulating alloreactive T cells were assessed of young (≤45 years) and older (≥55 years) stable kidney transplant recipients. Alloreactive T-cells were identified by CD137-expression and phenotype, cytokine producing and proliferative capacity, were evaluated using multiparameter flowcytometry. Results: The results show that before transplantation frequencies of alloreactive CD4+ and CD8+ T-cells in older KT-recipients are significantly higher and shifted towards an effector memory-phenotype. However, the frequency of polyfunctional (≥2 pro-inflammatory cytokines) CD4+ T-cells was significantly lower and less IL2 was produced. The frequency of polyfunctional alloreactive CD4+ T-cells and proliferation of alloreactive T-cells donor-specifically declined after transplantation reaching a nadir at 12 months after transplantation, irrespective of age. A striking difference was observed for the proliferative response of alloreactive CD8+ T-cells. This was not only lower in older compared to younger recipients but could also not be restored by exogenous IL2 or IL15 in the majority of older recipients while the response to polyclonal stimulation was unaffected. Conclusion: In conclusion, older age is associated with a distinct and marked reduction of functionality of both alloreactive CD4+ and CD8+ T-cells.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Kidney Transplantation , Humans , CD8-Positive T-Lymphocytes/immunology , Middle Aged , CD4-Positive T-Lymphocytes/immunology , Female , Male , Aged , Adult , Age Factors , Graft Rejection/immunology , Longitudinal Studies , Interleukin-2/metabolism , Cytokines/metabolism , Cell Proliferation
8.
Bull Exp Biol Med ; 177(1): 124-132, 2024 May.
Article in English | MEDLINE | ID: mdl-38960961

ABSTRACT

Pregnancy-specific ß1-glycoprotein (PSG), one of the most important proteins of pregnancy, has a pronounced immunosuppressive effect. Short peptides of PSG, the so-called SLiMs (short linear motifs), are promising molecules for mild immunosuppression. We studied in vitro effect of short PSG peptides (YACS, YQCE, YVCS, and YECE) on differentiation and cytokine profile of human T-regulatory lymphocytes (Treg). T helpers isolated from the peripheral blood and polarized into the Treg phenotype with a T-cell activator (anti-CD2/3/28) and the cytokines IL-2 and transforming grown factor ß (TGFß) were used. PSG peptides were shown to have no direct modulatory effect on Treg differentiation in a culture of CD4+ cells polarized to the Treg phenotype. At the same time, PSG peptides had no effect on the viability and number of CD4+ cells in the in vitro culture. PSG peptides also had no effect on the levels of TNFα, IL-8, IL-2, macrophage inflammatory protein 1ß, IL-17, IL-10, IL-6, granulocyte-macrophage CSF, monocyte chemoattractant protein 1, IL-13, IL-5, IL-7, IL-12(p70), IL-1ß, granulocyte CSF, IL-4, but decreased IFNγ levels. The observed ability of the YQCE peptide to reduce the production of this proinflammatory Th1 cytokine by T helper cells can be interpreted as a positive effect. Our findings can be used for further development of safe peptide drugs based on SLiMs sequences.


Subject(s)
Cell Differentiation , Cytokines , Pregnancy-Specific beta 1-Glycoproteins , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Cell Differentiation/drug effects , Pregnancy-Specific beta 1-Glycoproteins/metabolism , Cytokines/metabolism , Female , Pregnancy , Peptides/pharmacology , Interleukin-2/metabolism , Cells, Cultured
9.
Cells ; 13(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38994999

ABSTRACT

Natural killer (NK) cells hold promise in cancer treatment due to their ability to spontaneously lyse cancer cells. For clinical use, high quantities of pure, functional NK cells are necessary. Combining adherence-based isolation with specialized media showed the unreliability of the isolation method, but demonstrated the superiority of the NK MACS® medium, particularly in suboptimal conditions. Neither human pooled serum, fetal calf serum (FCS), human platelet lysate, nor chemically defined serum replacement could substitute human AB serum. Interleukin (IL-)2, IL-15, IL-21, and combined CD2/NKp46 stimulation were assessed. IL-21 and CD2/NKp46 stimulation increased cytotoxicity, but reduced NK cell proliferation. IL-15 stimulation alone achieved the highest proliferation, but the more affordable IL-2 performed similarly. The RosetteSep™ human NK cell enrichment kit was effective for isolation, but the presence of peripheral blood mononuclear cells (PBMCs) in the culture enhanced NK cell proliferation, despite similar expression levels of CD16, NKp46, NKG2D, and ICAM-1. In line with this, purified NK cells cultured in NK MACS® medium with human AB serum and IL-2 demonstrated high cytotoxicity against primary glioblastoma stem cells.


Subject(s)
Cell Proliferation , Culture Media , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Cell Culture Techniques/methods , Interleukin-2/metabolism , Cytotoxicity, Immunologic , Interleukin-15/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Neoplastic Stem Cells/metabolism , Glioblastoma/immunology , Glioblastoma/pathology , Cell Separation/methods
10.
Clin Respir J ; 18(7): e13805, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39003635

ABSTRACT

In previous studies, we developed a novel fusion protein named "melittin-MIL-2" which exhibited more anti-tumor activity. However, it remains unclear whether melittin-MIL-2 possesses antitumor immune effect on lung adenocarcinoma. In this study, the immune effect and mechanism of melittin-MIL-2 inhibiting the growth and invasion of lung adenocarcinoma will be investigated, in order to provide novel perspectives for the immunotherapy of lung cancer. The results indicated that melittin-MIL-2 promoted T cell proliferation, enhanced NK cell cytotoxicity, and boosted IFN-γ secretion in PBMCs. After melittin-MIL-2 stimulation, perforin expression and LAK/NK-like killing activities of human PBMCs and NK cells were significantly enhanced. Melittin-MIL-2 is capable of hampering the development and proliferation of lung adenocarcinoma cell A549. ICAM-1 and Fas expression in A549 cells exposed to melittin-MIL-2 rose significantly. The expression levels of TLR8 and VEGF in A549 cells decreased significantly after melittin-MIL-2 stimulation. In vivo, melittin-MIL-2 substantially impeded the growth of lung adenocarcinoma and formed an immune-stimulating microenvironment locally in tumor tissues. In conclusion, the novel fusion protein melittin-MIL-2 exhibits strong anti-tumor immune effect in lung adenocarcinoma cell A549 via activating the LFA-1/ICAM-1 and Fas/FasL pathways to enhance cytolytic activity, upregulating the secretion of IFN-γ and perforin, and boosting LAK/NK-like killing activities. Immuno-effector cells and their secreted cytokines can form immune stimulation microenvironment locally in lung adenocarcinoma Lewis mice tissue.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Melitten , Melitten/pharmacology , Humans , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Mice , A549 Cells , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Cell Proliferation/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Interleukin-2/metabolism , Adenocarcinoma/drug therapy , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/genetics , Immunotherapy/methods
11.
Sci Rep ; 14(1): 14578, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918542

ABSTRACT

Intense exercise leads to increased production of free radicals, resulting in an inflammatory response in athletes. For this reason, it was decided to investigate whether a single intensive exercise until exhaustion applied after a 2-week rest period would result in a violation of the pro-oxidant-antioxidant balance. Twenty-seven trained female basketball players (age: 16.55 ± 0.96 years, body mass: 66.40 ± 13.68 kg, height: 173.45 ± 5.14 cm) were enrolled to the study following the application of inclusion and exclusion criteria. Study was conducted at the end of the competitive training phase. Participants underwent incremental treadmill exercise, with blood samples collected before the test, immediately post-exercise, and after a 3-h restitution period. Total antioxidant capacity (TAC) levels increased significantly after exercise and remained unchanged after 3 h. Concentration of interleukin-10 (IL-10) and creatine kinase (CK) significantly increased after exercise and then decreased. Concentration of interleukin-2 (IL-2) was significantly reduced immediately and 3 h after exercise, while interleukin-13 (IL-13), interleukin-1α (IL-1α), and tryptophan (TRP) decreased 3 h after exercise. No significant changes were observed in other biochemical parameters. Obtained results show an increased antioxidant capacity which reduced oxidative stress and inflammation in response to intense exercise indicating that rested athletes have a high adaptation and elevated tolerance to effort.


Subject(s)
Antioxidants , Basketball , Inflammation , Oxidative Stress , Humans , Female , Inflammation/metabolism , Adolescent , Antioxidants/metabolism , Interleukin-10/blood , Interleukin-10/metabolism , Athletes , Creatine Kinase/blood , Creatine Kinase/metabolism , Rest/physiology , Interleukin-1alpha/metabolism , Interleukin-1alpha/blood , Interleukin-2/blood , Interleukin-2/metabolism , Exercise/physiology , Interleukin-13/blood , Interleukin-13/metabolism , Tryptophan/metabolism , Tryptophan/blood
12.
Phytother Res ; 38(7): 3825-3836, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38887974

ABSTRACT

Regulatory T cell (Treg) deficiency leads to immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome, which is a CD4+ T cell-driven autoimmune disease in both humans and mice. Despite understanding the molecular and cellular characteristics of IPEX syndrome, new treatment options have remained elusive. Here, we hypothesized that salvianolic acid B (Sal B), one of the main active ingredients of Salvia miltiorrhiza, can protect against immune disorders induced by Treg deficiency. To examine whether Sal B can inhibit Treg deficiency-induced autoimmunity, Treg-deficient scurfy (SF) mice with a mutation in forkhead box protein 3 were treated with different doses of Sal B. Immune cells, inflammatory cell infiltration, and cytokines were evaluated by flow cytometry, hematoxylin and eosin staining and enzyme-linked immunosorbent assay Kits, respectively. Moreover, RNA sequencing, western blot, and real-time PCR were adopted to investigate the molecular mechanisms of action of Sal B. Sal B prolonged lifespan and reduced inflammation in the liver and lung of SF mice. Moreover, Sal B decreased plasma levels of several inflammatory cytokines, such as IL-2, IFN-γ, IL-4, TNF-α, and IL-6, in SF mice. By analyzing the transcriptomics of livers, we determined the signaling pathways, especially the IL-2-signal transducer and activator of transcription 5 (STAT5) signaling pathway, which were associated with Treg deficiency-induced autoimmunity. Remarkably, Sal B reversed the expression of gene signatures related to the IL-2-STAT5 signaling pathway in vitro and in vivo. Sal B prolongs survival and inhibits lethal inflammation in SF mice through the IL-2-STAT5 axis. Our findings may inspire novel drug discovery efforts aimed at treating IPEX syndrome.


Subject(s)
Autoimmunity , Benzofurans , Interleukin-2 , STAT5 Transcription Factor , Signal Transduction , T-Lymphocytes, Regulatory , Animals , STAT5 Transcription Factor/metabolism , Mice , T-Lymphocytes, Regulatory/drug effects , Benzofurans/pharmacology , Signal Transduction/drug effects , Interleukin-2/metabolism , Autoimmunity/drug effects , Mice, Inbred C57BL , Cytokines/metabolism , Male , Genetic Diseases, X-Linked , Diabetes Mellitus, Type 1/congenital , Diarrhea , Immune System Diseases/congenital , Depsides
13.
Nat Commun ; 15(1): 4913, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851821

ABSTRACT

Host immune responses are tightly controlled by various immune factors during infection, and protozoan parasites also manipulate the immune system to evade surveillance, leading to an evolutionary arms race in host‒pathogen interactions; however, the underlying mechanisms are not fully understood. We observed that the level of superoxide dismutase 3 (SOD3) was significantly elevated in both Plasmodium falciparum malaria patients and mice infected with four parasite species. SOD3-deficient mice had a substantially longer survival time and lower parasitemia than control mice after infection, whereas SOD3-overexpressing mice were much more vulnerable to parasite infection. We revealed that SOD3, secreted from activated neutrophils, bound to T cells, suppressed the interleukin-2 expression and concomitant interferon-gamma responses crucial for parasite clearance. Overall, our findings expose active fronts in the arms race between the parasites and host immune system and provide insights into the roles of SOD3 in shaping host innate immune responses to parasite infection.


Subject(s)
Malaria, Falciparum , Mice, Inbred C57BL , Mice, Knockout , Neutrophils , Superoxide Dismutase , Animals , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Humans , Mice , Neutrophils/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Immunity, Cellular , T-Lymphocytes/immunology , Plasmodium falciparum/immunology , Female , Host-Parasite Interactions/immunology , Host-Parasite Interactions/genetics , Interferon-gamma/metabolism , Interferon-gamma/immunology , Male , Immunity, Innate , Interleukin-2/metabolism , Interleukin-2/immunology , Interleukin-2/genetics , Parasitemia/immunology
14.
BMC Pulm Med ; 24(1): 286, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890643

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is a genetic multisystem disorder. Inflammatory processes, which presumably begin early in infancy, play a crucial role in the progression of the disease. The detection of inflammatory biomarkers, especially in the airways, has therefore gained increasing attention. Due to improved treatment options, patients with CF produce less sputum. Nasal lavage samples therefore represent a promising alternative to induced sputum or bronchoalveolar lavage specimens. However, methodology of cytokine measurements is not standardised and comparisons of results are therefore often difficult. The aim of this study was to identify suitable detection methods of cytokines in nasal lavage samples by comparison of two different assays. METHODS: Nasal lavage samples were obtained from the same patient at the same time by trained respiratory physiotherapists using a disposable syringe and 10 ml of 0.9% sodium chloride per nostril during outpatient visits. The cytokines IL-17 A, IL-2, IL-6 and IL-10 were measured using two different assays (BD™ and Milliplex®), which have already been applied in sputum and nasal lavage samples, despite different lower detection limits. RESULTS: 22 participants were included in the study. In 95.5% of measurements, values were below the limit of detection with respect to the BD™ assay. Only IL-6 could be detected in approximately half of the patients. Individual cytokine levels were considerably higher when measured with Milliplex®, which is also reflected in a statistically significant manner (p = < 0.01). CONCLUSION: The right choice of analysis method is crucial for measuring inflammatory markers in nasal lavage samples. Compared to the literature, Milliplex® showed higher detection rates and similar concentrations to other studies. TRIAL REGISTRATION: Ethics approval was obtained from the ethics committee at Medical University of Innsbruck (EK Nr: 1055/2022).


Subject(s)
Cystic Fibrosis , Cytokines , Nasal Lavage Fluid , Humans , Cystic Fibrosis/diagnosis , Male , Female , Cytokines/analysis , Cytokines/metabolism , Adult , Adolescent , Nasal Lavage Fluid/chemistry , Young Adult , Biomarkers/analysis , Biomarkers/metabolism , Child , Interleukin-6/analysis , Interleukin-6/metabolism , Interleukin-10/analysis , Interleukin-10/metabolism , Interleukin-2/analysis , Interleukin-2/metabolism , Interleukin-17/analysis , Interleukin-17/metabolism
15.
Cell Immunol ; 401-402: 104845, 2024.
Article in English | MEDLINE | ID: mdl-38909549

ABSTRACT

CD147 is a T cell activation-associated molecule which is closely involved in the formation of the immune synapse (IS). However, the precise role of CD147 in T cell activation and IS formation remains unclear. In the present study, we demonstrated that CD147 translocated to the IS upon T cell activation and was primarily distributed in the peripheral super molecular cluster (p-SMAC). The knock down of CD147 expression in T cells, but not in B cells, impaired IS formation. CD147 participated in IS formation between T cells and different types of antigen-presenting cells (APCs), including macrophages and dendritic cells. Ligation of CD147 with its monoclonal antibody (mAb) HAb18 effectively inhibited T cell activation and IL-2 secretion. CD98, a critical molecule interacting with CD147, was distributed in IS in a CD147-dependent way. Phosphorylation levels of T cell receptor (TCR) related molecules, like ZAP-70, ERK, and cJun, were down-regulated by CD147 ligation, which is crucial for the interaction of CD147 and TCR signaling transduction. CD147 is indispensable for the formation of immune synapses and plays an important role in the regulation of its function.


Subject(s)
Basigin , Immunological Synapses , Lymphocyte Activation , T-Lymphocytes , Basigin/metabolism , Basigin/immunology , Immunological Synapses/metabolism , Immunological Synapses/immunology , Lymphocyte Activation/immunology , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Phosphorylation , Antibodies, Monoclonal/immunology , Macrophages/immunology , Macrophages/metabolism , B-Lymphocytes/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Interleukin-2/metabolism , Interleukin-2/immunology , Animals , Jurkat Cells
16.
Immunology ; 173(1): 196-208, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38887097

ABSTRACT

The activation of CD4+ T-cells in a T cell receptor (TCR)-dependent antigen-specific manner is a central characteristic of the adaptive immune response. In addition to ensuring that CD4+ T-cells recognise their cognate antigen during activation, TCR-mediated signalling can also direct the outcome of differentiation. In both in vivo and in vitro model systems, strong TCR signalling has been demonstrated to drive Th1 differentiation, whereas weak TCR signalling drives Th2 responses. During the process of differentiation, TCR signal strength acts as a quantitative component in combination with the qualitative effects imparted by cytokines to polarise distinct T-helper lineages. Here, we investigated the role of interleukin 2 (IL-2) signalling in determining the outcome of TCR-dependent differentiation. IL-2 production was initiated as an early response to TCR-induced activation and was regulated by the strength of TCR signalling initially received. In the absence of IL-2, TCR dependent differentiation was found to be abolished. However, proliferative responses and early markers of activation were maintained, including the upregulation of GATA3, Tbet and Foxp3 at 24 h post-stimulation. Demonstrating that IL-2 signalling has a key role in stabilising and amplifying lineage-specific transcirption factor expression during differentiation. Further, activation of IL-2-deficient T-cells in the presence of exogenous cytokines was sufficient to restore differentiation whilst maintaining transcriptional signatures imparted during initial TCR signalling. Combined, our data demonstrate that the integration of quantitative TCR-dependent signalling and qualitative IL-2 signalling is essential for determining the fate of CD4+ T-cells during differentiation.


Subject(s)
Cell Differentiation , Interleukin-2 , Lymphocyte Activation , Receptors, Antigen, T-Cell , Signal Transduction , Th1 Cells , Th2 Cells , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Animals , Th2 Cells/immunology , Th2 Cells/metabolism , Interleukin-2/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Mice , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Mice, Inbred C57BL , Mice, Knockout , Cells, Cultured
17.
Cytokine ; 180: 156638, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761716

ABSTRACT

BACKGROUND: The interleukin-2 (IL-2) family of cytokines, including IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, are pivotal regulators of the immune response, impacting both innate and adaptive immunity. Understanding their molecular characteristics, receptor interactions, and signalling pathways is essential for elucidating their roles in health and disease. OBJECTIVES: This review provides a comprehensive overview of the IL-2 family of cytokines, highlighting their molecular biology, receptor interactions, and signalling mechanisms. Furthermore, it explores the involvement of IL-2 family cytokines in the pathogenesis of chronic respiratory diseases, with a specific focus on chronic obstructive pulmonary disease (COPD) and asthma. METHODS: A thorough literature review was conducted to gather insights into the molecular biology, receptor interactions, and signalling pathways of IL-2 family cytokines. Additionally, studies investigating the roles of these cytokines in chronic respiratory diseases, particularly COPD and asthma, were analysed to discern their implications in wider pathophysiology of disease. RESULTS: IL-2 family cytokines exert pleiotropic effects on immune cells, modulating cellular proliferation, differentiation, and survival. Dysregulation of IL-2 family cytokines has been implicated in the pathogenesis of chronic respiratory illnesses, including COPD and asthma. Elevated levels of IL-2 and IL-9 have been associated with disease severity in COPD, while IL-4 and IL-9 play crucial roles in asthma pathogenesis by promoting airway inflammation and remodelling. CONCLUSION: Understanding the intricate roles of IL-2 family cytokines in chronic respiratory diseases provides valuable insights into potential therapeutic targets for these conditions. Targeting specific cytokines or their receptors may offer novel treatment modalities to attenuate disease progression and improve clinical outcomes in patients with COPD and asthma.


Subject(s)
Asthma , Interleukin-2 , Pulmonary Disease, Chronic Obstructive , Humans , Asthma/immunology , Asthma/metabolism , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/metabolism , Interleukin-2/metabolism , Signal Transduction , Animals
18.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38806245

ABSTRACT

Streptococcus pyogenes is a significant human pathogen, producing a range of virulence factors, including streptococcal pyrogenic exotoxin B (SpeB) that is associated with foodborne outbreaks. It was only known that this cysteine protease mediates cleavage of transmembrane proteins to permit bacterial penetration and is found in 25% of clinical isolates from streptococcal toxic shock syndrome patients with extreme inflammation. Its interaction with host and streptococcal proteins has been well characterized, but doubt remains about whether it constitutes a superantigen. In this study, for the first time it is shown that SpeB acts as a superantigen, similarly to other known superantigens such as staphylococcal enterotoxin A or streptococcal pyrogenic exotoxin type C, by inducing proliferation of murine splenocytes and cytokine secretion, primarily of interleukin-2 (IL-2), as shown by cytometric bead array analysis. IL-2 secretion was confirmed by enzyme-linked immunosorbent assay (ELISA) as well as secretion of interferon-γ. ELISA showed a dose-dependent relationship between SpeB concentration in splenocyte cells and IL-2 secretion levels, and it was shown that SpeB retains activity in milk pasteurized for 30 min at 63°C.


Subject(s)
Bacterial Proteins , Cell Proliferation , Exotoxins , Interferon-gamma , Interleukin-2 , Spleen , Streptococcus pyogenes , Superantigens , Animals , Interleukin-2/metabolism , Superantigens/immunology , Superantigens/metabolism , Exotoxins/metabolism , Exotoxins/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice , Spleen/microbiology , Spleen/cytology , Spleen/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Streptococcus pyogenes/immunology , Streptococcus pyogenes/metabolism , Female , Mice, Inbred BALB C
19.
Microb Pathog ; 192: 106671, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729381

ABSTRACT

This work evaluated aspects of the immune response of BALB/c mice infected with Corynebacterium pseudotuberculosis (T1 and C57). The fifteen BALB/c mice were euthanized after 70 days of infection and morphologically evaluated, also analyzing the innate and adaptive immune responses. The C57 strain induced more pronounced morphological changes than the T1 strain. There was an increase in CD4+ and CD8+ T cells identified during infection with the C57 strain. Cytokines of the inflammatory profile IL-1α and IL-6 and regulatory IL-13 and IL-10 presented significant differences. Cytokines IL-2, IL-4, INF-γ, IL-22, IL-21, and IL-27 did not differ significantly between groups. The obtained results contribute to a better understanding of the type of response and the immunological mechanisms involved during infection with different strains of C. pseudotuberculosis.


Subject(s)
CD8-Positive T-Lymphocytes , Corynebacterium Infections , Corynebacterium pseudotuberculosis , Cytokines , Mice, Inbred BALB C , Animals , Corynebacterium pseudotuberculosis/immunology , Corynebacterium Infections/immunology , Corynebacterium Infections/microbiology , Mice , Cytokines/metabolism , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Interleukin-10 , Adaptive Immunity , Immunity, Innate , Interleukin-6 , Disease Models, Animal , Mice, Inbred C57BL , Interleukin-1alpha/metabolism , Interleukin-1alpha/immunology , Interferon-gamma/metabolism , Interleukin-4/metabolism , Interleukins , Interleukin-2/metabolism
20.
Protein Expr Purif ; 221: 106507, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38777308

ABSTRACT

Recombinant human interleukin-2 (rhIL-2) represents one of the most difficult-to-produce cytokines in E. coli due to its extreme hydrophobicity and high tendency to formation of inclusion bodies. Refolding of rhIL-2 inclusion bodies always represents cumbersome downstream processes and low production efficiency. Herein, we disclosed a fusion strategy for efficiently soluble expression and facile production of rhIL-2 in E. coli Origami B (DE3) host. A two-tandem SUMO fusion partner (His-2SUMO) with a unique SUMO protease cleavage site at C-terminus was devised to fuse with the N-terminus of rhIL-2 and the fusion protein (His-2SUMO-rhIL-2) was almost completely expressed in a soluble from. The fusion partner could be efficiently removed by Ulp1 cleavage and the rhIL-2 was simply produced by a two-step Ni-NTA affinity chromatography with a considerable purity and whole recovery. The eventually obtained rhIL-2 was well-characterized and the results showed that the purified rhIL-2 exhibits a compact and ordered structure. Although the finally obtained rhIL-2 exists in a soluble aggregates form and the aggregation probably has been occurred during expression stage, the soluble rhIL-2 aggregates remain exhibit comparable bioactivity with the commercially available rhIL-2 drug formulation.


Subject(s)
Escherichia coli , Interleukin-2 , Recombinant Fusion Proteins , Solubility , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Interleukin-2/genetics , Interleukin-2/biosynthesis , Interleukin-2/chemistry , Interleukin-2/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Gene Expression , Chromatography, Affinity , Cloning, Molecular , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Inclusion Bodies/chemistry , Inclusion Bodies/genetics , Inclusion Bodies/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL