Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.839
1.
Mol Biol Rep ; 51(1): 712, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824221

INTRODUCTION: Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS: The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION: This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.


Coronary Artery Disease , Myeloid Ecotropic Viral Integration Site 1 Protein , Nuclear Proteins , Trans-Activators , Humans , Coronary Artery Disease/genetics , Female , Male , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Case-Control Studies , Adult , Middle Aged , Interleukin-6/genetics , Interleukin-6/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Leukocytes, Mononuclear/metabolism , Interleukin-10/genetics , Gene Expression Regulation/genetics , Gene Expression/genetics
2.
Arch Microbiol ; 206(7): 287, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38833010

Hepcidin is a crucial regulator of iron homeostasis with protective effects on liver fibrosis. Additionally, gut microbiota can also affect liver fibrosis and iron metabolism. Although the hepatoprotective potential of Akkermansia muciniphila and Faecalibacterium duncaniae, formerly known as F. prausnitzii, has been reported, however, their effects on hepcidin expression remain unknown. We investigated the direct and macrophage stimulation-mediated effects of active, heat-inactivated, and cell-free supernatant (CFS) forms of A. muciniphila and F. duncaniae on hepcidin expression in HepG2 cells by RT-qPCR analysis. Following stimulation of phorbol-12-myristate-13-acetate (PMA) -differentiated THP-1 cells with A. muciniphila and F. duncaniae, IL-6 concentration was assessed via ELISA. Additionally, the resulting supernatant was treated with HepG2 cells to evaluate the effect of macrophage stimulation on hepcidin gene expression. The expression of genes mediating iron absorption and export was also examined in HepG2 and Caco-2 cells via RT-qPCR. All forms of F. duncaniae increased hepcidin expression while active and heat-inactivated/CFS forms of A. muciniphila upregulated and downregulated its expression, respectively. Active, heat-inactivated, and CFS forms of A. muciniphila and F. duncaniae upregulated hepcidin expression, consistent with the elevation of IL-6 released from THP-1-stimulated cells as a macrophage stimulation effect in HepG2 cells. A. muciniphila and F. duncaniae in active, inactive, and CFS forms altered the expression of hepatocyte and intestinal iron-mediated absorption /exporter genes, namely dcytb and dmt1, and fpn in HepG2 and Caco-2 cells, respectively. In conclusion, A. muciniphila and F. duncaniae affect not only directly but also through macrophage stimulation the expression of hepcidin gene in HepG2 cells. These findings underscore the potential of A. muciniphila and F. duncaniae as a potential therapeutic target for liver fibrosis by modulating hepcidin and intestinal and hepatocyte iron metabolism mediated gene expression.


Akkermansia , Hepcidins , Macrophages , Humans , Hepcidins/genetics , Hepcidins/metabolism , Hep G2 Cells , Caco-2 Cells , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , THP-1 Cells , Iron/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Macrophage Activation , Gastrointestinal Microbiome
3.
Iran J Allergy Asthma Immunol ; 23(2): 197-220, 2024 Apr 07.
Article En | MEDLINE | ID: mdl-38822514

Systemic sclerosis (SSc) is an autoimmune systemic disease that is characterized by immune dysregulation, inflammation, vasculopathy, and fibrosis. Tissue fibrosis plays an important role in SSc and can affect several organs such as the dermis, lungs, and heart. Dysregulation of interferon (IFN) signaling contributes to the SSc pathogenesis and interferon regulatory factor 1 (IRF1) has been indicated as the main regulator of type I IFN. This study aimed to clarify the effect of IFN-gamma (-γ) and dexamethasone (DEX) on the IRF1, extracellular signal-regulated kinase 1/2 (ERK1/2), and the expression of alpha-smooth muscle actin (α-SMA) in myofibroblasts and genes involved in the inflammation and fibrosis processes in early diffuse cutaneous systemic sclerosis (dcSSc). A total of 10 early dcSSc patients (diffuse cutaneous form) and 10 unaffected control dermis biopsies were obtained to determine IFNγ and DEX effects on inflammation and fibrosis. Fibroblasts were treated with IFNγ and DEX at optimum time and dose. The expression level of genes and proteins involved in the fibrosis and inflammation processes have been quantified by quantitative real-time PCR (RT-qPCR) and western blot, respectively. IFNγ could up-regulate some of the inflammation-related genes (Interleukin-6; IL6) and down-regulate some of the fibrosis-related genes (COL1A1) in cultured fibroblasts of patients with early dcSSc compared to the untreated group. Besides, it has been revealed that IFNγ can induce fibroblast differentiation to the myofibroblast that expresses α-SMA. Concerning the inhibitory effect of IFNγ on some fibrotic genes and its positive effect on the inflammatory genes and myofibroblast differentiation, it seems that IFNγ may play a dual role in SSc.


Actins , Fibroblasts , Interferon-gamma , Interleukin-6 , Scleroderma, Systemic , Adult , Female , Humans , Male , Middle Aged , Actins/metabolism , Actins/genetics , Cells, Cultured , Dexamethasone/pharmacology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/drug effects , Fibrosis , Gene Expression Regulation/drug effects , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Interferon-gamma/pharmacology , Interleukin-6/metabolism , Interleukin-6/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/immunology
4.
J Tradit Chin Med ; 44(3): 478-488, 2024 Jun.
Article En | MEDLINE | ID: mdl-38767631

OBJECTIVE: To explore the pharmacodynamic effects and potential mechanisms of Shuangling extract against ulcerative colitis (UC). METHODS: The bioinformatics method was used to predict the active ingredients and action targets of Shuangling extract against UC in mice. And the biological experiments such as serum biochemical indexes and histopathological staining were used to verify the pharmacological effect and mechanism of Shuangling extract against UC in mice. RESULTS: The Shuangling extract reduced the levels of seruminterleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-N), interleukin-6 (IL-6) and other inflammatory factors in UC mice and inhibited the inflammatory response. AKT Serine/threonine Kinase 1 and IL-6 may be the main targets of the anti-UC action of Shuangling extract, and the TNF signaling pathway, Forkhead box O signaling pathway and T-cell receptor signaling pathway may be the main signaling pathways. CONCLUSION: The Shuangling extract could inhibit the inflammatory response induced by UC and regulate intestinal immune function through multiple targets and multiple channels, which provided a new option and theoretical basis for anti-UC.


Colitis, Ulcerative , Dextran Sulfate , Drugs, Chinese Herbal , Network Pharmacology , Tumor Necrosis Factor-alpha , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Mice , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Dextran Sulfate/adverse effects , Male , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Disease Models, Animal , Signal Transduction/drug effects
5.
Eur J Med Res ; 29(1): 285, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745325

INTRODUCTION: Hydrogen (H2) is regarded as a novel therapeutic agent against several diseases owing to its inherent biosafety. Bronchopulmonary dysplasia (BPD) has been widely considered among adverse pregnancy outcomes, without effective treatment. Placenta plays a role in defense, synthesis, and immunity, which provides a new perspective for the treatment of BPD. This study aimed to investigate if H2 reduced the placental inflammation to protect the neonatal rat against BPD damage and potential mechanisms. METHODS: We induced neonatal BPD model by injecting lipopolysaccharide (LPS, 1 µg) into the amniotic fluid at embryonic day 16.5 as LPS group. LPS + H2 group inhaled 42% H2 gas (4 h/day) until the samples were collected. We primarily analyzed the neonatal outcomes and then compared inflammatory levels from the control group (CON), LPS group and LPS + H2 group. HE staining was performed to evaluate inflammatory levels. RNA sequencing revealed dominant differentially expressed genes. Bioinformatics analysis (GO and KEGG) of RNA-seq was applied to mine the signaling pathways involved in protective effect of H2 on the development of LPS-induced BPD. We further used qRT-PCR, Western blot and ELISA methods to verify differential expression of mRNA and proteins. Moreover, we verified the correlation between the upstream signaling pathways and the downstream targets in LPS-induced BPD model. RESULTS: Upon administration of H2, the inflammatory infiltration degree of the LPS-induced placenta was reduced, and infiltration significantly narrowed. Hydrogen normalized LPS-induced perturbed lung development and reduced the death ratio of the fetus and neonate. RNA-seq results revealed the importance of inflammatory response biological processes and Toll-like receptor signaling pathway in protective effect of hydrogen on BPD. The over-activated upstream signals [Toll-like receptor 4 (TLR4), nuclear factor kappa-B p65 (NF-κB p65), Caspase1 (Casp1) and NLR family pyrin domain containing 3 (NLRP3) inflammasome] in LPS placenta were attenuated by H2 inhalation. The downstream targets, inflammatory cytokines/chemokines [interleukin (IL)-6, IL-18, IL-1ß, C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1)], were decreased both in mRNA and protein levels by H2 inhalation in LPS-induced placentas to rescue them from BPD. Correlation analysis displayed a positive association of TLR4-mediated signaling pathway both proinflammatory cytokines and chemokines in placenta. CONCLUSION: H2 inhalation ameliorates LPS-induced BPD by inhibiting excessive inflammatory cytokines and chemokines via the TLR4-NFκB-IL6/NLRP3 signaling pathway in placenta and may be a potential therapeutic strategy for BPD.


Bronchopulmonary Dysplasia , Hydrogen , Inflammation , Lipopolysaccharides , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Signal Transduction , Toll-Like Receptor 4 , Female , Pregnancy , Lipopolysaccharides/toxicity , Hydrogen/pharmacology , Hydrogen/therapeutic use , Animals , Placenta/metabolism , Placenta/drug effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Signal Transduction/drug effects , Rats , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Administration, Inhalation , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/chemically induced , Bronchopulmonary Dysplasia/drug therapy , Bronchopulmonary Dysplasia/prevention & control , Interleukin-6/metabolism , Interleukin-6/genetics , Rats, Sprague-Dawley , Disease Models, Animal
6.
Biomed Res Int ; 2024: 3610879, 2024.
Article En | MEDLINE | ID: mdl-38707766

Background: There is no conclusive evidence on the association between interleukin- (IL-) 6 gene polymorphism and type 2 diabetes mellitus (type 2 DM). Thus, this study is aimed at evaluating the role of rs1800795 and rs1800796 polymorphisms in the pathogenesis of type 2 DM among Ghanaians in the Ho Municipality. Materials and Methods: We recruited into this hospital-based case-control study 174 patients with type 2 DM (75 DM alone and 99 with DM+HTN) and 149 healthy individuals between 2018 and 2020. Demographic, lifestyle, clinical, anthropometric, and haemodynamic variables were obtained. Fasting blood samples were collected for haematological, biochemical, and molecular analyses. Genomic DNA was extracted, amplified using Tetra-primer amplification refractory mutation system-polymerase chain reaction (T-ARMS-PCR) technique, and genotyped for IL-6 gene polymorphism. Logistic regression analyses were performed to assess the association between IL-6 gene polymorphism and type 2 DM. Results: The minor allele frequency (MAF) of the rs1800795 and rs1800796 polymorphisms was higher in DM alone (57.5%, 62.0%) and DM with HTN groups (58.3%, 65.3%) than controls (33.1%, 20.0%). Carriers of the rs1800795GC genotype (aOR = 2.35, 95% CI: 1.13-4.90, p = 0.022) and mutant C allele (aOR = 2.41, 95% CI: 1.16-5.00, p = 0.019) as well as those who carried the rs1800796GC (aOR = 8.67, 95% CI: 4.00-18.90, p < 0.001) and mutant C allele (aOR = 8.84, 95% CI: 4.06-19.26, p = 0.001) had increased odds of type 2 DM. For both polymorphisms, carriers of the GC genotype had comparable levels of insulin, HOMA-IR, and fasting blood glucose (FBG) with those who carried the GG genotype. IL-6 levels were higher among carriers of the rs1800796GC variant compared to carriers of the rs1800796GG variant (p = 0.023). The rs1800796 polymorphism, dietary sugar intake, and exercise status, respectively, explained approximately 3% (p = 0.046), 3.2% (p = 0.038, coefficient = 1.456), and 6.2% (p = 0.004, coefficient = -2.754) of the variability in IL-6 levels, suggesting weak effect sizes. Conclusion: The GC genotype and mutant C allele are risk genetic variants associated with type 2 DM in the Ghanaian population. The rs1800796 GC variant, dietary sugar intake, and exercise status appear to contribute significantly to the variations in circulating IL-6 levels but with weak effect sizes.


Diabetes Mellitus, Type 2 , Gene Frequency , Genetic Predisposition to Disease , Interleukin-6 , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 2/genetics , Female , Male , Interleukin-6/genetics , Middle Aged , Case-Control Studies , Ghana/epidemiology , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease/genetics , Gene Frequency/genetics , Adult , Aged , Genotype , Alleles
7.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1932-1946, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38812206

This study investigated the anti-aging mechanism of Xiyangshen Sanqi Danshen Granules based on metabonomics, network pharmacology, and molecular docking. The aging mice model was induced by intraperitoneal injection of D-galactose(D-gal). Mice were randomly divided into a control group, model group, melatonin group(MT group), and low, medium, and high dose groups of Xiyangshen Sanqi Danshen Granules(XSD-L, XSD-M, and XSD-H). An open-field experiment was conducted, and the expression of cell cycle arrest proteins(p16) and phosphorylated histone family 2A variant(γH2AX) in the brain tissue was detected by immunofluorescence. The expression of interleukin-1ß(IL-1ß) and interleukin-6(IL-6) in the brain tissue was detected by enzyme-linked immunosorbent assay(ELISA). Metabolomics analysis was performed on the serum of mice in control, model, and XSD-H groups to obtain metabolic processes and metabolites. The effective chemical components and potential targets of Xiyangshen Sanqi Danshen Granules were predicted through network pharmacology, and the network diagram of "drug-effective chemical components-key targets" was constructed. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis were carried out, and a protein-protein interaction(PPI) network was constructed to clarify the anti-aging mechanism of Xiyangshen Sanqi Danshen Granules. The results showed that the Xiyangshen Sanqi Danshen Granules could significantly improve the aging degree of D-gal mice, significantly improve the total motion distance and the mean motion speed of D-gal mice, and reduce the rest time. In addition, Xiyangshen Sanqi Danshen Granules could significantly reduce the protein levels of IL-6 and IL-1ß and the expression of p16 and γH2AX in D-gal mice. Compared with the model group, 66 differential metabolites(DMs) were significantly up-regulated, and 91 DMs were down-regulated in the XSD-H group. Moreover, four key metabolic pathways(tryptophan metabolism, glycerophospholipid metabolism, pyrimidine metabolism, and lysine degradation) and 16 biomarkers(lysine, tryptophan, indoleacetaldehyde, PCs, LysoPCs, 3-hydroxyanthranilic acid, melatonin, etc) were screened out. 58 main active components and 62 key targets of Xiyangshen Sanqi Danshen Granules were screened by network pharmacology. The GO functional enrichment analysis found the positive regulation of gene expression, drug response, etc. KEGG pathway enrichment screening involved diabetic complications-related AGE-RAGE signaling pathway, hypoxia inducible factor-1 signaling pathway, etc. Through the PPI network and molecular docking, six potential core targets of STAT3, MAPK1, MAPK14, EGFR, FOS, and STAT1 were screened.


Aging , Computational Biology , Drugs, Chinese Herbal , Metabolomics , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Male , Aging/drug effects , Aging/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Molecular Docking Simulation , Salvia miltiorrhiza/chemistry , Interleukin-1beta/genetics , Interleukin-1beta/metabolism
8.
Arthritis Res Ther ; 26(1): 111, 2024 May 29.
Article En | MEDLINE | ID: mdl-38812033

BACKGROUND: Due to the unclear pathogenesis of osteoarthritis (OA), effective treatment for this ailment is presently unavailable. Accumulating evidence points to chondrocyte senescence as a key driver in OA development. This study aims to identify OA-specific microRNAs (miRNAs) targeting chondrocyte senescence to alleviate OA progression. METHODS: We screened and identified miRNAs differentially expressed in OA and normal cartilage, then confirmed the impact of miR-653-5p on chondrocyte functions and senescence phenotypes through in vitro experiments with overexpression/silencing. We identified interleukin 6 (IL-6) as the target gene of miR-653-5p and confirmed the regulatory influence of miR-653-5p on the IL-6/JAK/STAT3 signaling pathway through gain/loss-of-function studies. Finally, we assessed the therapeutic efficacy of miR-653-5p on OA using a mouse model with destabilization of the medial meniscus. RESULTS: MiR-653-5p was significantly downregulated in cartilage tissues and chondrocytes from OA patients. Overexpression of miR-653-5p promoted chondrocyte matrix synthesis and proliferation while inhibiting chondrocyte senescence. Furthermore, bioinformatics target prediction and the luciferase reporter assays identified IL-6 as a target of miR-653-5p. Western blot assays demonstrated that miR-653-5p overexpression inhibited the protein expression of IL-6, the phosphorylation of JAK1 and STAT3, and the expression of chondrocyte senescence phenotypes by regulating the IL-6/JAK/STAT3 signaling pathway. More importantly, the cartilage destruction was significantly alleviated and chondrocyte senescence phenotypes were remarkably decreased in the OA mouse model treated by agomiR-653-5p compared to the control mice. CONCLUSIONS: MiR-653-5p showed a significant decrease in cartilage tissues of individuals with OA, leading to an upregulation of chondrocyte senescence phenotypes in the articular cartilage. AgomiR-653-5p emerges as a potential treatment approach for OA. These findings provide further insight into the role of miR-653-5p in chondrocyte senescence and the pathogenesis of OA.


Cellular Senescence , Chondrocytes , MicroRNAs , Osteoarthritis , MicroRNAs/genetics , MicroRNAs/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Animals , Humans , Cellular Senescence/genetics , Cellular Senescence/physiology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Mice , Male , Interleukin-6/metabolism , Interleukin-6/genetics , Mice, Inbred C57BL , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Cells, Cultured , Middle Aged , Female , Signal Transduction/genetics , Signal Transduction/physiology , Cartilage, Articular/metabolism , Cartilage, Articular/pathology
9.
Med Oncol ; 41(6): 155, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744773

Interleukin-6 (IL-6) and hypoxia-inducible factor-1α (HIF-1α) play important roles in epithelial-mesenchymal transformation (EMT) and tumor development. Previous studies have demonstrated that IL-6 promotes EMT, invasion, and metastasis in epithelial ovarian cancer (EOC) cells by activating the STAT3/HIF-1α pathway. MicroRNA (miRNA) is non-coding small RNAs that also play an important role in tumor development. Notably, Let-7 and miR-200 families are prominently altered in EOC. However, whether IL-6 regulates the expression of Let-7 and miR-200 families through the STAT3/HIF-1α signaling to induce EMT in EOC remains poorly understood. In this study, we conducted in vitro and in vivo investigations using two EOC cell lines, SKOV3, and OVCAR3 cells. Our findings demonstrate that IL-6 down-regulates the mRNA levels of Let-7c and miR-200c while up-regulating their target genes HMGA2 and ZEB1 through the STAT3/HIF-1α signaling in EOC cells and in vivo. Additionally, to explore the regulatory role of HIF-1α on miRNAs, both exogenous HIF blockers YC-1 and endogenous high expression or inhibition of HIF-1α can be utilized. Both approaches can confirm that the downstream molecule HIF-1α inhibits the expression and function of Let-7c and miR-200c. Further mechanistic research revealed that the overexpression of Let-7c or miR-200c can reverse the malignant evolution of EOC cells induced by IL-6, including EMT, invasion, and metastasis. Consequently, our results suggest that IL-6 regulates the expression of Let-7c and miR-200c through the STAT3/HIF-1α pathway, thereby promoting EMT, invasion, and metastasis in EOC cells.


Carcinoma, Ovarian Epithelial , Epithelial-Mesenchymal Transition , Hypoxia-Inducible Factor 1, alpha Subunit , Interleukin-6 , MicroRNAs , Neoplasm Invasiveness , Ovarian Neoplasms , STAT3 Transcription Factor , Signal Transduction , MicroRNAs/genetics , Humans , Epithelial-Mesenchymal Transition/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Cell Line, Tumor , Animals , Neoplasm Invasiveness/genetics , Neoplasms, Glandular and Epithelial/pathology , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/metabolism , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice , Neoplasm Metastasis , Mice, Inbred BALB C
10.
Braz Oral Res ; 38: e042, 2024.
Article En | MEDLINE | ID: mdl-38747829

The aim of this study was to investigate the DNA methylation profile in genes encoding catalase (CAT) and superoxide dismutase (SOD3) enzymes, which are involved in oxidative stress mechanisms, and in genes encoding pro-inflammatory cytokines interleukin-6 (IL6) and tumor necrosis factor-alpha (TNF-α) in the oral mucosa of oncopediatric patients treated with methotrexate (MTX®). This was a cross-sectional observational study and the population comprised healthy dental patients (n = 21) and those with hematological malignancies (n = 64) aged between 5 and 19 years. Oral conditions were evaluated using the Oral Assessment Guide and participants were divided into 4 groups: 1- healthy individuals; 2- oncopediatric patients without mucositis; 3- oncopediatric patients with mucositis; 4- oncopediatric patients who had recovered from mucositis. Methylation of DNA from oral mucosal cells was evaluated using the Methylation-Specific PCR technique (MSP). For CAT, the partially methylated profile was the most frequent and for SOD3 and IL6, the hypermethylated profile was the most frequent, with no differences between groups. For TNF-α, the hypomethylated profile was more frequent in the group of patients who had recovered from mucositis. It was concluded that the methylation profiles of CAT, SOD3, and IL6 are common profiles for oral cells of children and adolescents and have no association with oral mucositis or exposure to chemotherapy with MTX®. Hypomethylation of TNF-α is associated with oral mucosal recovery in oncopediatric patients who developed oral mucositis during chemotherapy.


Catalase , DNA Methylation , Interleukin-6 , Methotrexate , Mouth Mucosa , Stomatitis , Superoxide Dismutase , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/genetics , Child , Cross-Sectional Studies , Adolescent , Child, Preschool , Male , Female , Young Adult , Interleukin-6/genetics , Interleukin-6/analysis , Catalase/genetics , Mouth Mucosa/drug effects , Superoxide Dismutase/genetics , Methotrexate/therapeutic use , Methotrexate/adverse effects , Stomatitis/genetics , Stomatitis/chemically induced , Promoter Regions, Genetic/genetics , Hematologic Neoplasms/genetics , Hematologic Neoplasms/drug therapy , Reference Values , Antimetabolites, Antineoplastic/adverse effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Polymerase Chain Reaction , Statistics, Nonparametric , Mucositis/genetics , Mucositis/chemically induced , Case-Control Studies
11.
Bull Exp Biol Med ; 176(5): 555-561, 2024 Mar.
Article En | MEDLINE | ID: mdl-38717567

The levels of NO metabolites in the plasma and mRNA of the NOS3, ATG9B, and NOS2 genes in peripheral blood leukocytes of healthy people and patients with early forms of non-alcoholic fatty liver disease (steatosis and weak activity non-alcoholic steatohepatitis) were studied. In patients with steatohepatitis, the concentration of NO metabolites in the blood and the level of mRNA of the NOS2 gene were higher than in patients with steatosis and healthy people. These differences can be of diagnostic value for distinguishing between steatosis and weak activity steatohepatitis in non-alcoholic fatty liver disease. A correlation between the levels of NO metabolites and the expression of the NOS2 gene in weak activity steatohepatitis was established, which indicates activation of NO synthesis in non-alcoholic steatohepatitis due to the expression of the inducible NO synthase gene. The level of the NOS2 gene mRNA in peripheral blood leukocytes of patients with weak activity steatohepatitis correlated with the level of TNFα and IL-6 cytokines. An increase in the level of NO in the blood in weak activity steatohepatitis correlated with the level of MDA, an indicator of oxidative stress.


Interleukin-6 , Nitric Oxide Synthase Type III , Nitric Oxide Synthase Type II , Nitric Oxide , Non-alcoholic Fatty Liver Disease , Tumor Necrosis Factor-alpha , Humans , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Nitric Oxide/blood , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Male , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Female , Adult , Interleukin-6/blood , Interleukin-6/genetics , Middle Aged , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/genetics , RNA, Messenger/genetics , RNA, Messenger/blood , RNA, Messenger/metabolism , Oxidative Stress/genetics , Case-Control Studies , Malondialdehyde/blood
12.
Nutr J ; 23(1): 51, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750566

BACKGROUND: Previous research has extensively examined the role of interleukin 6 (IL-6) in sarcopenia. However, the presence of a causal relationship between IL-6, its receptor (IL-6R), and sarcopenia remains unclear. METHOD: In this study, we utilized summary-level data from genome-wide association studies (GWAS) focused on appendicular lean mass (ALM), hand grip strength, and walking pace. Single nucleotide polymorphisms (SNPs) were employed as genetic instruments for IL-6 and IL-6R to estimate the causal effect of sarcopenia traits. We adopted the Mendelian randomization (MR) approach to investigate these associations using the inverse variance weighted (IVW) method as the primary analytical approach. Additionally, we performed sensitivity analyses to validate the reliability of the MR results. RESULT: This study revealed a significant negative association between main IL-6R and eQTL IL-6R on the left grip strength were - 0.013 (SE = 0.004, p < 0.001) and -0.029 (SE = 0.007, p < 0.001), respectively. While for the right grip strength, the estimates were - 0.011 (SE = 0.001, p < 0.001) and - 0.021 (SE = 0.008, p = 0.005). However, no evidence of an association for IL-6R with ALM and walking pace. In addition, IL-6 did not affect sarcopenia traits. CONCLUSION: Our study findings suggest a negative association between IL-6R and hand grip strength. Additionally, targeting IL-6R may hold potential value as a therapeutic approach for the treatment of hand grip-related issues.


Genome-Wide Association Study , Hand Strength , Interleukin-6 , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Receptors, Interleukin-6 , Sarcopenia , Humans , Interleukin-6/genetics , Interleukin-6/blood , Sarcopenia/genetics , Mendelian Randomization Analysis/methods , Receptors, Interleukin-6/genetics , Hand Strength/physiology , Genome-Wide Association Study/methods
13.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791128

In endothelial cells, miR-148a-3p is involved in several pathological pathways, including chronic inflammatory conditions. However, the molecular mechanism of miR-148a-3p in endothelial inflammatory states is, to date, not fully elucidated. To this end, we investigated the involvement of miR-148a-3p in mitochondrial dysfunction and cell death pathways in human aortic endothelial cells (teloHAECs) treated with interleukin-6 (IL-6), a major driver of vascular dysfunction. The results showed that during IL6-activated inflammatory pathways, including increased protein levels of sirtuin 7 (SIRT7) (p < 0.01), mitochondrial stress (p < 0.001), and apoptosis (p < 0.01), a decreased expression of miR-148a-3p was observed (p < 0.01). The employment of a miR-148a mimic counteracted the IL-6-induced cytokine release (p < 0.01) and apoptotic cell death (p < 0.01), and ameliorated mitochondria redox homeostasis and respiration (p < 0.01). The targeted relationship between miR-148a-3p and SIRT7 was predicted by a bioinformatics database analysis and validated via the dual-luciferase reporter assay. Mechanistically, miR-148a-3p targets the 3' untranslated regions of SIRT7 mRNA, downregulating its expression (p < 0.01). Herein, these in vitro results support the role of the miR-148a-3p/SIRT7 axis in counteracting mitochondrial damage and apoptosis during endothelial inflammation, unveiling a novel target for future strategies to prevent endothelial dysfunction.


Apoptosis , Endothelial Cells , Inflammation , MicroRNAs , Sirtuins , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Sirtuins/metabolism , Sirtuins/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Apoptosis/genetics , Endothelial Cells/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Mitochondria/metabolism , Signal Transduction , Gene Expression Regulation
14.
Int J Mol Sci ; 25(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38791190

Heart failure with preserved ejection fraction (HFpEF) is more prevalent in post- compared to pre-menopausal women. The underlying mechanisms are not fully understood. Data in humans is confounded by age and co-morbidities. We investigated the effects of ovariectomy and estrogen replacement on the left ventricular (LV) gene expression of pro-inflammatory and pro-fibrotic factors involved in HFpEF and putative regulating miRNAs. Nine-week-old C57BL/6 female mice were subjected to ovariectomy (OVX) or SHAM operation. OVX and SHAM groups were sacrificed 1-, 6-, and 12-weeks post-surgery (T1/SHAM; T1/OVX; T6/SHAM; T6/OVX, T12/SHAM). 17ß-estradiol (E2) or vehicle (VEH) was then administered to the OVX groups for 6 weeks (T12/OVX/E2; T12/OVX/VEH). Another SHAM group was sacrificed 12-weeks post-surgery. RNA and miRNAs were extracted from the LV apex. An early 3-fold increase in the gene expression of IL-1α, IL-6, Mmp9, Mmp12, Col1α1, and Col3α1 was observed one-week post-surgery in T1/OVX vs. T1/SHAM, but not at later time points. miRNA-26a was lower in T1/OVX vs. T1/SHAM and was inversely correlated with Col1α1 and Col3α1 expression 1-week post-surgery (r = -0.79 p < 0.001; r = -0.6 p = 0.007). miRNAs-26a, 29b, and 133a were significantly higher, while Col1α1, Col3α1, IL-1α, IL-6, Tnfα, Mmp12, and FasL gene expression was significantly lower in E2- compared to vehicle-treated OVX mice. miRNA-26a was inversely correlated with Col3α1 in T12/OVX/ E2 (r = -0.56 p = 0.02). OVX triggered an early increase in the gene expression of pro-inflammatory and pro-fibrotic factors, highlighting the importance of the early phase post-cessation of ovarian function. E2 replacement therapy, even if it was not immediately initiated after OVX, reversed these unfavorable changes and upregulated cardiac miRNA-26a, previously unknown to be affected by menopausal status.


Collagen Type I , Estradiol , Heart Ventricles , Mice, Inbred C57BL , MicroRNAs , Ovariectomy , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Estradiol/pharmacology , Mice , Collagen Type I/genetics , Collagen Type I/metabolism , Heart Ventricles/metabolism , Heart Ventricles/drug effects , Collagen Type III/genetics , Collagen Type III/metabolism , Gene Expression Regulation/drug effects , Down-Regulation/drug effects , Heart Failure/genetics , Heart Failure/metabolism , Collagen Type I, alpha 1 Chain/metabolism , Up-Regulation/drug effects , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Estrogen Replacement Therapy
15.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791322

A keloid is a benign fibroproliferative hypertrophy of scar tissue that extends outside the original wound and invades adjacent healthy skin. Keloid formation is thought to be a complex process including overactivity of the interleukin-6 signaling pathway and genetic susceptibility. The aim of the study was to investigate possible associations between rs1800797, rs1800796, and rs1800795 polymorphisms in the promoter of the IL6 gene encoding interleukin-6 and the rs2228145 polymorphism in the IL6R gene encoding the interleukin-6 receptor subunit alpha with the predisposition to keloids in Polish patients. The genetic polymorphisms were identified either using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) or sequencing of samples of genomic DNA extracted from blood leukocytes of 86 adult patients with keloids and 100 newborns comprising a control group. No significant differences in the distributions of IL6 or IL6R alleles or genotypes were found between keloid patients and newborn controls. There were also no significant differences between both groups in the distribution of IL6 haplotypes. The IL6 rs1800797, rs1800796 and rs1800795 and IL6R rs2228145 polymorphisms were not found to predispose individuals in the study group to keloids. IL6 promoter haplotypes were not found to be associated with a higher risk of keloids in the studied group.


Genetic Predisposition to Disease , Interleukin-6 , Keloid , Polymorphism, Single Nucleotide , Receptors, Interleukin-6 , Humans , Keloid/genetics , Keloid/pathology , Interleukin-6/genetics , Receptors, Interleukin-6/genetics , Male , Female , Adult , Poland , Middle Aged , Promoter Regions, Genetic , Case-Control Studies , Haplotypes , Alleles , Adolescent , Young Adult , Gene Frequency , Genotype , Infant, Newborn , Genetic Association Studies
16.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2566-2574, 2024 May.
Article Zh | MEDLINE | ID: mdl-38812157

This study aims to investigate the mitigating effect and mechanism of Cichorium glandulosum n-butanol extraction site(CGE) on the disease in carbon tetrachloride(CCl_4)-induced chronic liver injury model in rats. A chronic liver injury model was constructed by subcutaneous injection of CCl_4 olive oil solution, and after four weeks of CGE treatment, serum levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), alkaline phosphatase(AKP), hydroxyproline(HYP), interleukin-4(IL-4), interleukin-6(IL-6), malondialdehyde(MDA), superoxide dismutase(SOD), and tumor necrosis factor-α(TNF-α) were detected. Liver tissue was processed by hematoxylin-eosin(HE) staining and Masson staining to observe the structure of the rat liver. qPCR and Western blot were used to examine the expression of transforming growth factor-ß1(TGF-ß1)/small mothers against decapentaplegic(Smad), Toll-like receptor 4(TLR4), α-smooth muscle actin(α-SMA), and fibronectin(Fn) in rat liver tissue and hepatic stellate-T6(HSC-T6) and evaluate the inhibitory effect of CGE on HSC activation. The results showed that CGE could significantly reduce the serum levels of AST, ALT, AKP, HYP, and affect the levels of related inflammatory indexes including IL-4, IL-6, and TNF-α, and MDA in CCl_4-induced chronic liver injury in rats and had no effect on SOD activity, which could delay the process of liver injury, alleviate the hepatic collagen deposition and inflammatory infiltration, and had significant efficacy in mitigating chronic liver injury in rats. CGE could inhibit α-SMA and TLR4 protein expression in the liver tissue and reverse the increased TGF-ß1/Smad, Fn, and TLR4-related expression in HSC-T6 in vitro. The above results indicated that CGE exerted hepatoprotective effects in rats by inhibiting HSC activation and alleviated CCl_4-induced chronic liver injury in rats and could ameliorate inflammatory response and slight liver fibrosis in rat liver tissue. Its pharmacodynamic mechanism might be related to TGF-ß1/Smad and TLR4-related expression.


Carbon Tetrachloride , Liver , Rats, Sprague-Dawley , Animals , Rats , Carbon Tetrachloride/adverse effects , Male , Liver/metabolism , Liver/drug effects , Liver/injuries , 1-Butanol/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Humans , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Malondialdehyde/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Interleukin-4/genetics , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/genetics
17.
Int Immunopharmacol ; 134: 112246, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38759372

BACKGROUND: A wide array of histone deacetylase (HDAC) inhibitors and aryl hydrocarbon receptor (AHR) agonists commonly arrest experimental autoimmune encephalomyelitis (EAE). However, it is not known whether HDAC inhibition is linked to the AHR signaling pathway in EAE. METHODS: We investigated how the pan-HDAC inhibitor SB939 (pracinostat) exerted immunoregulatory action in the myelin oligodendrocyte glycoprotein 35-55 (MOG35-55)-induced EAE mouse model by evaluating changes in of signal transducer and activator of transcription 3 (STAT3) acetylation and the expression of indoleamine 2,3-dioxygenase 1 (IDO1) and AHR in inflamed spinal cords during EAE evolution. We proved the involvement of IDO1 and the AHR in SB939-mediated immunosuppression using Ido1-/- and Ahr-/- mice. RESULTS: Administration with SB939 halted EAE progression, which depended upon IDO1 expression in neurons of the central nervous system (CNS). Our in vitro and in vivo studies demonstrated that SB939 sustained the interleukin-6-induced acetylation of STAT3, resulting in the stable transcriptional activation of Ido1. The therapeutic effect of SB939 also required the AHR, which is expressed mainly in CD4+ T cells and macrophages in CNS disease lesions. Finally, SB939 was shown to markedly reduce the proliferation of CD4+ T cells in inflamed neuronal tissues but not in the spleen or draining lymph nodes. CONCLUSIONS: Overall, our results suggest that IDO1 tryptophan metabolites produced by neuronal cells may act on AHR in pathogenic CD4+ T cells in a paracrine fashion in the CNS and that the specific induction of IDO1 expression in neurons at disease-afflicted sites can be considered a therapeutic approach to block the progression of multiple sclerosis without affecting systemic immunity.


Encephalomyelitis, Autoimmune, Experimental , Histone Deacetylase Inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase , Mice, Inbred C57BL , Mice, Knockout , Neurons , STAT3 Transcription Factor , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , STAT3 Transcription Factor/metabolism , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Mice , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Female , Spinal Cord/pathology , Spinal Cord/metabolism , Spinal Cord/immunology , Spinal Cord/drug effects , Myelin-Oligodendrocyte Glycoprotein/immunology , Central Nervous System/immunology , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System/pathology , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Disease Progression , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Peptide Fragments/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Interleukin-6/metabolism , Interleukin-6/genetics
18.
BMC Med Genomics ; 17(1): 139, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783290

The symptoms of SARS-CoV-2 infection vary widely, ranging from asymptomatic cases to severe forms marked by acute respiratory distress syndrome, multi-organ damage, and fatalities. Studies indicate a correlation between specific genes and susceptibility to SARS-CoV-2 infection and disease severity, particularly involving variants in genes linked to inflammation and immune responses. The objective of this study is to investigate the association between rs1800795 (- 174 G > C) and rs1800797 (- 597 A > G) variants in the interleukin-6 (IL-6) promoter region and susceptibility to SARS-CoV-2 infection. Additionally, we aim to explore their correlation with COVID-19 severity in a Moroccan population. In this case-control study, we enrolled 270 unvaccinated COVID-19 patients, consisting of 132 with severe COVID-19 and 138 with asymptomatic-moderate COVID-19. Additionally, we included 339 SARS-CoV-2-negative group. Genotyping of rs1800795 and rs1800797 polymorphisms of the IL-6 gene was performed using predesigned TaqMan SNP genotyping. The median age of SARS-CoV-2-negative controls was 50 years, while severe COVID-19 cases exhibited a median age of 61 years. Additionally, individuals with asymptomatic to moderate COVID-19 had a median age of 36 years. We observed a significant age difference between severe and mild COVID-19 patients (p < 0.0001), and an association was noted between gender and the severity of COVID-19 (p = 0.011). The allele and genotype frequencies of the IL-6 - 597G > A and - 174G > C variants did not show significant associations with susceptibility to SARS-CoV-2 infection (p > 0.05). However, further analysis revealed that the linkage disequilibrium between rs1800797 and rs1800795 indicated that individuals with the GC* haplotype (OR = 0.04, 95% CI 0.01-0.30, p = 0.001) and AG* haplotype (OR = 0.11, 95% CI 0.03-0.46, p = 0.002) were significantly associated with protection against SARS-CoV-2 infection. Moreover, in the overdominant model, the IL-6 - 174 G/C genotype was found to be protective against the development of severe disease compared to those with the G/G-C/C genotypes (p = 0.03; OR = 0.41, 95% CI 0.18-0.96). However, correlations between complete blood count markers, hematological markers, D-dimer, C-reactive protein, and ferritin levels according to - 597 A > G and - 174G > C genotypes showed no significant differences (all p > 0.05). Our findings provide valuable insights into the pathogenesis of COVID-19, suggesting that genetic variations at the IL-6 gene may contribute to the susceptibility to severe SARS-CoV-2 infection within the Moroccan population.


COVID-19 , Genetic Predisposition to Disease , Interleukin-6 , Polymorphism, Single Nucleotide , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/genetics , COVID-19/virology , Interleukin-6/genetics , Female , Male , Case-Control Studies , Morocco , Middle Aged , Adult , Promoter Regions, Genetic , Aged , Gene Frequency , Haplotypes
19.
Clin Exp Pharmacol Physiol ; 51(7): e13874, 2024 Jul.
Article En | MEDLINE | ID: mdl-38797519

Glycolysis is vital for the excessive proliferation of keratinocytes in psoriasis, and uridine phosphorylase-1 (UPP1) functions as an enhancer of cancer cell proliferation. However, little is known about whether UPP1 promotes keratinocyte proliferation and accelerates psoriasis development. This study revealed that UPP1 facilitates cell viability and cell-cycle progression in human epidermal keratinocytes (HEKs) by modulating the glycolytic pathway. Bioinformatics analysis of UPP1 gene expression and its correlation with the Reactome revealed that UPP1 mRNA expression, cell-cycle progression, the interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway and glycolysis were positively associated with psoriasis. Cell proliferation, the cell cycle and glycolysis were evaluated after UPP1 was silenced or overexpressed. The results showed that UPP1 overexpression increased cell proliferation, cell-cycle progression and glycolysis, which was contrary to the effects of UPP1 silencing. However, the STAT3 inhibitor diminished UPP1 expression because STAT3 can bind to the UPP1 promoter. In conclusion, UPP1 was significantly activated by the IL-6/STAT3 pathway and could modulate glycolysis to regulate cell proliferation and cell-cycle progression in keratinocytes during the development of psoriasis.


Cell Cycle , Cell Survival , Glycolysis , Keratinocytes , STAT3 Transcription Factor , Uridine Phosphorylase , Humans , Cell Proliferation , Epidermis/metabolism , Epidermis/pathology , Interleukin-6/metabolism , Interleukin-6/genetics , Keratinocytes/metabolism , Psoriasis/pathology , Psoriasis/metabolism , Psoriasis/genetics , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Uridine Phosphorylase/metabolism , Uridine Phosphorylase/genetics
20.
J Pharmacol Sci ; 155(3): 94-100, 2024 Jul.
Article En | MEDLINE | ID: mdl-38797538

Interleukin (IL-19) belongs to the IL-10 family of cytokines and plays diverse roles in inflammation, cell development, viral responses, and lipid metabolism. Acute lung injury (ALI) is a severe respiratory condition associated with various diseases, including severe pneumonia, sepsis, and trauma, lacking established treatments. However, the role of IL-19 in acute inflammation of the lungs is unknown. We reported the impact of IL-19 functional deficiency in mice crossed with an ALI model using HCl. Lungs damages, neutrophil infiltration, and pulmonary edema induced by HCl were significantly worse in IL-19 knockout (KO) mice than in wild-type (WT) mice. mRNA expression levels of C-X-C motif chemokine ligand 1 (CXCL1) and IL-6 in the lungs were significantly higher in IL-19 KO mice than in WT mice. Little apoptosis was detected in lung injury in WT mice, whereas apoptosis was observed in exacerbated area of lung injury in IL-19 KO mice. These results are the first to show that IL-19 is involved in acute inflammation of the lungs, suggesting a novel molecular mechanism in acute respiratory failures. If it can be shown that neutrophils have IL-19 receptors and that IL-19 acts directly on them, it would be a novel drug target.


Acute Lung Injury , Hydrochloric Acid , Interleukins , Mice, Knockout , Animals , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Interleukins/genetics , Interleukins/metabolism , Mice, Inbred C57BL , Interleukin-6/metabolism , Interleukin-6/genetics , Disease Models, Animal , Neutrophil Infiltration , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Male , Lung/pathology , Lung/metabolism , Apoptosis/genetics , Apoptosis/drug effects , Mice , Neutrophils , Pulmonary Edema/etiology , Gene Expression
...