Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 500
Filter
1.
Food Chem ; 460(Pt 3): 140742, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39126953

ABSTRACT

The study aimed to create a fish-derived protein gel with inulin/konjac glucomannan (KGM) mixture for dysphagia. The inulin/KGM complex improved the swallowing properties of myofibrillar protein (MP) emulsion gel. Interactions, physicochemical, and flavor properties were analyzed. Inulin/KGM mixture inhibited hydrophobic groups exposure, and maintained MP structure during thermal induction. Inulin/KGM-protein gels exhibited shear-thinning behavior, low deformation resistance and hardness. IDDSI test also indicated inulin/KGM gels is suitable for dysphagia. Inulin/KGM mixture improved flavor by increasing ethanol and 2-octen-ol while decreasing ichthyological substances such as hexanal and nonanal, enhancing the sensory experience of patients with dysphagia. An 8% inulin/KGM mixture effectively modulated mechanical, swallowing, and sensory properties of MP emulsion gels, offering insights for future marine-derived dysphagia foods development.


Subject(s)
Deglutition Disorders , Fish Proteins , Gels , Inulin , Mannans , Inulin/chemistry , Mannans/chemistry , Humans , Gels/chemistry , Fish Proteins/chemistry , Animals , Deglutition Disorders/physiopathology , Taste , Male , Fishes , Female , Deglutition/drug effects , Adult
2.
Sci Rep ; 14(1): 18397, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117977

ABSTRACT

Antibiotics, improper food, and stress have created a dysbiotic state in the gut and almost 81% of the world's population has been affected due to the pandemic of COVID-19 and the prevalence of dengue virus in the past few years. The main intent of this study is to synthesize nanosynbiotics as nu traceuticals by combining probiotics, and prebiotics with nanoformulation. The effectiveness of the nanosynbiotics was evaluated using a variety of Nutra-pharmacogenetic assays leading to an AI-integrated formulation profiling was assessed by using machine learning methods. Consequently, Acetobacter oryzoeni as a probiotic and inulin as a prebiotic has been chosen and iron-mediated nanoformulation of symbiotic is achieved. Nanosynbiotics possessed 89.4, 96.7, 93.57, 83.53, 88.53% potential powers of Nutra-pharmacogenetic assays. Artificial intelligent solid dispersion formulation of nanosynbiotics has high dissolution, absorption, distribution, and synergism, in addition, they are non-tox, non-allergen and have a docking score of - 10.83 kcal/mol, implying the best interaction with Pregnane X receptor involved in dysbiosis. The potential of nanosynbiotics to revolutionize treatment strategies through precise targeting and modulation of the gut microbiome for improved health outcomes and disease management is promising. Their transformational influence is projected to be powered by integration with modern technology and customized formulas. Further in-vivo studies are required for the validation of nanosynbiotics as nutraceuticals.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Prebiotics , Probiotics , Humans , Artificial Intelligence , COVID-19 , SARS-CoV-2 , Drug Compounding/methods , Nanoparticles/chemistry , Inulin/chemistry
3.
J Agric Food Chem ; 72(32): 18100-18109, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39090787

ABSTRACT

Inulin has found commercial applications in the pharmaceutical, nutraceutical, and food industries due to its beneficial health effects. The enzymatic biosynthesis of microbial inulin has garnered increasing attention. In this study, molecular modification was applied to Lactobacillus mulieris UMB7800 inulosucrase, an enzyme that specifically produces high-molecular weight inulin, to enhance its catalytic activity and thermostability. Among the 18 variable regions, R5 was identified as a crucial region significantly impacting enzymatic activity by replacing it with more conserved sequences. Site-directed mutagenesis combined with saturated mutagenesis revealed that the mutant A250 V increased activity by 68%. Additionally, after screening candidate mutants by rational design, four single-point mutants, S344D, H434P, E526D, and G531P, were shown to enhance thermostability. The final combinational mutant, M5, exhibited a 66% increase in activity and a 5-fold enhancement in half-life at 55 °C. These findings are significant for understanding the catalytic activity and thermostability of inulosucrase and are promising for the development of microbial inulin biosynthesis platforms.


Subject(s)
Bacterial Proteins , Enzyme Stability , Hexosyltransferases , Inulin , Lactobacillus , Mutagenesis, Site-Directed , Inulin/metabolism , Inulin/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Hexosyltransferases/chemistry , Lactobacillus/enzymology , Lactobacillus/genetics , Lactobacillus/metabolism , Kinetics , Hot Temperature , Protein Engineering , Substrate Specificity
4.
Int J Biol Macromol ; 277(Pt 3): 134446, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098696

ABSTRACT

Glycoside hydrolase family 91 (GH91) inulin fructotransferase (IFTases) enables biotransformation of fructans into sugar substitutes for dietary intervention in metabolic syndrome. However, the catalytic mechanism underlying the sequential biodegradation of inulin remains unelusive during the biotranformation of fructans. Herein we present the crystal structures of IFTase from Arthrobacter aurescens SK 8.001 in apo form and in complexes with kestose, nystose, or fructosyl nystose, respectively. Two kinds of conserved noncatalytic binding regions are first identified for IFTase-inulin interactions. The conserved interactions of substrates were revealed in the catalytic center that only contained a catalytic residue E205. A switching scaffold was comprised of D194 and Q217 in the catalytic channel, which served as the catalytic transition stabilizer through side chain displacement in the cycling of substrate sliding in/out the catalytic pocket. Such features in GH91 contribute to the catalytic model for consecutive cutting of substrate chain as well as product release in IFTase, and thus might be extended to other exo-active enzymes with an enclosed bottom of catalytic pocket. The study expands the current general catalytic principle in enzyme-substrate complexes and shed light on the rational design of IFTase for fructan biotransformation.


Subject(s)
Catalytic Domain , Hexosyltransferases , Inulin , Inulin/metabolism , Inulin/chemistry , Hexosyltransferases/metabolism , Hexosyltransferases/chemistry , Substrate Specificity , Models, Molecular , Arthrobacter/enzymology , Catalysis , Biocatalysis , Fructans/metabolism , Fructans/chemistry , Protein Conformation
5.
Molecules ; 29(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39065006

ABSTRACT

Inulin is a carbohydrate that belongs to fructans; due to its health benefits, it is widely used in the food and pharmaceutical industries. In this research, cabuya (Agave americana) was employed to obtain inulin by pulsed electric field-assisted extraction (PEFAE) and FTIR analysis confirmed its presence. The influence of PEFAE operating parameters, namely, electric field strength (1, 3 and 5 kV/cm), pulse duration (0.1, 0.2 and 0.5 ms), number of pulses (10,000, 20,000 and 40,000) and work cycle (20, 50 and 80%) on the permeabilization index and energy expenditure were tested. Also, once the operating conditions for PEFAE were set, the temperature for conventional extraction (CE) and PEFAE were defined by comparing extraction kinetics. The cabuya meristem slices were exposed to PEFAE to obtain extracts that were quantified, purified and concentrated. The inulin was isolated by fractional precipitation with ethanol to be characterized. The highest permeabilization index and the lowest energy consumption were reached at 5 kV/cm, 0.5 ms, 10,000 pulses and 20%. The same extraction yield and approximately the same amount of inulin were obtained by PEFAE at 60 °C compared to CE at 80 °C. Despite, the lower amount of inulin obtained by PEFAE in comparison to CE, its quality was better because it is mainly constituted of inulin of high average polymerization degree with more than 38 fructose units. In addition, TGA analyses showed that inulin obtained by PEFAE has a lower thermal degradation rate than the obtained by CE and to the standard.


Subject(s)
Agave , Inulin , Inulin/chemistry , Inulin/isolation & purification , Agave/chemistry , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , Electricity , Temperature
6.
J Agric Food Chem ; 72(30): 17030-17040, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39034843

ABSTRACT

Carbohydrate degradation is crucial for living organisms due to their essential functions in providing energy and composing various metabolic pathways. Nevertheless, in the catalytic cycle of polysaccharide degradation, the details of how the substrates bind and how the products release need more case studies. Here, we choose an inulin fructotransferase (SpIFTase) as a model system, which can degrade inulin into functionally difructose anhydride I. At first, the crystal structures of SpIFTase in the absence of carbohydrates and complex with fructosyl-nystose (GF4), difructose anhydride I, and fructose are obtained, giving the substrate trajectory and product path of SpIFTase, which are further supported by steered molecular dynamics simulations (MDSs) along with mutagenesis. Furthermore, structural topology variations at the active centers of inulin fructotransferases are suggested as the structural base for product release, subsequently proven by substitution mutagenesis and MDSs. Therefore, this study provides a case in point for a deep understanding of the catalytic cycle with substrate trajectory and product path.


Subject(s)
Hexosyltransferases , Inulin , Hexosyltransferases/chemistry , Hexosyltransferases/metabolism , Hexosyltransferases/genetics , Inulin/metabolism , Inulin/chemistry , Substrate Specificity , Molecular Dynamics Simulation , Catalytic Domain , Biocatalysis , Catalysis , Fructose/metabolism , Fructose/chemistry
7.
Food Chem ; 457: 140107, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39032479

ABSTRACT

Bacillus stercoris PSSR12 (B. stercoris PE), an isolate from rice field soils, was identified via 16s rRNA sequencing. The synthesis of the inulin and inulin producing enzyme (IPE) in B. stercoris PE was verified using SDS-PAGE and FTIR. This study aimed to assess the impact of B. stercoris PE treatment on in vitro inhibition of α-amylase and α-glucosidase from traditional and commercial rice varieties of South India. Additionally, the study investigated enzymatic inhibition and mRNA expression of starch synthesis genes (RAmy1a, GBSSIa, SBEIIa, and SBEIIb). Glucose transporter gene expression (GLUT1 and GLUT4) patterns were analyzed in 3T3-L1 adipocytes to evaluate glucose uptake in B. stercoris PE treated rice varieties. The application of B. stercoris PE enhanced grain quality by imparting starch ultra-structural rigidity, inhibiting starch metabolizing enzymes, and inducing molecular changes in starch synthesis genes. This approach holds promise for managing type II diabetes mellitus and potentially reducing insulin dependence.


Subject(s)
Glucose , Inulin , Oryza , Starch , alpha-Amylases , Oryza/metabolism , Oryza/chemistry , Oryza/microbiology , Inulin/metabolism , Inulin/chemistry , Glucose/metabolism , Starch/metabolism , Starch/chemistry , alpha-Amylases/metabolism , alpha-Amylases/genetics , Bacillus/metabolism , Bacillus/genetics , Bacillus/chemistry , Mice , alpha-Glucosidases/metabolism , alpha-Glucosidases/genetics , Animals
8.
Int J Biol Macromol ; 275(Pt 1): 133761, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987001

ABSTRACT

This study aimed to enhance the antioxidant activity of carboxymethyl inulin (CMI) by chemical modification. Therefore, a series of cationic Schiff bases bearing heteroatoms were synthesized and incorporated into CMI via ion exchange reactions, ultimately preparing 10 novel CMI derivatives (CMID). Their structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. The radical scavenging activities and reducing power of inulin, CMI, and CMID were studied. The results revealed a significant enhancement in antioxidant activity upon the introduction of cationic Schiff bases into CMI. Compared to commercially available antioxidant Vc, CMID demonstrated a broader range of antioxidant activities across the four antioxidant systems analyzed in this research. In particular, CMID containing quinoline (6QSCMI) exhibited the strongest hydroxyl radical scavenging activity, with a scavenging rate of 93.60 % at 1.6 mg mL-1. The CMID bearing imidazole (2MSCMI) was able to scavenge 100 % of the DPPH radical at 1.60 mg mL-1. Furthermore, cytotoxicity experiments showed that the products had good biocompatibility. These results are helpful for evaluating the feasibility of exploiting these products in the food, biomedical, and cosmetics industries.


Subject(s)
Antioxidants , Free Radical Scavengers , Inulin , Schiff Bases , Schiff Bases/chemistry , Inulin/chemistry , Inulin/chemical synthesis , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Cations/chemistry , Hydroxyl Radical/chemistry , Humans , Chemistry Techniques, Synthetic , Spectroscopy, Fourier Transform Infrared , Biphenyl Compounds/chemistry , Biphenyl Compounds/antagonists & inhibitors , Picrates
9.
Int J Biol Macromol ; 277(Pt 1): 134049, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038572

ABSTRACT

The structure, physicochemical and anti-freeze properties of natural deep eutectic solvent (NADES) composed of inulin and L-proline (molar ratio of 1:11) were investigated. Proton nuclear magnetic resonance (1H NMR), Fourier infrared spectroscopy (FTIR), and Raman spectroscopy revealed extensive hydrogen bonding in the pure NADES system, and the addition of water weakens the hydrogen bonding interactions between the components. The smaller transverse relaxation time (T2) represents the stronger hydrogen bond strength, and NADES+40 % H2O exhibited a large T2 (71.68 ms). When 10 % water was added, the viscosity decreased from 3620 mPa·s to 1777 mPa·s, but the conductivity increased to approximately twice the original value. Furthermore, adding 10 % water lowered the glass transition temperature (Tg) of NADES by 5.6 °C. NADES+10 % H2O exhibited favorable thermal stability and freezing resistance, as evidenced by the fact that approximately 82.61 % of the ice crystals area <200 µm2 after 30 min of crystallization. The changes in the structure, physicochemical, and anti-freezing properties of water-tailored NADES are expected to enable the design of novel antifreeze agents.


Subject(s)
Hydrogen Bonding , Inulin , Proline , Water , Water/chemistry , Inulin/chemistry , Proline/chemistry , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , Viscosity , Freezing , Chemical Phenomena , Crystallization , Transition Temperature
10.
Langmuir ; 40(25): 12939-12953, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38861462

ABSTRACT

In this study, magnetic inulin/Mg-Zn-Al layered double hydroxide (MILDH) was synthesized for the adsorption of ciprofloxacin. The application of various analytical techniques confirmed the successful formation of MILDH. For the optimization of controllable factors, Taguchi design was applied and optimum values were obtained as equilibrium time─100 min, adsorbent dose─20 mg, and ciprofloxacin concentration─30 mg/L. The highest capacity of the material was recorded as 196.19 mg/g at 298 K. Langmuir model (R2 = 0.9669-0.9832) fitted best as compared to the Freundlich model (R2 = 0.9588-0.9657), concluded the monolayer adsorption of ciprofloxacin on MILDH. Statistical physics model M 2 was found to fit best to measured data (R2 = 0.9982-0.9989), indicating that the binding of ciprofloxacin took place on two types of receptor sites (n1 and n2). The multidocking mechanism with horizontal position was suggested on the first receptor site (n1 < 1), while multimolecular adsorption of ciprofloxacin lying vertically on the second receptor site (n2 > 1) at all temperatures. The adsorption energies (E1 = 22.79-27.20 kJ/mol; E2 = 18.00-19.46 kJ/mol) illustrated that the adsorption of ciprofloxacin onto MILDH occurred through physical forces. Best fitting of the fractal-like pseudo-first-order kinetic model (R2 = 0.9982-0.9992) indicated that the adsorption of ciprofloxacin happened on the MILDH surface having different energies. X-ray photoelectron spectroscopy analysis further confirmed the adsorption mechanism of ciprofloxacin onto MILDH.


Subject(s)
Ciprofloxacin , Inulin , Zinc , Ciprofloxacin/chemistry , Adsorption , Inulin/chemistry , Zinc/chemistry , Hydroxides/chemistry , Magnesium/chemistry , Aluminum/chemistry , Kinetics , Surface Properties
11.
Carbohydr Polym ; 340: 122311, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38858027

ABSTRACT

Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.


Subject(s)
Biocompatible Materials , Inulin , Neoplasms , Inulin/chemistry , Inulin/pharmacology , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Immunotherapy/methods
12.
Food Chem ; 453: 139597, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788653

ABSTRACT

Fructansucrases produce fructans by polymerizing the fructose moiety released from sucrose. Here, we describe the recombinant expression and characterization of a unique fructansucrase from Lactiplantibacillus plantarum DKL3 that showed low sequence similarity with previously characterized fructansucrases. The optimum pH and temperature of fructansucrase were found to be 4.0 and 35 °C, respectively. Enzyme activity increased in presence of Ca2+ and distinctly in presence of Mn2+. The enzyme was characterized as an inulosucrase (LpInu), based on the production of an inulin-type fructan as assessed byNMR spectroscopy and methylation analysis. In addition to ß-2,1-linkages, the inulin contained a few ß-2,1,6-linked branchpoints. High-performance size exclusion chromatography with refractive index detection (HPSEC-RI) revealed the production of inulin with a lower molecular weight compared to other characterized bacterial inulin. LpInu and its inulin product represent novel candidates to be explored for possible food and biomedical applications.


Subject(s)
Bacterial Proteins , Hexosyltransferases , Inulin , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Hexosyltransferases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Inulin/chemistry , Inulin/metabolism , Hydrogen-Ion Concentration , Temperature , Enzyme Stability , Molecular Weight , Lactobacillaceae/enzymology , Lactobacillaceae/genetics , Lactobacillaceae/metabolism , Lactobacillaceae/chemistry
13.
J Microbiol Biotechnol ; 34(5): 1051-1058, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38803106

ABSTRACT

This study investigated the impact of inulin (INL) on viability of L. plantarum D-2 (LPD2) by encapsulation through spray drying (SD) and its commercialization potential to alternative of conventional wall material maltodextrin (MD). LPD2, derived from sea tangle (Saccharina japonica) kimchi, is probiotics exhibiting significant attributes like cholesterol reduction, antioxidant properties, and resilience to acidic and bile environments. To enhance storage viability and stability of LPD2, encapsulation was applied by SD technology. The optimum encapsulation condition with MD was 10% MD concentration (MD10) and inlet temperature (96°C). The optimum concentration ratio of MD and INL was 7:3 (INL3) for alternative of MD with similar encapsulation yield and viability of LPD2. Viability of LPD2 with INL3 exhibited almost 8% higher than that with MD10 after 50 days storage at 25°C. Physicochemical characteristics of the encapsulated LPD2 (ELPD2) with MD10 and INL3 had no significant different between flowability and morphology. But, ELPD2 with INL3 had lower water solubility and higher water absorption resulting in extension of viability of LPD2 compared to that with MD10. The comprehensive study results showed that there was no significant difference in the encapsulation yield and physicochemical properties between ELPD2 with MD10 and INL3, except of water solubility index (WSI) and water absorption index (WAI). INL have the potential to substitute of MD as a commercial wall material with prebiotic functionality to enhance the viability of LPD2 by encapsulation.


Subject(s)
Inulin , Lactobacillus plantarum , Microbial Viability , Polysaccharides , Prebiotics , Spray Drying , Inulin/chemistry , Inulin/pharmacology , Polysaccharides/chemistry , Microbial Viability/drug effects , Lactobacillus plantarum/growth & development , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/chemistry , Probiotics , Temperature , Desiccation/methods , Solubility
14.
Int J Biol Macromol ; 271(Pt 1): 132224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821807

ABSTRACT

Pickering emulsions seem to be an effective strategy for encapsulation and stabilization of essential oils. In this work, a novel raspberry-liked Pickering emulsion (RPE) loading Mosla chinensis 'Jiangxiangru' essential oil (MJO) was successfully engineered by using ethyl lauroyl arginate (ELA) decorated nanosilica (ELA-NS) as particles emulsifier. And the ELA-NS-stabilized MJO Pickering emulsion (MJO-RPE) was further prepared into inulin-based microparticles (MJO-RPE-IMP) by spray-drying, using inulin as matrix formers. The concentration of ELA-NS could affect the formation and stabilization of MJO-RPE, and the colloidal behavior of ELA-NS could be modulated at the interfaces with concentration of ELA, thus providing unique role on stabilization of MJO-RPE. The results indicated that the MJO-RPE stabilized ELA-NS with 2 % NS modified by 0.1 % ELA had long-term stability. MJO-RPE exhibited a raspberry-liked morphology on the surface, attributed to ELA-NS covered in the droplet surface. The inulin-based matrix formers could effectively prevent MJO-RPE from agglomeration or destruction during spray-drying, and 100 % concentration of inulin based microparticles formed large composite particles with high loading capacity (98.54 ± 1.11 %) and exhibited superior thermal stability and redispersibility of MJO-RPE. The MJO-RPE exhibited strong antibacterial efficacy against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa), owing to the adhesion to bacterial membrane dependent on the raspberry-liked surface of MJO-RPE, whose minimum inhibitory concentration (MIC) of the above three bacteria were (0.3, 0.45, and 1.2 µL/mL), respectively, lower than those (0.45, 0.6 and 1.2 µL/mL) of MJO. Therefore, the Pickering emulsion composite microparticles seemed to be a promising strategy for enhancing the stability and antibacterial activity of MJO.


Subject(s)
Anti-Bacterial Agents , Emulsions , Inulin , Oils, Volatile , Inulin/chemistry , Inulin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Particle Size , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Escherichia coli/drug effects
15.
Int J Biol Macromol ; 270(Pt 2): 132232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734349

ABSTRACT

High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.


Subject(s)
Anti-Obesity Agents , Gastrointestinal Microbiome , Inulin , Obesity , Solubility , Tannins , Inulin/chemistry , Inulin/pharmacology , Tannins/chemistry , Tannins/pharmacology , Animals , Mice , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/chemistry , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Polymerization , Diospyros/chemistry , Male , Diet, High-Fat/adverse effects , Polyphenols/chemistry , Polyphenols/pharmacology
16.
J Microencapsul ; 41(5): 360-374, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38804967

ABSTRACT

Aim: To prepare sweet tea extract microcapsules (STEMs) via a spray-drying by applying different wall material formulations with maltodextrin (MD), inulin (IN), and gum arabic (GA). Methods: The microcapsules were characterised by yield, encapsulation efficiency (EE), particle size, sensory evaluation, morphology, attenuated total reflectance-Fourier transform infra-red spectroscopy and in vitro digestion studies. Results: The encapsulation improved the physicochemical properties and bioactivity stability of sweet tea extract (STE). MD5IN5 had the highest yield (56.33 ± 0.06% w/w) and the best EE (e.g. 88.84 ± 0.36% w/w of total flavonoids). MD9GA1 obtained the smallest particle size (642.13 ± 4.12 nm). MD9GA1 exhibited the highest retention of bioactive components, inhibition of α-glucosidase (96.85 ± 0.55%), α-amylase (57.58 ± 0.99%), angiotensin-converting enzyme (56.88 ± 2.20%), and the best antioxidant activity during in vitro gastrointestinal digestion. Conclusion: The encapsulation of STE can be an appropriate way for the valorisation of STE with improved properties.


Subject(s)
Antioxidants , Capsules , Gum Arabic , Inulin , Plant Extracts , Polysaccharides , Tea , Polysaccharides/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Inulin/chemistry , Tea/chemistry , Gum Arabic/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/administration & dosage , alpha-Amylases/chemistry , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Particle Size , Humans , alpha-Glucosidases/chemistry
17.
Sci Rep ; 14(1): 11291, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760355

ABSTRACT

In the current study, we utilized molecular modeling and simulation approaches to define putative potential molecular targets for Burdock Inulin, including inflammatory proteins such as iNOS, COX-2, TNF-alpha, IL-6, and IL-1ß. Molecular docking results revealed potential interactions and good binding affinity for these targets; however, IL-1ß, COX-2, and iNOS were identified as the best targets for Inulin. Molecular simulation-based stability assessment demonstrated that inulin could primarily target iNOS and may also supplementarily target COX-2 and IL-1ß during DSS-induced colitis to reduce the role of these inflammatory mechanisms. Furthermore, residual flexibility, hydrogen bonding, and structural packing were reported with uniform trajectories, showing no significant perturbation throughout the simulation. The protein motions within the simulation trajectories were clustered using principal component analysis (PCA). The IL-1ß-Inulin complex, approximately 70% of the total motion was attributed to the first three eigenvectors, while the remaining motion was contributed by the remaining eigenvectors. In contrast, for the COX2-Inulin complex, 75% of the total motion was attributed to the eigenvectors. Furthermore, in the iNOS-Inulin complex, the first three eigenvectors contributed to 60% of the total motion. Furthermore, the iNOS-Inulin complex contributed 60% to the total motion through the first three eigenvectors. To explore thermodynamically favorable changes upon mutation, motion mode analysis was carried out. The Free Energy Landscape (FEL) results demonstrated that the IL-1ß-Inulin achieved a single conformation with the lowest energy, while COX2-Inulin and iNOS-Inulin exhibited two lowest-energy conformations each. IL-1ß-Inulin and COX2-Inulin displayed total binding free energies of - 27.76 kcal/mol and - 37.78 kcal/mol, respectively, while iNOS-Inulin demonstrated the best binding free energy results at - 45.89 kcal/mol. This indicates a stronger pharmacological potential of iNOS than the other two complexes. Thus, further experiments are needed to use inulin to target iNOS and reduce DSS-induced colitis and other autoimmune diseases.


Subject(s)
Cyclooxygenase 2 , Interleukin-1beta , Inulin , Molecular Docking Simulation , Nitric Oxide Synthase Type II , Inulin/chemistry , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/chemistry , Interleukin-1beta/metabolism , Animals , Molecular Dynamics Simulation , Colitis/chemically induced , Colitis/metabolism , Colitis/prevention & control , Protein Binding , Hydrogen Bonding , Mice , Models, Molecular , Tumor Necrosis Factor-alpha/metabolism
18.
Food Res Int ; 187: 114432, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763680

ABSTRACT

Probiotics are subjected to various edible coatings, especially proteins and polysaccharides, which serve as the predominant wall materials, with ultrasound, a sustainable green technology. Herein, sodium caseinate, inulin, and soy protein isolate composites were produced using multi-frequency ultrasound and utilized to encapsulateLactiplantibacillus plantarumto enhance its storage, thermal, and gastrointestinal viability. The physicochemical analyses revealed that the composites with 5 % soy protein isolate treated with ultrasound at 50 kHz exhibited enough repulsion forces to maintain stability, pH resistance, and the ability to encapsulate larger particles and possessed the highest encapsulation efficiency (95.95 %). The structural analyses showed changes in the composite structure at CC, CH, CO, and amino acid residual levels. Rheology, texture, and water-holding capacity demonstrated the production of soft hydrogels with mild chewing and gummy properties, carried the microcapsules without coagulation or sedimentation. Moreover, the viability attributes ofL. plantarumevinced superior encapsulation, protecting them for at least eight weeks and against heat (63 °C), reactive oxidative species (H2O2), and GI conditions.


Subject(s)
Carboxymethylcellulose Sodium , Caseins , Hydrogels , Inulin , Probiotics , Soybean Proteins , Soybean Proteins/chemistry , Hydrogels/chemistry , Caseins/chemistry , Carboxymethylcellulose Sodium/chemistry , Inulin/chemistry , Inulin/pharmacology , Lactobacillus plantarum/metabolism , Rheology , Hydrogen-Ion Concentration , Microbial Viability , Capsules
19.
J Ethnopharmacol ; 329: 118149, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38580188

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Calcium oxalate crystals play a key role in the development and recurrence of kidney stones (also known as urolithiasis); thus, inhibiting the formation of these crystals is a central focus of urolithiasis prevention and treatment. Previously, we reported the noteworthy in vitro inhibitory effects of Aspidopterys obcordata fructo oligosaccharide (AOFOS), an active polysaccharide of the traditional Dai medicine Aspidopterys obcordata Hemsl. (commonly known as Hei Gai Guan), on the growth of calcium oxalate crystals. AIM OF THE STUDY: To investigated the effectiveness and mechanism of AOFOS in treating kidney stones. MATERIALS AND METHODS: A kidney stones rats model was developed, followed by examining AOFOS transport dynamics and effectiveness in live rats. Additionally, a correlation between the polysaccharide and calcium oxalate crystals was studied by combining crystallization experiments with density functional theory calculations. RESULTS: The results showed that the polysaccharide was transported to the urinary system. Furthermore, their accumulation was inhibited by controlling their crystallization and modulating calcium ion and oxalate properties in the urine. Consequently, this approach helped effectively prevent kidney stone formation in the rats. CONCLUSIONS: The present study emphasized the role of the polysaccharide AOFOS in modulating crystal properties and controlling crystal growth, providing valuable insights into their potential therapeutic use in managing kidney stone formation.


Subject(s)
Calcium Oxalate , Crystallization , Kidney Calculi , Animals , Calcium Oxalate/chemistry , Calcium Oxalate/metabolism , Male , Rats , Kidney Calculi/prevention & control , Kidney Calculi/drug therapy , Rats, Sprague-Dawley , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Urolithiasis/drug therapy , Urolithiasis/prevention & control , Disease Models, Animal , Inulin/chemistry , Inulin/pharmacology
20.
Int J Biol Macromol ; 267(Pt 2): 131656, 2024 May.
Article in English | MEDLINE | ID: mdl-38636749

ABSTRACT

The gut microbiota plays a significant role in the pathogenesis and remission of inflammatory bowel disease. However, conventional antibiotic therapies may alter microbial ecology and lead to dysbiosis of the gut microbiome, which greatly limits therapeutic efficacy. To address this challenge, novel nanomicelles that couple inulin with levofloxacin via disulfide bonds for the treatment of salmonellosis were developed in this study. Owing to their H2S-responsiveness, the nanomicelles can target the inflamed colon and rapidly release levofloxacin to selectively fight against enteric pathogens. Moreover, the embedded inulin can serve as prebiotic fiber to increase the amount of Bifidobacteria and Lactobacilli in mice with salmonellosis, thus maintaining the intestinal mechanical barrier and regulating the balance of the intestinal flora. Therefore, multifunctional nanomicelles had a better curative effect than pure levofloxacin on ameliorating inflammation in vivo. The pathogen-targeted glycovesicle represents a promising drug delivery platform to maximize the efficacy of antibacterial drugs for the treatment of inflammatory bowel disease.


Subject(s)
Anti-Bacterial Agents , Gastrointestinal Microbiome , Inulin , Salmonella Infections , Animals , Inulin/pharmacology , Inulin/chemistry , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salmonella Infections/drug therapy , Salmonella Infections/microbiology , Gastrointestinal Microbiome/drug effects , Drug Delivery Systems , Levofloxacin/pharmacology , Micelles , Drug Carriers/chemistry , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL