Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.564
Filter
1.
PLoS One ; 19(9): e0311046, 2024.
Article in English | MEDLINE | ID: mdl-39321180

ABSTRACT

Carboxylic ionophores are polyether antibiotics used in production animals as feed additives, with a wide range of benefits. However, ionophore toxicosis often occurs as a result of food mixing errors or extra-label use and primarily targets the cardiac and skeletal muscles of livestock. The ultrastructural changes induced by 48 hours of exposure to 0.1 µM monensin, salinomycin, and lasalocid in cardiac (H9c2) and skeletal (L6) myoblasts in vitro were investigated using transmission electron microscopy and scanning electron microscopy. Ionophore exposure resulted in condensed mitochondria, dilated Golgi apparatus, and cytoplasmic vacuolization which appeared as indentations on the myoblast surface. Ultrastructurally, it appears that both apoptotic and necrotic myoblasts were present after exposure to the ionophores. Apoptotic myoblasts contained condensed chromatin and apoptotic bodies budding from their surface. Necrotic myoblasts had disrupted plasma membranes and damaged cytoplasmic organelles. Of the three ionophores, monensin induced the most alterations in myoblasts of both cell lines.


Subject(s)
Ionophores , Lasalocid , Monensin , Myoblasts, Cardiac , Myoblasts, Skeletal , Pyrans , Monensin/pharmacology , Pyrans/pharmacology , Animals , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/ultrastructure , Myoblasts, Skeletal/metabolism , Lasalocid/toxicity , Cell Line , Ionophores/pharmacology , Myoblasts, Cardiac/drug effects , Myoblasts, Cardiac/ultrastructure , Myoblasts, Cardiac/metabolism , Rats , Apoptosis/drug effects , Necrosis/chemically induced , Microscopy, Electron, Transmission , Microscopy, Electron, Scanning , Polyether Polyketides
2.
mBio ; 15(9): e0057824, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39133006

ABSTRACT

Lugdunin is a microbiome-derived antibacterial agent with good activity against Gram-positive pathogens in vitro and in animal models of nose colonization and skin infection. We have previously shown that lugdunin depletes bacterial energy resources by dissipating the membrane potential of Staphylococcus aureus. Here, we explored the mechanism of action of lugdunin in more detail and show that lugdunin quickly depolarizes cytoplasmic membranes of different bacterial species and acidifies the cytoplasm of S. aureus within minutes due to protonophore activity. Varying the salt species and concentrations in buffers revealed that not only protons are transported, and we demonstrate the binding of the monovalent cations K+, Na+, and Li+ to lugdunin. By comparing known ionophores with various ion transport mechanisms, we conclude that the ion selectivity of lugdunin largely resembles that of 15-mer linear peptide gramicidin A. Direct interference with the main bacterial metabolic pathways including DNA, RNA, protein, and cell wall biosyntheses can be excluded. The previously observed synergism of lugdunin with dermcidin-derived peptides such as DCD-1 in killing S. aureus is mechanistically based on potentiated membrane depolarization. We also found that lugdunin was active against certain eukaryotic cells, however strongly depending on the cell line and growth conditions. While adherent lung epithelial cell lines were almost unaffected, more sensitive cells showed dissipation of the mitochondrial membrane potential. Lugdunin seems specifically adapted to its natural environment in the respiratory tract. The ionophore mechanism is refractory to resistance development and benefits from synergy with host-derived antimicrobial peptides. IMPORTANCE: The vast majority of antimicrobial peptides produced by members of the microbiome target the bacterial cell envelope by many different mechanisms. These compounds and their producers have evolved side-by-side with their host and were constantly challenged by the host's immune system. These molecules are optimized to be well tolerated at their physiological site of production, and their modes of action have proven efficient in vivo. Imbalancing the cellular ion homeostasis is a prominent mechanism among antibacterial natural products. For instance, over 120 naturally occurring polyether ionophores are known to date, and antimicrobial peptides with ionophore activity have also been detected in microbiomes. In this study, we elucidated the mechanism underlying the membrane potential-dissipating activity of the thiazolidine-containing cycloheptapeptide lugdunin, the first member of the fibupeptides discovered in a commensal bacterium from the human nose, which is a promising future probiotic candidate that is not prone to resistance development.


Subject(s)
Anti-Bacterial Agents , Ionophores , Microbiota , Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Cations/pharmacology , Cations/metabolism , Drug Synergism , Ionophores/pharmacology , Lipopeptides/pharmacology , Lipopeptides/metabolism , Microbial Sensitivity Tests , Microbiota/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism
3.
Chem Commun (Camb) ; 60(64): 8419-8422, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39028297

ABSTRACT

Light and pH dual-responsive ion transporters offer better applicability for cancer due to higher tunability and low cytotoxicity. Herein, we demonstrate the development of pH-responsive ß-carboline-based ionophores and photocleavable-linker appended ß-carboline-based proionophores to facilitate the controlled transport of Cl- across membranes, leading to apoptotic and autophagic cancer cell death.


Subject(s)
Carbolines , Light , Carbolines/chemistry , Carbolines/pharmacology , Humans , Hydrogen-Ion Concentration , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ion Transport/drug effects , Cell Line, Tumor , Molecular Structure , Ionophores/chemistry , Ionophores/pharmacology , Drug Screening Assays, Antitumor
4.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673887

ABSTRACT

Zinc is an essential trace element that plays a crucial role in T cell immunity. During T cell activation, zinc is not only structurally important, but zinc signals can also act as a second messenger. This research investigates zinc signals in T cell activation and their function in T helper cell 1 differentiation. For this purpose, peripheral blood mononuclear cells were activated via the T cell receptor-CD3 complex, and via CD28 as a costimulatory signal. Fast and long-term changes in intracellular zinc and calcium were monitored by flow cytometry. Further, interferon (IFN)-γ was analyzed to investigate the differentiation into T helper 1 cells. We show that fast zinc fluxes are induced via CD3. Also, the intracellular zinc concentration dramatically increases 72 h after anti-CD3 and anti-CD28 stimulation, which goes along with the high release of IFN-γ. Interestingly, we found that zinc signals can function as a costimulatory signal for T helper cell 1 differentiation when T cells are activated only via CD3. These results demonstrate the importance of zinc signaling alongside calcium signaling in T cell differentiation.


Subject(s)
CD28 Antigens , Cell Differentiation , Interferon-gamma , Lymphocyte Activation , Pyridines , Thiones , Zinc , Humans , Calcium/metabolism , CD28 Antigens/agonists , CD28 Antigens/metabolism , CD3 Complex/metabolism , Cell Differentiation/drug effects , Interferon-gamma/metabolism , Ionophores/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Signal Transduction/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Th1 Cells/immunology , Th1 Cells/metabolism , Th1 Cells/drug effects , Zinc/metabolism , Zinc/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Thiones/chemistry , Thiones/pharmacology
5.
ACS Chem Neurosci ; 15(9): 1755-1769, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38602894

ABSTRACT

Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.


Subject(s)
Brain-Derived Neurotrophic Factor , Copper , Nerve Growth Factor , Peptides, Cyclic , Vascular Endothelial Growth Factor A , PC12 Cells , Animals , Rats , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Copper/metabolism , Copper/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Signal Transduction/drug effects , Signal Transduction/physiology , Ionophores/pharmacology , Cation Transport Proteins/metabolism , Receptor, trkA/metabolism
6.
J Agric Food Chem ; 72(18): 10640-10654, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38661066

ABSTRACT

Coronaviruses have consistently posed a major global concern in the field of livestock industry and public health. However, there is currently a lack of efficient drugs with broad-spectrum antiviral activity to address the challenges presented by emerging mutated strains or drug resistance. Additionally, the method for identifying multitarget drugs is also insufficient. Aminopeptidase N (APN) and 3C-like proteinase (3CLpro) represent promising targets for host-directed and virus-directed strategies, respectively, in the development of effective drugs against various coronaviruses. In this study, maduramycin ammonium demonstrated a broad-spectrum antiviral effect by targeting both of the proteins. The binding domains 4 Å from the ligand of both target proteins shared a structural similarity, suggesting that screening and designing drugs based on these domains might exhibit broad-spectrum and highly effective antiviral activity. Furthermore, it was identified that the polyether ionophores' ability to carry zinc ion might be one of the reasons why they were able to target APN and exhibit antiviral effect. The findings of this experiment provide novel perspectives for future drug screening and design, while also offering valuable references for the utilization of polyether ionophores in the management of livestock health.


Subject(s)
Antiviral Agents , CD13 Antigens , Ionophores , Livestock , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Ionophores/pharmacology , Ionophores/chemistry , CD13 Antigens/metabolism , CD13 Antigens/chemistry , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Veterinary Drugs/pharmacology , Veterinary Drugs/chemistry , Coronavirus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyether Polyketides
7.
Res Vet Sci ; 172: 105249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579633

ABSTRACT

The effect of salinomycin sodium alone and in combination with functional oils on performance and microbiota of broiler infected Eimeria were evaluated. 512 broilers were randomly assigned to 4 treatments (8 replicates, 16 birds/pen): a Control group (any additives); Ionophore group: salinomycin supplementation at 66 ppm (SS66); Ionophore +0.075% Functional oil (FO) group (SS66 + FO supplementation at 750 ppm); and Ionophore +0.10% FO group (SS66 + FO supplementation at 1000 ppm). At 14 days of age, birds were gavaged with 1 mL of a saline solution containing sporulated oocysts of E. tenella, E. acervulina and E. maxima. Performance indices were measured weekly. At 28 days, intestinal content was collected for microbiota analysis. Broilers of Control group presented the worst performance indices. Broilers of Ionophore + FO (0.075% and 0.10%) groups exhibited a higher BW at 28 days of age. The supplementation of Ionophore +0.075% FO resulted in a higher relative proportion of Firmicutes and a lower proportion of Actinobacteria in the ileum-jejunum. Lactobacillaceae was the dominant family in the jejunal, and ileal microbiotas of broilers fed diets supplemented with Ionophore, Ionophore +0.075% FO and Ionophore +0.10% FO. The supplementation of ionophore yielded higher numbers of Lactobacillaceae, Enterobactereaceae and Cloritridiaceae in the cecal. Ionophore associated with FO controlled the Lactobacillaceae, Enterobactereaceae and Cloritridiaceae families present in the cecum. Therefore, the combination of salinomycin with functional oil showed synergistic effect on performance and modulation of intestinal microbiota of broilers challenged with Eimeria.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet , Dietary Supplements , Eimeria , Gastrointestinal Microbiome , Polyether Polyketides , Poultry Diseases , Pyrans , Animals , Chickens/growth & development , Pyrans/pharmacology , Pyrans/administration & dosage , Coccidiosis/veterinary , Coccidiosis/drug therapy , Coccidiosis/parasitology , Gastrointestinal Microbiome/drug effects , Eimeria/drug effects , Poultry Diseases/parasitology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Animal Feed/analysis , Diet/veterinary , Random Allocation , Ionophores/pharmacology , Ionophores/administration & dosage , Coccidiostats/pharmacology , Coccidiostats/administration & dosage , Male
8.
Sci Adv ; 10(12): eadl4018, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517966

ABSTRACT

In a phenotypical screen of 56 acute myeloid leukemia (AML) patient samples and using a library of 10,000 compounds, we identified a hit with increased sensitivity toward SF3B1-mutated and adverse risk AMLs. Through structure-activity relationship studies, this hit was optimized into a potent, specific, and nongenotoxic molecule called UM4118. We demonstrated that UM4118 acts as a copper ionophore that initiates a mitochondrial-based noncanonical form of cell death known as cuproptosis. CRISPR-Cas9 loss-of-function screen further revealed that iron-sulfur cluster (ISC) deficiency enhances copper-mediated cell death. Specifically, we found that loss of the mitochondrial ISC transporter ABCB7 is synthetic lethal to UM4118. ABCB7 is misspliced and down-regulated in SF3B1-mutated leukemia, creating a vulnerability to copper ionophores. Accordingly, ABCB7 overexpression partially rescued SF3B1-mutated cells to copper overload. Together, our work provides mechanistic insights that link ISC deficiency to cuproptosis, as exemplified by the high sensitivity of SF3B1-mutated AMLs. We thus propose SF3B1 mutations as a biomarker for future copper ionophore-based therapies.


Subject(s)
Copper , Leukemia, Myeloid, Acute , Humans , Copper/metabolism , RNA Splicing Factors/genetics , Mutation , Leukemia, Myeloid, Acute/genetics , Ionophores/pharmacology , Phosphoproteins/metabolism
9.
Free Radic Biol Med ; 216: 33-45, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479632

ABSTRACT

NADPH oxidase is a target of hyperglycemia in type 2 diabetes mellitus (T2DM), which causes dysregulation of enzyme. Alterations in regulation of NADPH oxidase activity mediated receptor and non-receptor signaling in bone marrow granulocytes of mice with obesity-induced T2DM were studied. The animals fed high fat diet (516 kcal/100 g) for 16 weeks. NADPH oxidase-related generation of reactive species (RS) at normo- and hyperthermia was estimated using chemiluminescent analysis. The redox status of the cells was assessed by Redox Sensor Red CC-1. Baseline biochemical indicators in blood (glucose, cholesterol, HDL and LDL levels) were significant higher in T2DM mice versus controls. Using specific inhibitors, signaling mediated by formyl peptide receptors (FPRs) to NADPH oxidase was shown to involve PLC, PKC, cytochrome p450 in both control and T2DM groups and PLA2 in controls. In T2DM regulation of NADPH oxidase activity via mFpr1, a high-affinity receptors, occurred with a significant increase of the role of PKC isoforms and suppression of PLA2 participation. Significant differences between this regulation via mFpr2, low-affinity receptors, were not found. Non-receptor activation of NADPH oxidase with ionomycin (Ca2+ ionophore) or phorbol ester (direct activator of PKC isoforms) did not revealed differences in the kinetic parameters between groups at 37 °C and 40 °C. When these agents were used together (synergistic effect), lower sensitivity of cells to ionophore was observed in T2DM at both temperatures. Redox status in responses to opsonized zymosan was higher in T2DM mice at 37 °C and similar to control levels at 40 °C. ROC-analysis identified Tmax, RS production and effect of opsonized zymosan as the most significant predictors for discriminating between groups. It was concluded that Ca2+-dependent/PKC-mediated regulation of NADPH oxidase activity was altered in BM granulocytes from diabetic mice.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Mice , Animals , Zymosan/pharmacology , Granulocytes , NADPH Oxidases/genetics , Protein Isoforms , Ionophores/pharmacology , Phospholipases A2 , Obesity/complications , Reactive Oxygen Species/pharmacology
10.
Sci Rep ; 14(1): 1802, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245618

ABSTRACT

Artemisinin combination therapy remains effective for the treatment of falciparum malaria. However, Plasmodium falciparum can escape the effects of artemisinin by arresting their growth. The growth-arrested parasites cannot be distinguished from nonviable parasites with standard microscopy techniques due to their morphological similarities. Here, we demonstrated the efficacy of a new laboratory assay that is compatible with the artemisinin susceptibility test. As a result of the differential cell permeabilities of two DNA-binding fluorophores, growth-arrested P. falciparum can be distinguished from parasites killed by artemisinin, since the latter lose cell membrane permeability. This fluorescence-based assay increased the sensitivity and specificity of the ring survival assay in the assessment of artemisinin susceptibility. When combined with a third fluorophore-conjugated anti-human leukocyte antibody, this trio fluorophore assay became more useful in identifying growth-arrested parasites in mock human blood samples. This novel assay is a simple and rapid technique for monitoring artemisinin resistance with greater sensitivity and accuracy compared with morphology-based observations under a light microscope.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Humans , Plasmodium falciparum , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Erythrocytes/parasitology , Ionophores/pharmacology , Drug Resistance
11.
mBio ; 15(2): e0315523, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38214510

ABSTRACT

Ionophores are antibacterial compounds that affect bacterial growth by changing intracellular concentrations of the essential cations, sodium and potassium. They are extensively used in animal husbandry to increase productivity and reduce infectious diseases, but our understanding of the potential for and effects of resistance development to ionophores is poorly known. Thus, given their widespread global usage, it is important to determine the potential negative consequences of ionophore use on human and animal health. In this study, we demonstrate that exposure to the ionophore monensin can select for resistant mutants in the human and animal pathogen Staphylococcus aureus, with a majority of the resistant mutants showing increased growth rates in vitro and/or in mice. Whole-genome sequencing and proteomic analysis of the resistant mutants show that the resistance phenotype is associated with de-repression of de novo purine synthesis, which could be achieved through mutations in different transcriptional regulators including mutations in the gene purR, the repressor of the purine de novo synthesis pathway. This study shows that mutants with reduced susceptibility to the ionophore monensin can be readily selected and highlights an unexplored link between ionophore resistance, purine metabolism, and fitness in pathogenic bacteria.IMPORTANCEThis study demonstrates a novel link between ionophore resistance, purine metabolism, and virulence/fitness in the key human and animal pathogen Staphylococcus aureus. The results show that mutants with reduced susceptibility to the commonly used ionophore monensin can be readily selected and that the reduced susceptibility observed is associated with an increased expression of the de novo purine synthesis pathway. This study increases our understanding of the impact of the use of animal feed additives on both human and veterinary medicine.


Subject(s)
Monensin , Staphylococcal Infections , Humans , Animals , Mice , Monensin/pharmacology , Virulence , Staphylococcus aureus , Proteomics , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Ionophores/pharmacology , Ionophores/metabolism , Purines
12.
Vet Clin North Am Equine Pract ; 40(1): 161-166, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37696707

ABSTRACT

Ionophores are a class of polyether antibiotics that are commonly used as anticoccidial agents and growth promotants in ruminant diets. Ionophores transport ions across lipid membranes and down concentration gradients, which results in mitochondrial destruction, reduced cellular energy production, and ultimately cell death. Cardiomyocytes are the primary target in equine patients when exposed to toxic concentrations and the clinical disease syndrome is related to myocardial damage. Animals can survive acute exposures but can have permanent heart damage that may result in acute death at future time points. Animals that survive a poisoning incident may live productive breeding lives, but physical performance can be greatly impacted. Animals with myocardial damage are at risk of sudden death and pose a risk to riders.


Subject(s)
Horse Diseases , Humans , Animals , Horses , Ionophores/pharmacology , Diet
13.
PLoS One ; 18(12): e0294297, 2023.
Article in English | MEDLINE | ID: mdl-38079440

ABSTRACT

A new form of cell death has recently been proposed involving copper-induced cell death, termed cuproptosis. This new form of cell death has been widely studied in relation to a novel class of copper ionophores, including elesclomol and disulfiram. However, the exact mechanism leading to cell death remains contentious. The oldest and most widely accepted biological mechanism is that the accumulated intracellular copper leads to excessive build-up of reactive oxygen species and that this is what ultimately leads to cell death. Most of this evidence is largely based on studies using N-acetylcysteine (NAC), an antioxidant, to relieve the oxidative stress and prevent cell death. However, here we have demonstrated using inductively coupled mass-spectrometry, that NAC pretreatment significantly reduces intracellular copper uptake triggered by the ionophores, elesclomol and disulfiram, suggesting that reduction in copper uptake, rather than the antioxidant activity of NAC, is responsible for the diminished cell death. We present further data showing that key mediators of reactive oxygen species are not upregulated in response to elesclomol treatment, and further that sensitivity of cancer cell lines to reactive oxygen species does not correlate with sensitivity to these copper ionophores. Our findings are in line with several recent studies proposing the mechanism of cuproptosis is instead via copper mediated aggregation of proteins, resulting in proteotoxic stress leading to cell death. Overall, it is vital to disseminate this key piece of information regarding NAC's activity on copper uptake since new research attributing the effect of NAC on copper ionophore activity to quenching of reactive oxygen species is being published regularly and our studies suggest their conclusions may be misleading.


Subject(s)
Acetylcysteine , Copper , Reactive Oxygen Species/metabolism , Acetylcysteine/pharmacology , Acetylcysteine/chemistry , Copper/chemistry , Disulfiram/pharmacology , Cell Death , Apoptosis , Antioxidants/pharmacology , Ionophores/pharmacology
14.
Trop Anim Health Prod ; 55(6): 391, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37919613

ABSTRACT

This study aimed to evaluate the effect of increasing levels of red propolis extract (RPE) in the diet of confined sheep on performance and histomorphometric parameters of rumen and intestine and histopathological parameters of liver and kidney. Thirty-five male sheep (17.08 ± 2.36 kg) were used, distributed in a completely randomized design, with five treatments (0, 7, 14, 21, and 28 mL day-1 RPE) and seven replications, submitted to 68 days of experiment. At the end of the experimental period, the animals were euthanized, and samples of rumen, intestine, liver, and kidney were collected to histomorphometry and histopathology analyzes. Higher RPE inclusions (21 and 28 mL day-1) maintained dry matter intake and increased total weight (5.78 x 6.14 and 6.95 kg, respectively) gain up to 20.24%. In the rumen, the inclusion of RPE led to an increase in the thickness of the epithelium and the highest level also increased the thickness of the keratinized portion of this epithelium (21.71 x 32.15 µm). The level of 21 mL day-1 provided larger ruminal papillae (1620.68 x 1641.70 µm) and greater ruminal absorption area (561791.43 x 698288.50 µm2). In intestine 21 and 28 mL-1 of RPE provided greater mucosal thickness (468.54 x 556.20 and 534.64 µm), higher goblet cell index (23.32 x 25.82 and 25.64) and higher hepatic glycogen index (1.47 x 1.64 and 1.62), supporting higher nutrients absortion and glicogenolise and intestinal health, corroborating the weight gain indices. The inclusion of RPE did not cause renal histopathological lesions. Therefore, levels of 21 and 28 mL day-1 of RPE can be used in sheep diets, promoting greater final weight gain, causing positive histomorphological changes in the rumen, intestine and liver, without causing kidney or liver damage.


Subject(s)
Propolis , Animals , Male , Animal Feed/analysis , Diet/veterinary , Digestion , Ionophores/pharmacology , Plant Extracts/pharmacology , Propolis/pharmacology , Rumen , Sheep , Weight Gain
15.
J Med Invest ; 70(3.4): 321-324, 2023.
Article in English | MEDLINE | ID: mdl-37940514

ABSTRACT

OBJECTIVE: The effects of oocyte activation with a Ca ionophore and roscovitine (Ca+R), a selective inhibitor of M-phase promoting factor, on unfertilized oocytes after intracytoplasmic sperm injection (ICSI) or testicular sperm extraction (TESE)-ICSI were evaluated. METHOD: Oocytes without pronuclei at 18 hours after ICSI were judged to be unfertilized and were exposed to the Ca ionophore A23187 (5 ?M) with or without roscovitine (50 ?M). The activation rate was measured 3, 7, and 18 hours later. Oocytes with two polar bodies and two pronuclei with a sperm tail were judged to have been activated. RESULTS: At 18 hours, the activation rates in the control, Ca ionophore, and Ca+R groups were 3.5% (4/112), 26.9% (7/26), and 32.1% (17/53), respectively. The activation rate of the Ca+R group was significantly higher than that of the control and similar to that of the Ca ionophore group. Among the oocytes that remained unfertilized after TESE-ICSI, the activation rates of the Ca ionophore and Ca+R groups were 22.2% (2/9) and 43.8% (7/16), respectively. CONCLUSIONS: Sequential treatment with an Ca ionophore and roscovitine activates oocytes that remain unfertilized after ICSI. In TESE-ICSI, the activation rate tended to be increased by the co-administration of roscovitine with a Ca ionophore. J. Med. Invest. 70 : 321-324, August, 2023.


Subject(s)
Semen , Sperm Injections, Intracytoplasmic , Humans , Male , Ionophores/pharmacology , Roscovitine/pharmacology , Oocytes/physiology
16.
J Biol Chem ; 299(11): 105286, 2023 11.
Article in English | MEDLINE | ID: mdl-37742925

ABSTRACT

The twin arginine translocation (Tat) pathway transports folded protein across the cytoplasmic membrane in bacteria, archaea, and across the thylakoid membrane in plants as well as the inner membrane in some mitochondria. In plant chloroplasts, the Tat pathway utilizes the protonmotive force (PMF) to drive protein translocation. However, in bacteria, it has been shown that Tat transport depends only on the transmembrane electrical potential (Δψ) component of PMF in vitro. To investigate the comprehensive PMF requirement in Escherichia coli, we have developed the first real-time assay to monitor Tat transport utilizing the NanoLuc Binary Technology in E. coli spheroplasts. This luminescence assay allows for continuous monitoring of Tat transport with high-resolution, making it possible to observe subtle changes in transport in response to different treatments. By applying the NanoLuc assay, we report that, under acidic conditions (pH = 6.3), ΔpH, in addition to Δψ, contributes energetically to Tat transport in vivo in E. coli spheroplasts. These results provide novel insight into the mechanism of energy utilization by the Tat pathway.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Twin-Arginine-Translocation System , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Protein Sorting Signals/physiology , Protein Transport/physiology , Proton-Motive Force , Luminescent Measurements , Bacteriological Techniques/instrumentation , Bacteriological Techniques/methods , Energy Metabolism , Spheroplasts/drug effects , Spheroplasts/metabolism , Ionophores/pharmacology
17.
Angew Chem Int Ed Engl ; 62(38): e202309080, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37497854

ABSTRACT

Transmission of chemical information between cells and across lipid bilayer membranes is of profound significance in many biological processes. The design of synthetic signalling systems is a critical step towards preparing artificial cells with collective behaviour. Here, we report the first example of a synthetic inter-vesicle signalling system, in which diffusible chemical signals trigger transmembrane ion transport in a manner reminiscent of signalling pathways in biology. The system is derived from novel ortho-nitrobenzyl and BODIPY photo-caged ZnII transporters, in which cation transport is triggered by photo-decaging with UV or red light, respectively. This decaging reaction can be used to trigger the release of the cationophores from a small population of sender vesicles. This in turn triggers the transport of ions across the membrane of a larger population of receiver vesicles, but not across the sender vesicle membrane, leading to overall inter-vesicle signal transduction and amplification.


Subject(s)
Lipid Bilayers , Zinc , Ionophores/pharmacology , Ionophores/metabolism , Biological Transport , Lipid Bilayers/metabolism , Signal Transduction
18.
Curr Microbiol ; 80(8): 273, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37414909

ABSTRACT

The emergence of SARS-CoV-2 and its variants have posed a significant threat to humankind in tackling the viral spread. Furthermore, currently repurposed drugs and frontline antiviral agents have failed to cure severe ongoing infections effectively. This insufficiency has fuelled research for potent and safe therapeutic agents to treat COVID-19. Nonetheless, various vaccine candidates have displayed a differential efficacy and need for repetitive dosing. The FDA-approved polyether ionophore veterinary antibiotic for treating coccidiosis has been repurposed for treating SARS-CoV-2 infection (as shown by both in vitro and in vivo studies) and other deadly human viruses. Based on selectivity index values, ionophores display therapeutic effects at sub-nanomolar concentrations and exhibit selective killing ability. They act on different viral targets (structural and non-structural proteins), host-cell components leading to SARS-CoV-2 inhibition, and their activity is further enhanced by Zn2+ supplementation. This review summarizes the anti-SARS-CoV-2 potential and molecular viral targets of selective ionophores like monensin, salinomycin, maduramicin, CP-80,219, nanchangmycin, narasin, X-206 and valinomycin. Ionophore combinations with Zn2+ are a new therapeutic strategy that warrants further investigation for possible human benefits.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Ionophores/pharmacology , Ionophores/therapeutic use , Drug Repositioning , Monensin/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
19.
Microbiol Spectr ; 11(4): e0062523, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37289074

ABSTRACT

Polyether ionophores are complex natural products known to transport various cations across biological membranes. While several members of this family are used in agriculture (e.g., as anti-coccidiostats) and have potent antibacterial activity, they are not currently being pursued as antibiotics for human use. Polyether ionophores are typically grouped as having similar functions, despite the fact that they significantly differ in structure; for this reason, how their structure and activity are related remains unclear. To determine whether certain members of the family constitute particularly interesting springboards for in-depth investigations and future synthetic optimization, we conducted a systematic comparative study of eight different polyether ionophores for their potential as antibiotics. This includes clinical isolates from bloodstream infections and studies of the compounds' effects on bacterial biofilms and persister cells. We uncover distinct differences within the compound class and identify the compounds lasalocid, calcimycin, and nanchangmycin as having particularly interesting activity profiles for further development. IMPORTANCE Polyether ionophores are complex natural products used in agriculture as anti-coccidiostats in poultry and as growth promoters in cattle, although their precise mechanism is not understood. They are widely regarded as antimicrobials against Gram-positive bacteria and protozoa, but fear of toxicity has so far prevented their use in humans. We show that ionophores generally have very different effects on Staphylococcus aureus, both in standard assays and in more complex systems such as bacterial biofilms and persister cell populations. This will allow us to focus on the most interesting compounds for future in-depth investigations and synthetic optimizations.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Animals , Cattle , Ionophores/pharmacology , Ionophores/chemistry , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Gram-Positive Bacteria , Biofilms , Microbial Sensitivity Tests
20.
J Antimicrob Chemother ; 78(9): 2121-2130, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37294561

ABSTRACT

In recent years, publications and debate have emerged in the scientific literature that have linked the use of ionophore coccidiostats, which are themselves not medically important and not related to any therapeutic antibiotics used in human and animal medicine, to resistance development to medically important antibiotics in Enterococcus faecium and Enterococcus faecalis, isolated from broilers and broiler meat. This has been based on the discovery of genes, now named NarAB, that appear to result in elevated MICs of the ionophores narasin, salinomycin and maduramycin and that these are linked to genes responsible for resistance to antibiotics that may be clinically relevant in human medicine. This article will seek to review the most significant publications in this regard and will also examine national antimicrobial resistance surveillance programmes in Norway, Sweden, Denmark and the Netherlands, in order to further evaluate this concern. The conclusion of the review is that the risk that enterococci may pass from broilers to humans and that antimicrobial resistance gene transfer may occur is negligible, remains unquantified and is highly unlikely to be of significance to human health. Indeed, to date no human nosocomial infections have been linked to poultry sources. Concurrently a review of the possible impact of a policy that limits access for poultry farmers and poultry veterinarians to ionophore coccidiostats in broilers indicates predictable negative consequences with regard to antibiotic resistance of significance to animal welfare and to human health.


Subject(s)
Coccidiostats , Enterococcus faecium , Animals , Humans , Chickens , Enterococcus faecalis , Ionophores/pharmacology , Anti-Bacterial Agents/pharmacology , Poultry , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL