Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.375
Filter
1.
Int Immunopharmacol ; 135: 112336, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38801809

ABSTRACT

IIrbesartan (IRB), an angiotensin II type 1 receptor (AT1R) antagonist, has been widely employed in the medical field for its effectiveness in managing hypertension. However, there have been no documented investigations regarding the immunostimulatory properties of IRB. To address this gap, this study has been performed to assess the neuroprotective impact of IRB as an immunostimulatory agent in mitigating acute neurotoxicity induced by cyclophosphamide (CYP) in rats. mRNA levels of nuclear factor erythroid 2 (Nrf-2), interleukin (IL)-18, IL-1ß, and MMP-1 have been assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the levels of malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) has been evaluated to assess the oxidative stress. Additionally, macrophage inflammatory protein 2 (MIP2) has been evaluated using enzyme-linked immunosorbent assay (ELISA). Western blotting has been used to investigate the protein expression of nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3) and caspase-1 (CASP-1), along with an assessment of histopathological changes. Administration of IRB protected against oxidative stress by augmenting the levels of GSH and SOD as well as reducing MDA level. Also, administration of IRB led to a diminishment in the brain levels of MIP2 and MMP1. Furthermore, it led to a suppression of IL-1ß and IL-18 levels, which are correlated with a reduction in the abundance of NLRP3 and subsequently CASP-1. This study provides new insights into the immunomodulatory effects of IRB in the context of CYP-induced acute neurotoxicity. Specifically, IRB exerts its effects by reducing oxidative stress, neuroinflammation, inhibiting chemokine recruitment, and mitigating neuronal degeneration through the modulation of immune markers. Therefore, it can be inferred that the use of IRB as an immunomodulator has the potential to effectively mitigate immune disorders associated with inflammation.


Subject(s)
Cyclophosphamide , Inflammasomes , Irbesartan , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Animals , Cyclophosphamide/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Irbesartan/pharmacology , Irbesartan/therapeutic use , Male , Rats , Oxidative Stress/drug effects , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/immunology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Signal Transduction/drug effects , Immunomodulation/drug effects , Rats, Wistar
2.
Microbes Infect ; 26(4): 105333, 2024.
Article in English | MEDLINE | ID: mdl-38570086

ABSTRACT

Cerebral malaria (CM) induced by Plasmodium falciparum is a devastating neurological complication that may lead the patient to coma and death. This study aimed to protect Plasmodium-infected C57BL6 mice from CM by targeting the angiotensin II type 1 (AT1) receptor, which is considered the common connecting link between hypertension and CM. In CM, AT-1 mediates blood-brain barrier (BBB) damage through the overexpression of ß-catenin. The AT-1-inhibiting drugs, such as irbesartan and losartan, were evaluated for the prevention of CM. The effectiveness of these drugs was determined by the down regulation of ß-catenin, TCF, LEF, ICAM-1, and VCAM-1 in the drug-treated groups. The expression levels of VE-cadherin and vinculin, essential for the maintenance of BBB integrity, were found to be restored in the drug-treated groups. The pro-inflammatory cytokine levels were decreased, and the anti-inflammatory cytokine levels increased with the treatment. As a major highlight, the mean survival time of treated mice was found to be increased even in the absence of treatment with an anti-malarial agent. The combination of irbesartan or losartan with the anti-malarial agent α/ß-arteether has contributed to an 80% cure rate, which is higher than the 60% cure rate observed with α/ß-arteether alone treatment.


Subject(s)
Disease Models, Animal , Irbesartan , Malaria, Cerebral , Mice, Inbred C57BL , Animals , Mice , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/parasitology , Blood-Brain Barrier/drug effects , Cytokines/metabolism , Irbesartan/pharmacology , Irbesartan/therapeutic use , Losartan/pharmacology , Losartan/therapeutic use , Malaria, Cerebral/drug therapy , Malaria, Cerebral/parasitology , Receptor, Angiotensin, Type 1/metabolism , Angiotensins/metabolism
3.
Xenobiotica ; 54(4): 211-216, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38591142

ABSTRACT

To uncover the effect of danshensu on irbesartan pharmacokinetics and its underlying mechanisms.To investigate the effect of danshensu on the pharmacokinetics of irbesartan, Sprague-Dawley rats (n = 6) were orally administered 30 mg/kg irbesartan alone (control group) or pre-treated with 160 mg/kg danshensu (experimental group). The effect of danshensu on the metabolic stability of irbesartan in RLMs was examined by LC-MS/MS method. The effect of danshensu on CYP2C9 activity was also determined.Danshensu markedly increased the AUC(0-t) (9573 ± 441 vs. 16157 ± 559 µg/L*h) and Cmax (821 ± 24 vs. 1231 ± 44 µg/L) of irbesartan. Danshensu prolonged the t1/2 (13.39 ± 0.98 vs. 16.04 ± 1.21 h) and decreased the clearance rate (2.27 ± 0.14 vs. 1.19 ± 0.10 L/h/kg) of irbesartan. Danshensu enhanced the metabolic stability of irbesartan in vitro with prolonged t1/2 (36.34 ± 11.68 vs. 48.62 ± 12.03 min) and reduced intrinsic clearance (38.14 ± 10.24 vs. 28.51 ± 9.06 µL/min/mg protein). Additionally, the IC50 value for CYP2C9 inhibition by danshensu was 35.74 µM.Danshensu enhanced systemic exposure of irbesartan by suppressing CYP2C9. The finding can also serve as a guidance for further investigation of danshensu-irbesartan interaction in clinical practice.


Subject(s)
Drug Interactions , Irbesartan , Lactates , Rats, Sprague-Dawley , Irbesartan/pharmacology , Animals , Lactates/metabolism , Rats , Cytochrome P-450 CYP2C9/metabolism , Male , Biphenyl Compounds , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Tandem Mass Spectrometry , Tetrazoles/pharmacokinetics , Tetrazoles/pharmacology
4.
Anal Methods ; 16(15): 2359-2367, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38567492

ABSTRACT

Sartans, as a class of antihypertensive drugs, pose a threat to human health when illegally added to herbal beverages. It is crucial to detect sartans in herbal beverages. We have developed a highly sensitive monoclonal antibody against candesartan (CAN), olmesartan medoxomil (OLM), and irbesartan (IRB), with 50% inhibitory concentrations (IC50) that were obtained via indirect enzyme-linked immunosorbent assay (ic-ELISA) as 0.178 ng mL-1, 0.185 ng mL-1, and 0.262 ng mL-1 against CAN, OLM, and IRB, respectively. Based on this monoclonal antibody, we developed a rapid screening method for CAN, OLM, and IRB in herbal beverage samples using an immunochromatographic assay (ICA) strip. Test for 15 minutes after simple and rapid sample pre-treatment and the results of this method can be obtained through naked eye observation. The detection limits (LODs) of the ICA strip for CAN, OLM, and IRB in herbal beverage samples are lower than 0.15 ng mL-1, and the results of the ICA strip and ic-ELISA are consistent in spiked samples and recovery experiments. Therefore, this method can quickly, efficiently, and reliably achieve high-throughput on-site rapid detection of illegally added CAN, OLM, and IRB in herbal beverages.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Benzimidazoles , Beverages , Biphenyl Compounds , Tetrazoles , Humans , Olmesartan Medoxomil , Irbesartan , Antibodies, Monoclonal/chemistry
5.
Aging (Albany NY) ; 16(6): 5065-5076, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38526331

ABSTRACT

Vascular cognitive impairment (VCI) is claimed as the second most common type of dementia after Alzheimer's disease (AD), in which hypertension is a critical inducer. Currently, hypertension-induced cognitive impairment lacks clinical treatments. Irbesartan is a long-acting angiotensin receptor antagonist with promising antihypertensive properties. Our research will focus on the potential function of Irbesartan on hypertension-induced cognitive impairment. Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats were orally dosed with normal saline or 20 mg/kg/day Irbesartan for 14 consecutive days, with 4 groups divided shown as below: WKY, Irbesartan, SHR, SHR+ Irbesartan. Firstly, the markedly increased systolic blood pressure observed in SHR rats was signally repressed by Irbesartan on Day 7 and 14 post-dosing. Moreover, notably decreased time of exploring the novel object in the object recognition task (ORT) test, elevated escape latency, and reduced time in the target quadrant in the Morris water maze (MWM) test were observed in SHR rats, which were prominently reversed by Irbesartan. Furthermore, the declined superoxide dismutase (SOD) activity, elevated malondialdehyde (MDA) level, increased cyclin-dependent kinase-5 (CDK5) activity, and enhanced protein level of p35/p25, p-Tau (pSer214)/Tau46, and brain-derived neurotrophic factor (BDNF) were memorably rescued by Irbesartan. Lastly, the activity of cAMP/cAMP response element binding protein (CREB) signaling in the hippocampus of SHR rats was markedly repressed, accompanied by an upregulation of phosphodiesterase 4B (PDE4B), which was observably rescued by Irbesartan. Collectively, Irbesartan protected against the hypertension-induced cognitive impairment in SHR rats by regulating the cAMP/CREB signaling.


Subject(s)
Cognitive Dysfunction , Hypertension , Rats , Animals , Irbesartan/pharmacology , Rats, Inbred SHR , Rats, Inbred WKY , Blood Pressure/physiology , Biphenyl Compounds/pharmacology , Tetrazoles/pharmacology , Tetrazoles/therapeutic use , Hypertension/complications , Hypertension/drug therapy , Hypertension/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology
6.
Int Immunopharmacol ; 131: 111844, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38503013

ABSTRACT

OBJECTIVES: Diabetic nephropathy (DN) is characterized by albuminuria and renal dysfunction caused by diabetes. At present there is no specific treatment for DN. Irbesartan (IRB) is an angiotensin receptor inhibitor indicated for the treatment of hypertension and DN. However, the underlying molecular mechanisms of IRB on DN remains obscure. METHODS: RAW264.7 macrophages were incubated in RPMI-1640, cell viability was evaluated by CCK-8 assays, transcriptional level of proinflammatory cytokines and was measured by ELISA and qPCR, NLRP3 inflammasome and Nrf2/Keap1 related proteins were measured by Western blotting and immunohistochemistry. Streptozotocin (STZ)-induced diabetic male C57BL/6 mice were used to evaluate the therapeutic effect of IRB on DN. Key findings First, we found that IRB improved high glucose-induced cell inflammation by inhibiting the transcription of IL-1ß and IL-18. IRB activated the Nrf2/Keap1 pathway and decreased the release of reactive oxygen species (ROS). IRB also suppressed the expression of NLRP3 and caspase-1. IRB combined with the N-acetylcysteine (NAC) significantly inhibited the activation of NLRP3 inflammasomes. Conversely, IRB combined with the Nrf2-related inhibitor ML385 enhanced NLRP3 inflammasome activation, suggesting that IRB suppressed NLRP3 inflammasome via the Nrf2 pathway. In vivo study, HE staining and immunohistochemistry analysis further showed that IRB ameliorated high glucose-induced renal injury by elevating the expression of the Nrf2/Keap1 signaling pathway and suppressing the proinflammatory cytokine and NLRP3 inflammasome activation. CONCLUSIONS: Our results suggested that IRB ameliorates diabetic nephropathy by activating the Nrf2/Keap1 pathway and suppressing the NLRP3 inflammasomes in vivo and in vitro. These findings provide new therapeutic strategies of diabetic nephropathy.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Male , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Irbesartan/therapeutic use , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Glucose
7.
JAMA Cardiol ; 9(5): 457-465, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38536153

ABSTRACT

Importance: Accurate risk prediction of morbidity and mortality in patients with heart failure with preserved ejection fraction (HFpEF) may help clinicians risk stratify and inform care decisions. Objective: To develop and validate a novel prediction model for clinical outcomes in patients with HFpEF using routinely collected variables and to compare it with a biomarker-driven approach. Design, Setting, and Participants: Data were used from the Dapagliflozin Evaluation to Improve the Lives of Patients With Preserved Ejection Fraction Heart Failure (DELIVER) trial to derive the prediction model, and data from the Angiotensin Receptor Neprilysin Inhibition in Heart Failure With Preserved Ejection Fraction (PARAGON-HF) and the Irbesartan in Heart Failure With Preserved Ejection Fraction Study (I-PRESERVE) trials were used to validate it. The outcomes were the composite of HF hospitalization (HFH) or cardiovascular death, cardiovascular death, and all-cause death. A total of 30 baseline candidate variables were selected in a stepwise fashion using multivariable analyses to create the models. Data were analyzed from January 2023 to June 2023. Exposures: Models to estimate the 1-year and 2-year risk of cardiovascular death or hospitalization for heart failure, cardiovascular death, and all-cause death. Results: Data from 6263 individuals in the DELIVER trial were used to derive the prediction model and data from 4796 individuals in the PARAGON-HF trial and 4128 individuals in the I-PRESERVE trial were used to validate it. The final prediction model for the composite outcome included 11 variables: N-terminal pro-brain natriuretic peptide (NT-proBNP) level, HFH within the past 6 months, creatinine level, diabetes, geographic region, HF duration, treatment with a sodium-glucose cotransporter 2 inhibitor, chronic obstructive pulmonary disease, transient ischemic attack/stroke, any previous HFH, and heart rate. This model showed good discrimination (C statistic at 1 year, 0.73; 95% CI, 0.71-0.75) in both validation cohorts (C statistic at 1 year, 0.71; 95% CI, 0.69-0.74 in PARAGON-HF and 0.75; 95% CI, 0.73-0.78 in I-PRESERVE) and calibration. The model showed similar discrimination to a biomarker-driven model including high-sensitivity cardiac troponin T and significantly better discrimination than the Meta-Analysis Global Group in Chronic (MAGGIC) risk score (C statistic at 1 year, 0.60; 95% CI, 0.58-0.63; delta C statistic, 0.13; 95% CI, 0.10-0.15; P < .001) and NT-proBNP level alone (C statistic at 1 year, 0.66; 95% CI, 0.64-0.68; delta C statistic, 0.07; 95% CI, 0.05-0.08; P < .001). Models derived for the prediction of all-cause and cardiovascular death also performed well. An online calculator was created to allow calculation of an individual's risk. Conclusions and Relevance: In this prognostic study, a robust prediction model for clinical outcomes in HFpEF was developed and validated using routinely collected variables. The model performed better than NT-proBNP level alone. The model may help clinicians to identify high-risk patients and guide treatment decisions in HFpEF.


Subject(s)
Heart Failure , Stroke Volume , Humans , Heart Failure/mortality , Heart Failure/physiopathology , Heart Failure/blood , Stroke Volume/physiology , Aged , Male , Female , Prognosis , Middle Aged , Hospitalization/statistics & numerical data , Peptide Fragments/blood , Risk Assessment/methods , Biomarkers/blood , Natriuretic Peptide, Brain/blood , Benzhydryl Compounds/therapeutic use , Irbesartan/therapeutic use , Morbidity/trends , Cause of Death/trends , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Troponin T/blood , Glucosides
11.
Int J Biol Macromol ; 266(Pt 1): 131175, 2024 May.
Article in English | MEDLINE | ID: mdl-38552696

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) significantly contributes to the high incidence of complications and mortality associated with acute myocardial infarction. Recently, injectable electroconductive hydrogels (IECHs) have emerged as promising tools for replicating the mechanical, electroconductive, and physiological characteristics of cardiac tissue. Herein, we aimed to develop a novel IECH by incorporating irbesartan as a drug delivery system (DDS) for cardiac repair. Our approach involved merging a conductive poly-thiophene derivative (PEDOT: PSS) with an injectable dual-network adhesive hydrogel (DNAH) comprising a catechol-branched polyacrylamide network and a chitosan-hyaluronic acid covalent network. The resulting P-DNAH hydrogel, benefitting from a high conducting polymer content, a chemically crosslinked network, a robust dissipative matrix, and dynamic oxidation of catechol to quinone exhibited superior mechanical strength, desirable conductivity, and robust wet-adhesiveness. In vitro experiments with the P-DNAH hydrogel carrying irbesartan (P-DNAH-I) demonstrated excellent biocompatibility by cck-8 kit on H9C2 cells and a rapid initial release of irbesartan. Upon injection into the infarcted hearts of MIRI mouse models, the P-DNAH-I hydrogel effectively inhibited the inflammatory response and reduced the infarct size. In conclusion, our results suggest that the P-DNAH hydrogel, possessing suitable mechanical properties and electroconductivity, serves as an ideal IECH for DDS, delivering irbesartan to promote heart repair.


Subject(s)
Acrylic Resins , Chitosan , Hydrogels , Myocardial Reperfusion Injury , Irbesartan/administration & dosage , Myocardial Reperfusion Injury/drug therapy , Chitosan/administration & dosage , Chitosan/chemistry , Acrylic Resins/administration & dosage , Acrylic Resins/chemistry , Hydrogels/administration & dosage , Hydrogels/chemistry , Hydrogels/toxicity , Electric Conductivity , Elasticity , Injections , Cell Line , Animals , Rats , Disease Models, Animal , Mice , Male , Mice, Inbred C57BL , Cell Survival/drug effects
12.
Water Res ; 253: 121299, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38387265

ABSTRACT

As the key stage for purifying wastewater, elimination of emerging contaminants (ECs) is found to be fairly low in wastewater treatment plants (WWTPs). However, less knowledge is obtained regarding the transformation pathways between various chemical structures of ECs under different treatment processes. This study unveiled the transformation pathways of ECs with different structures in 15 WWTPs distributed across China by simplified network analysis (SNA) we proposed. After treatment, the molecular weight of the whole component of wastewater decreased and the hydrophilicity increased. There are significant differences in the structure of eliminated, consistent and formed pollutants. Amino acids, peptides, and analogues (AAPAs) were detected most frequently and most removable. Benzenoids were refractory. Triazoles were often produced. The high-frequency reactions in different WWTPs were similar, (de)methylation and dehydration occurred most frequently. Different biological treatment processes performed similarly, while some advanced treatment processes differed, such as a significant increase of -13.976 (2HO reaction) paired mass distances (PMDs) in the chlorine alone process. Further, the common structural transformation was uncovered. 4 anti-hypertensive drugs, including irbesartan, valsartan, olmesartan, and losartan, were identified, along with 22 transformation products (TPs) of them. OH2 and H2O PMDs occurred most frequently and in 80.81 % of the parent-transformation product pairs, the intensity of the product was higher than parent in effluents, whose risk should be considered in future assessment activity. Together our results provide a macrography perspective on the transformation processes of ECs in WWTPs. In the future, selectively adopting wastewater treatment technology according to structures is conductive for eliminating recalcitrant ECs in WWTPs.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Water Pollutants, Chemical/chemistry , Irbesartan/analysis , Losartan/analysis
13.
Trials ; 25(1): 45, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218924

ABSTRACT

BACKGROUND: Combined antihypertensive therapy has obvious advantages over single drug therapy. Hypertension guidelines fully affirm the efficacy of dual combination in initial antihypertensive therapy. Recent studies have also pointed out that the quadruple combination of very low-dose antihypertensive drugs is superior to single drugs. However, whether low-dose quadruple therapy is better than dual combination is unknown. METHODS/DESIGN: A randomized double-blind crossover clinical trial will be conducted to compare the efficacy and safety of low-dose quadruple antihypertensives (irbesartan 75 mg + metoprolol 23.75 mg + amlodipine 2.5 mg + indapamide 1.25 mg) with standard-dose dual antihypertensives (irbesartan 150 mg + amlodipine 5 mg) in the initial treatment of patients with mild to moderate hypertension (140-179/90-109 mmHg). Ninety patients are required and will be recruited and randomly assigned in a 1:1 ratio to two crossover groups. Two groups will receive a different combination therapy for 4 weeks, then switch to the other combination therapy for 4 weeks, with a 2-week wash-out. Antihypertensive effects and related adverse effects of the two antihypertensive combination treatments will be compared. The primary outcome, i.e., mean 24-h systolic blood pressure in ambulatory blood pressure monitoring, will be assessed via linear mixed-effects model. DISCUSSION: This statistical analysis plan will be confirmed prior to blind review and data lock before un-blinding and is sought to increase the validity of the QUADUAL trial. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05377203. Registered May 11, 2022, https://clinicaltrials.gov/study/NCT05377203 .


Subject(s)
Antihypertensive Agents , Hypertension , Humans , Amlodipine/adverse effects , Antihypertensive Agents/adverse effects , Blood Pressure , Blood Pressure Monitoring, Ambulatory , Cross-Over Studies , Double-Blind Method , Drug Combinations , Hypertension/diagnosis , Hypertension/drug therapy , Irbesartan/adverse effects , Treatment Outcome
14.
Int Immunopharmacol ; 128: 111471, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38199198

ABSTRACT

BACKGROUND: New strategies are urgently needed to manage and delay the development of Alzheimer's disease (AD). Neuroinflammation is a significant contributor to cognitive decline in neurodegenerative diseases, including AD. Angiotensin receptor blockers (ARBs) and angiotensin converting enzyme inhibitors (ACEIs) protect hypertensive patients against AD, but the cellular and molecular mechanisms underlying these effects remain unknown. In light of this, the protective effects of three ARBs and three ACEIs against neuroinflammation and cognitive decline were investigated through comprehensive pharmacologicalin vitro/in vivoscreening. METHODS: BV-2 microglia cells were exposed tolipopolysaccharide (LPS) and treated with ARBs and ACEIs to provide initial insights into the anti-inflammatory properties of the drugs. Subsequently, irbesartan was selected, and its efficacy was evaluated inC57/BL6 male miceintranasally administered with irbesartan and injected with LPS. Long-term memory and depressive-like behavior were evaluated; dendritic spines were measured as well as neuroinflammation, neurodegeneration and cognitive decline biomarkers. RESULTS: Irbesartan mitigated memory loss and depressive-like behavior in mice treated with LPS, probably because itincreased spine density, ameliorated synapsis dysfunction and activated the PI3K/AKT pathway. Irbesartan elevated the levels of hippocampalsuperoxide dismutase2 andglutathione peroxidaseandsuppressed LPS-induced astrogliosis. CONCLUSIONS: Overall, this study provides compelling evidence that multiple intranasal administrations of irbesartan can effectively prevent LPS-induced cognitive decline by activating pathways involved in neuroprotection and anti-inflammatory events. These findings underscore the potential of irbesartan as a preventive strategy against the development of AD and other neurodegenerative conditions associated with neuroinflammation.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Male , Mice , Animals , Irbesartan/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt , Lipopolysaccharides/therapeutic use , Phosphatidylinositol 3-Kinases , Neuroinflammatory Diseases , Angiotensin Receptor Antagonists , Administration, Intranasal , Alzheimer Disease/drug therapy , Cognitive Dysfunction/drug therapy , Anti-Inflammatory Agents/therapeutic use
15.
Arch Biochem Biophys ; 751: 109851, 2024 01.
Article in English | MEDLINE | ID: mdl-38065251

ABSTRACT

In diabetes, increased oxidative stress and impaired trace element metabolism play an important role in the pathogenesis of diabetic nephropathy. The objective of this research was to examine the outcomes of blocking the renin-angiotensin system, using either the angiotensin-converting enzyme inhibitor (ACEI), perindopril, or the angiotensin II type 1 (AT1) receptor blocker, irbesartan, on oxidative stress and trace element levels such as Zn, Mg, Cu, and Fe in the kidneys of diabetic rats that had been induced with streptozotocin. Thirty-two Wistar albino male rats were equally divided into four groups. The first group was used as a control. The second group of rats developed diabetes after receiving a single intraperitoneal dose of STZ. The third and fourth groups of rats had STZ-induced diabetes and received daily dosages of irbesartan (15 mg/kg b.w/day) and perindopril (6 mg/kg b.w/day) treatment, respectively. Biochemical analysis of the kidneys showed a distinct increase in oxidative stress, indicated by heightened levels of malondialdehyde (MDA) and decreased superoxide dismutase (SOD) activities, as well as reduced glutathione (GSH) levels in the kidneys of diabetic rats. In the kidneys of diabetic rats, the mean levels of Fe and Cu were found to be significantly higher than those of the control group. Additionally, the mean levels of Zn and Mg were significantly lower in the diabetic rats compared to the control rats. Both perindopril and irbesartan decreased significantly MDA content and increased SOD activities and GSH levels in the kidneys of rats with diabetes. The Zn and Mg concentrations in the kidneys of diabetic rats treated with perindopril and irbesartan were markedly higher than in untreated STZ-diabetic rats, while the Cu and Fe concentrations were significantly lower. The urinary excretion of rats treated with perindopril and irbesartan showed a pronounced increase in Cu levels, along with a significant reduction in Zn and Mg levels. Although diabetic rats demonstrated degenerative morphological alterations in their kidneys, both therapies also improved diabetes-induced histopathological modifications in the kidneys. Finally, the present results suggest that manipulating the levels of Zn, Mg, Cu, and Fe - either through ACE inhibition or by blocking AT1 receptors - could be advantageous in reducing lipid peroxidation and increasing antioxidant concentration in the kidneys of diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Trace Elements , Rats , Animals , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/metabolism , Irbesartan/metabolism , Irbesartan/pharmacology , Irbesartan/therapeutic use , Angiotensin Receptor Antagonists/metabolism , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Perindopril/metabolism , Perindopril/pharmacology , Perindopril/therapeutic use , Streptozocin/metabolism , Streptozocin/pharmacology , Streptozocin/therapeutic use , Rats, Wistar , Diabetes Mellitus, Experimental/metabolism , Trace Elements/metabolism , Trace Elements/pharmacology , Trace Elements/therapeutic use , Kidney/pathology , Diabetic Nephropathies/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin II Type 1 Receptor Blockers/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism
16.
J Integr Complement Med ; 30(2): 185-195, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37733303

ABSTRACT

Background: To evaluate the efficacy and safety of Keluoxin (KLX) capsules and provide validated evidence for the application of KLX in the treatment of diabetic kidney disease (DKD). Methods: A multicenter, randomized, double-blind, placebo-controlled trial design was used to screen 129 patients with DKD (urinary albumin-to-creatinine ratio [UACR]: male, 2.5-30 mg/mmol; female, 3.5-30 mg/mmol) and with Qi and Yin deficiency and blood stasis symptoms. Written informed consent was obtained from all patients. The patients were randomly divided into KLX and control groups. The KLX group was orally administered KLX (6 g/day) and irbesartan tablets (150 mg/day), whereas the control group was administered KLX placebo (6 g/day) and irbesartan tablets (150 mg/day). Patients were observed for 24 weeks to evaluate the natural logarithm of the UACR (log-UACR), the odds ratio (OR) for a sustained increase in the UACR of at least 30% and 40%, estimated glomerular filtration rate (eGFR), changes in symptoms and quality-of-life scores, and adverse events. Results: The changes of the natural log-UACR during the 24 weeks compared with baseline in the KLX group were better than those in the control group (LS mean ± standard error, -0.26 ± 0.10 vs. 0.01 ± 0.09, p = 0.0292). The incidence of a sustained increase in the UACR of at least 30% and 40% was found to be significantly lower in the KLX group (OR, 0.26; 95% confidence interval [CI], 0.09-0.75; OR, 0.29; 95% CI, 0.10-0.82). Changes in symptoms and quality-of-life scores in the KLX group were better than those in the control group. There was no statistically significant difference in eGFR or the incidence of adverse events between the groups. Conclusions: Overall, these results suggest that KLX capsules combined with irbesartan can reduce microalbuminuria, relieve the symptoms, and improve the quality of life for patients with type 2 early DKD compared with the use of irbesartan alone. Trial registration: Chinese Clinical Trial Registry, registration number: ChiCTR2100052764.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Male , Female , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/diagnosis , Irbesartan/adverse effects , Prospective Studies , Quality of Life , Treatment Outcome , Albuminuria/drug therapy , Albuminuria/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/urine
17.
J Hypertens ; 42(3): 460-470, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38009301

ABSTRACT

OBJECTIVE: Hypertension is linked to gut dysbiosis. Here, the impact of the angiotensin receptor antagonist irbesartan on the gut microbiota of spontaneously hypertensive rats (SHR) were investigated. In addition, we assessed their contribution to its antihypertensive effect. METHODS: Eight-week-old Wistar-Kyoto (WKY) rats and SHR were administered irbesartan for 8 weeks. Fecal microbiota transplantation (FMT) was performed from SHR treated with irbesartan or untreated SHR to recipient untreated SHR. The preventive effect of Lactobacillus on hypertension in SHR was evaluated. Blood pressure (BP) was calculated using a tail-sleeve sphygmomanometer. To better assess the composition of the gut microbiota, the V3-V4 region of the 16S rRNA gene was amplified while short-chain fatty acids (SCFAs) in feces were tested by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). RESULTS: Irbesartan restored gut dysbiosis, increased the abundance of Lactobacillus , and improved anti-inflammatory ability, antioxidative ability, intestinal integrity, and intestinal inflammation in SHR. The microbiota in SHR-treated irbesartan could reduce BP and improve antioxidative ability and gut integrity in SHR. Lactobacillus johnsonii ( L. johnsonii ) and Lactobacillus reuteri ( L. reuteri ) reduced BP, restored gut dysbiosis and improved anti-inflammatory ability, antioxidative ability, intestinal integrity in SHR. Most notably, irbesartan, L. johnsonii , and L. reuteri can significantly increase SCFA content in SHR feces. CONCLUSION: The current study demonstrated that irbesartan treatment ameliorated gut dysbiosis in SHR. Irbesartan induced alterations in gut microbiota, with increased prevalence of Lactobacillus .


Subject(s)
Antihypertensive Agents , Hypertension , Rats , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Irbesartan/therapeutic use , Rats, Inbred SHR , Lactobacillus/genetics , Chromatography, Liquid , Dysbiosis , RNA, Ribosomal, 16S , Rats, Inbred WKY , Tandem Mass Spectrometry , Blood Pressure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
18.
Am J Hypertens ; 37(2): 112-119, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37769181

ABSTRACT

BACKGROUND: Alcohol consumption is a proven risk factor of hypertension. In the present analysis, we investigated the use of antihypertensive medications and blood pressure control in male alcohol drinkers and non-drinkers with hypertension (systolic/diastolic blood pressure 160-199/100-119 mm Hg). METHODS: The study participants were patients enrolled in a 12-week therapeutic study and treated with the irbesartan/hydrochlorothiazide combination 150/12.5 mg once daily, with the possible up-titration to 300/12.5 mg/day and 300/25 mg/day at 4 and 8 weeks of follow-up, respectively, for blood pressure control of <140/90 mm Hg or <130/80 mm Hg in patients with diabetes mellitus. Alcohol consumption was classified as non-drinkers and drinkers. RESULTS: The 68 alcohol drinkers and 168 non-drinkers had similar systolic/diastolic blood pressure at baseline (160.8 ±â€…12.1/99.8 ±â€…8.6 vs. 161.8 ±â€…11.0/99.2 ±â€…8.6, P ≥ 0.55) and other characteristics except for current smoking (80.9% vs. 47.6%, P < 0.0001). In patients who completed the 12-week follow-up (n = 215), the use of higher dosages of antihypertensive drugs was similar at 4 weeks of follow-up in drinkers and non-drinkers (10.6% vs. 12.4%, P = 0.70), but increased to a significantly higher proportion in drinkers than non-drinkers at 12 weeks of follow-up (54.7% vs. 36.6%, P = 0.01). The control rate of hypertension tended to be lower in alcohol drinkers, compared with non-drinkers, at 4 weeks of follow-up (45.6% vs. 58.9%, P = 0.06), but became similar at 12 weeks of follow-up (51.5% vs. 54.8%, P = 0.65). CONCLUSION: Alcohol drinkers compared with non-drinkers required a higher dosage of antihypertensive drug treatment to achieve similar blood pressure control. CLINICAL TRIAL REGISTRY NUMBER: NCT00670566 at www.clinicaltrials.gov.


Subject(s)
Alcohol Drinking , Antihypertensive Agents , Hypertension , Humans , Male , Alcohol Drinking/adverse effects , Alcohol Drinking/epidemiology , Antihypertensive Agents/therapeutic use , Blood Pressure , Hydrochlorothiazide , Hypertension/diagnosis , Hypertension/drug therapy , Hypertension/epidemiology , Irbesartan/therapeutic use , Tetrazoles
19.
Arch Pharm Res ; 46(11-12): 939-953, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38064121

ABSTRACT

Irbesartan, a potent and selective angiotensin II type-1 (AT1) receptor blocker (ARB), is one of the representative medications for the treatment of hypertension. Cytochrome P450 (CYP) 2C9 is primarily involved in the oxidation of irbesartan. CYP2C9 is highly polymorphic, and genetic polymorphism of this enzyme is the leading cause of significant alterations in the pharmacokinetics of irbesartan. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes. The irbesartan PBPK model was established using the PK-Sim® software. Our previously reported pharmacogenomic data for irbesartan was leveraged in the development of the PBPK model and collected clinical pharmacokinetic data for irbesartan was used for the validation of the model. Physicochemical and ADME properties of irbesartan were obtained from previously reported data, predicted by the modeling software, or optimized to fit the observed plasma concentration-time profiles. Model evaluation was performed by comparing the predicted plasma concentration-time profiles and pharmacokinetic parameters to the observed results. Predicted plasma concentration-time profiles were visually similar to observed profiles. Predicted AUCinf in CYP2C9*1/*3 and CYP2C9*1/*13 genotypes were increased by 1.54- and 1.62-fold compared to CYP2C9*1/*1 genotype, respectively. All fold error values for AUC and Cmax in non-genotyped and CYP2C9 genotyped models were within the two-fold error criterion. We properly established the PBPK model of irbesartan in different CYP2C9 genotypes. It can be used to predict the pharmacokinetics of irbesartan for personalized pharmacotherapy in individuals of various races, ages, and CYP2C9 genotypes.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Humans , Irbesartan , Cytochrome P-450 CYP2C9/genetics , Genotype , Models, Biological
20.
Chin J Physiol ; 66(6): 516-525, 2023.
Article in English | MEDLINE | ID: mdl-38149564

ABSTRACT

Acute lung injury (ALI) is classified as a devastating pulmonary disorder contributing to significant incidence and fatality rate. Irbesartan (IRB) is an angiotensin II receptor blocker that has been proposed to protect against oleic acid-induced ALI. To this end, the current study is concentrated on ascertaining the role of IRB in ALI and figuring out the probable action mechanism. First, cell counting kit-8 (CCK-8) appraised the viability of human pulmonary microvascular endothelial cells (HPMVECs) exposed to ascending concentrations of IRB. HPMVEC injury model and a mouse model of ALI induced by lipopolysaccharide (LPS) were pretreated by IRB. In vitro, cell viability was estimated by CCK-8 assay, and lactate dehydrogenase (LDH) release was tested by LDH assay kit. Enzyme-linked immunosorbent assay (ELISA) and Western blotting estimated the expression levels of inflammatory factors. Fluorescein isothiocyanate-dextran was used to assess HPMVEC permeability. Western blotting examined the expression of adherent and tight junction proteins. In vivo, hematoxylin and eosin staining evaluated lung tissue damage and lung wet/dry (W/D) weight was measured. ELISA analyzed the levels of inflammatory factors in the serum and bronchoalveolar lavage fluid (BALF), and Western blotting examined the expression of inflammatory factors. The total cell, neutrophil, and macrophage numbers in BALF were determined using a cell counter. Lung capillary permeability was assayed by Evans blue albumin and total protein concentration in BALF was measured using bicinchoninic acid method. Immunofluorescence assay and Western blotting examined the expression of adherent and tight junction proteins in lung tissues. It was observed that IRB dose-dependently enhanced the viability while reduced LDH release, inflammatory response as well as permeability in LPS-challenged HPMVECs in vitro. In addition, LPS-stimulated lung tissue damage, pulmonary edema, inflammatory response as well as lung capillary permeability in vivo were all reversed following IRB treatment. Collectively, IRB treatment might elicit protective behaviors against LPS-triggered ALI.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Mice , Animals , Humans , Lipopolysaccharides/toxicity , Irbesartan/adverse effects , Endothelial Cells/metabolism , Lung , Acute Lung Injury/chemically induced , Tight Junction Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...