Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.353
1.
Anal Chim Acta ; 1312: 342696, 2024 Jul 11.
Article En | MEDLINE | ID: mdl-38834281

BACKGROUND: Hemoglobin (Hb) is an important protein in red blood cells and a crucial diagnostic indicator of diseases, e.g., diabetes, thalassemia, and anemia. However, there is a rare report on methods for the simultaneous screening of diabetes, anemia, and thalassemia. Isoelectric focusing (IEF) is a common separative tool for the separation and analysis of Hb. However, the current analysis of IEF images is time-consuming and cannot be used for simultaneous screening. Therefore, an artificial intelligence (AI) of IEF image recognition is desirable for accurate, sensitive, and low-cost screening. RESULTS: Herein, we proposed a novel comprehensive method based on microstrip isoelectric focusing (mIEF) for detecting the relative content of Hb species. There was a good coincidence between the quantitation of Hb via a conventional automated hematology analyzer and the one via mIEF with R2 = 0.9898. Nevertheless, our results showed that the accuracy of disease diagnosis based on the quantification of Hb species alone is as low as 69.33 %, especially for the simultaneous screening of multiple diseases of diabetes, anemia, alpha-thalassemia, and beta-thalassemia. Therefore, we introduced a ResNet1D-based diagnosis model for the improvement of screening accuracy of multiple diseases. The results showed that the proposed model could achieve a high accuracy of more than 90 % and a good sensitivity of more than 96 % for each disease, indicating the overwhelming advantage of the mIEF method combined with deep learning in contrast to the pure mIEF method. SIGNIFICANCE: Overall, the presented method of mIEF with deep learning enabled, for the first time, the absolute quantitative detection of Hb, relative quantitation of Hb species, and simultaneous screening of diabetes, anemia, alpha-thalassemia, and beta-thalassemia. The AI-based diagnosis assistant system combined with mIEF, we believe, will help doctors and specialists perform fast and precise disease screening in the future.


Anemia , Deep Learning , Diabetes Mellitus , Isoelectric Focusing , Thalassemia , Humans , Isoelectric Focusing/methods , Diabetes Mellitus/diagnosis , Diabetes Mellitus/blood , Thalassemia/diagnosis , Thalassemia/blood , Anemia/diagnosis , Anemia/blood , Hemoglobins/analysis , Adult
2.
Anal Chem ; 96(21): 8648-8656, 2024 May 28.
Article En | MEDLINE | ID: mdl-38716690

Microfluidic analytical tools play an important role in miniaturizing targeted proteomic assays for improved detection sensitivity, throughput, and automation. Microfluidic isoelectric focusing (IEF) can resolve proteoforms in lysate from low-to-single cell numbers. However, IEF assays often use carrier ampholytes (CAs) to establish a pH gradient for protein separation, presenting limitations like pH instability in the form of cathodic drift (migration of focused proteins toward the cathode). Immobilized pH gradient (IPG) gels reduce cathodic drift by covalently immobilizing the pH buffering components to a matrix. To our knowledge, efforts to implement IPG gels at the microscale have been limited to glass microdevices. To adapt IEF using IPGs to widely used microfluidic device materials, we introduce a polydimethylsiloxane (PDMS)-based microfluidic device and compare the microscale pH gradient stability of IEF established with IPGs, CAs, and a hybrid formulation of IPG gels and CAs (mixed-bed IEF). The PDMS-based IPG microfluidic device (µIPG) resolved analytes differing by 0.1 isoelectric point within a 3.5 mm separation lane over a 20 min focusing duration. During the 20 min duration, we observed markedly different cathodic drift velocities among the three formulations: 60.1 µm/min in CA-IEF, 2.5 µm/min in IPG-IEF (∼24-fold reduction versus CA-IEF), and 1.4 µm/min in mixed-bed IEF (∼43-fold reduction versus CA-IEF). Lastly, mixed-bed IEF in a PDMS device resolved green fluorescent protein (GFP) proteoforms from GFP-expressing human breast cancer cell lysate, thus establishing stability in lysate from complex biospecimens. µIPG is a promising and stable technique for studying proteoforms from small volumes.


Dimethylpolysiloxanes , Isoelectric Focusing , Isoelectric Focusing/methods , Humans , Dimethylpolysiloxanes/chemistry , Hydrogen-Ion Concentration , Electrodes , Microfluidic Analytical Techniques/instrumentation , Proton-Motive Force , Lab-On-A-Chip Devices , Gels/chemistry
3.
Methods Mol Biol ; 2787: 281-291, 2024.
Article En | MEDLINE | ID: mdl-38656497

This chapter provides a description of the procedure for two-dimensional electrophoresis that can be performed for any given gel size and isoelectric focusing range. This will enable the operator to recognize critical steps and gain sufficient information to generate 2D images suitable for computer-assisted analysis of 2D-gel, as well as mass spectrometry analysis for protein identification and characterization.


Electrophoresis, Gel, Two-Dimensional , Isoelectric Focusing , Plant Proteins , Electrophoresis, Gel, Two-Dimensional/methods , Plant Proteins/isolation & purification , Plant Proteins/analysis , Isoelectric Focusing/methods , Proteomics/methods , Plants/chemistry , Mass Spectrometry/methods
4.
Methods Mol Biol ; 2791: 113-119, 2024.
Article En | MEDLINE | ID: mdl-38532098

Two-dimensional gel electrophoresis (2-DE) is a proteomic tool used for the separation of protein mixtures according to protein isoelectric point and molecular mass. Although gel-free quantitative and qualitative proteomic study techniques are now available, 2-DE remains a useful analytical tool. The presented protocol was performed to analyze the flower and leaf proteome of common buckwheat using 24 cm immobilized pH gradient strips (pH 4-7) and visualization of proteins on gels via colloidal Coomassie G-250 staining.


Fagopyrum , Proteome , Proteome/analysis , Proteomics , Isoelectric Focusing/methods , Plant Leaves/chemistry , Flowers , Electrophoresis, Gel, Two-Dimensional/methods , Gels , Hydrogen-Ion Concentration
5.
Eur J Pharm Biopharm ; 198: 114248, 2024 May.
Article En | MEDLINE | ID: mdl-38467335

Fc Fusion protein represents a versatile molecular platform with considerable potential as protein therapeutics of which the charge heterogeneity should be well characterized according to regulatory guidelines. Angiotensin-converting enzyme 2 Fc fusion protein (ACE2Fc) has been investigated as a potential neutralizing agent to various coronaviruses, including the lingering SARS-CoV-2, as this coronavirus must bind to ACE2 to allow for its entry into host cells. ACE2Fc, an investigational new drug developed by Henlius (Shanghai China), has passed the Phase I clinical trial, but its huge amount of charge isoforms and complicated charge heterogeneity posed a challenge to charge variant investigation in pharmaceutical development. We employed offline free-flow isoelectric focusing (FF-IEF) fractionation, followed by detailed characterization of enriched ACE2Fc fractions, to unveil the structural origins of charge heterogeneity in ACE2Fc expressed by recombinant CHO cells. We adopted a well-tuned 3-component separation medium for ACE2Fc fractionation, the highest allowable voltage to maximize the FF-IEF separation window and a mild Protein A elution method for preservation of protein structural integrity. Through peptide mapping and other characterizations, we revealed that the intricate profiles of ACE2Fc charge heterogeneity are mainly caused by highly sialylated multi-antenna N-glycosylation. In addition, based on fraction characterization and in silico glycoprotein model analysis, we discovered that the large acidic glycans at N36, N73, and N305 of ACE2Fc were able to decrease the binding activity towards Spike (S) protein of SARS-CoV-2. Our study exemplifies the value of FF-IEF in highly complex fusion protein characterization and revealed a quantitative sialylation-activity relationship in ACE2Fc.


Glycoproteins , Animals , Cricetinae , Cricetulus , China , Recombinant Proteins , Isoelectric Focusing/methods , Protein Binding
6.
J Pharm Biomed Anal ; 244: 116120, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38547650

Charge heterogeneity is inherent to all therapeutic antibodies and arises from post-translational modifications (PTMs) and/or protein degradation events that may occur during manufacturing. Among therapeutic antibodies, the bispecific antibody (bsAb) containing two unique Fab arms directed against two different targets presents an additional layer of complexity to the charge profile. In the context of a bsAb, a single domain-specific PTM within one of the Fab domains may be sufficient to compromise target binding and could potentially impact the stability, safety, potency, and efficacy of the drug product. Therefore, characterization and routine monitoring of domain-specific modifications is critical to ensure the quality of therapeutic bispecific antibody products. We developed a Digestion-assisted imaged Capillary isoElectric focusing (DiCE) method to detect and quantitate domain-specific charge variants of therapeutic bispecific antibodies (bsAbs). The method involves enzymatic digestion using immunoglobulin G (IgG)-degrading enzyme of S. pyogenes (IdeS) to generate F(ab)2 and Fc fragments, followed by imaged capillary isoelectric focusing (icIEF) under reduced, denaturing conditions to separate the light chains (LCs) from the Fd domains. Our results suggest that DiCE is a highly sensitive method that is capable of quantitating domain-specific PTMs of a bsAb. In one case study, DiCE was used to quantitate unprocessed C-terminal lysine and site-specific glycation of Lys98 in the complementarity-determining region (CDR) of a bsAb that could not be accurately quantitated using conventional, platform-based charge variant analysis, such as intact icIEF. Quantitation of these PTMs by DiCE was comparable to results from peptide mapping, demonstrating that DiCE is a valuable orthogonal method for ensuring product quality. This method may also have potential applications for characterizing fusion proteins, antibody-drug conjugates, and co-formulated antibody cocktails.


Antibodies, Bispecific , Isoelectric Focusing , Protein Processing, Post-Translational , Antibodies, Bispecific/immunology , Isoelectric Focusing/methods , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/chemistry , Humans , Immunoglobulin G/immunology , Immunoglobulin Fc Fragments/chemistry
7.
MAbs ; 16(1): 2313737, 2024.
Article En | MEDLINE | ID: mdl-38332713

Therapeutic mAbs show a specific "charge fingerprint" that may affect safety and efficacy, and, as such, it is often identified as a critical quality attribute (CQA). Capillary iso-electric focusing (cIEF), commonly used for the evaluation of such CQA, provides an analytical tool to investigate mAb purity and identity across the product lifecycle. Here, we discuss the results of an analysis of a panel of antibody products by conventional and whole-column imaging cIEF systems performed as part of European Pharmacopoeia activities related to development of "horizontal standards" for the quality control of monoclonal antibodies (mAbs). The study aimed at designing and verifying an independent and transversal cIEF procedure for the reliable analysis of mAbs charge variants. Despite the use of comparable experimental conditions, discrepancies in the charge profile and measured isoelectric points emerged between the two cIEF systems. These data suggest that the results are method-dependent rather than absolute, an aspect known to experts in the field and pharmaceutical industry, but not suitably documented in the literature. Critical implications from analytical and regulatory perspectives, are herein thoughtfully discussed, with a special focus on the context of market surveillance and identification of falsified medicines.


Antibodies, Monoclonal , Electrophoresis, Capillary , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/analysis , Isoelectric Focusing/methods , Electrophoresis, Capillary/methods , Isoelectric Point , Quality Control
8.
Blood Cells Mol Dis ; 104: 102758, 2024 01.
Article En | MEDLINE | ID: mdl-37246072

The genetic regulation of hemoglobin is complex and there are a number of genetic abnormalities that result in clinically important hemoglobin disorders. Here, we review the molecular pathophysiology of hemoglobin disorders and review both old and new methods of diagnosing these disorders. Timely diagnosis of hemoglobinopathies in infants is essential to coordinate optimal life-saving interventions, and accurate identification of carriers of deleterious mutations allows for genetic counseling and informed family planning. The initial laboratory workup of inherited disorders of hemoglobin should include a complete blood count (CBC) and peripheral blood smear, followed by carefully selected tests based on clinical suspicion and available methodology. We discuss the utility and limitations of the various methodologies to fractionate hemoglobin, including cellulose acetate and citrate agar hemoglobin electrophoresis, isoelectric focusing, high-resolution high-performance liquid chromatography, and capillary zone electrophoresis. Recognizing that most of the global burden of hemoglobin disorders exists in low- and middle-income countries, we review the increasingly available array of point-of-care-tests (POCT), which have an increasingly important role in expanding early diagnosis programs to address the global burden of sickle cell disease, including Sickle SCAN, HemoTypeSC, Gazelle Hb Variant, and Smart LifeLC. A comprehensive understanding of the molecular pathophysiology of hemoglobin and the globin genes, as well as a clear understanding of the utility and limitations of currently available diagnostic tests, is essential in reducing global disease burden.


Anemia, Sickle Cell , Hemoglobinopathies , Humans , Hemoglobinopathies/diagnosis , Hemoglobinopathies/genetics , Hemoglobins/genetics , Anemia, Sickle Cell/genetics , Isoelectric Focusing/methods
9.
Anal Methods ; 15(43): 5885-5890, 2023 11 09.
Article En | MEDLINE | ID: mdl-37905587

The active ingredients from tobacco extracts were continuously separated and purified using a homemade free-flow electrophoresis apparatus. A rectangular free flow electrophoresis device was constructed for the continuous separation and preparation, and the operating conditions of the device were optimized. The fractions obtained from the free-flowing component collection unit were then detected by HPLC and GC-MS. The results showed that a 90% methanol-water solution could maximize the extraction of the active components from tobacco. Chlorogenic acid and nicotine were enriched in three and four of 24 fractions, respectively, after free-flow isoelectric focusing electrophoresis. 2-Hydroxy-2-cyclopentene-1-one, 1-(2-methyl-1,3-oxathiolan-2-yl) ethanone, nornicotine, cotinine, and scopolamine were separated and enriched synchronously. Overall, the use of free-flow electrophoresis technology for the separation and purification of the active substances in tobacco can improve the comprehensive utilization rate of tobacco.


Cotinine , Nicotiana , Electrophoresis , Isoelectric Focusing/methods , Chromatography, High Pressure Liquid
10.
J Chromatogr A ; 1706: 464247, 2023 Sep 13.
Article En | MEDLINE | ID: mdl-37531850

We demonstrated the fractionation of two amino acids, glutamic acid and histidine, separated via isoelectric focusing (IEF) on filter paper folded and stacked in an origami fashion. Channels for electrophoresis were fabricated as circular zones acquired via wax printing onto the filter paper. An ampholyte solution with amphiphilic samples was deposited on all the circle zones, which was followed by folding to form the electrophoresis channels. IEF was achieved by applying an electrical potential between the anodic and cathodic chambers filled with phosphoric acid and sodium hydroxide solutions, respectively. A pH gradient was formed using either a wide-range ampholyte with a pH of 3 to 10 or a narrow-range version with a pH of 5 to 8, which was confirmed by adding pH indicators to each layer. The origami IEF was used to separate the amino acids, glutamic acid and histidine, by mixing with the ampholytes, which were deposited on the layers. The components in each layer were extracted with water and measured by high-performance liquid chromatography using pre-column derivatization with dansyl chloride. The results indicated that the focus for glutamic acid and that for histidine were at different layers, according to their isoelectric points. The origami isoelectric focusing achieved the fractionation of amino acids in less than 3 min using voltage as low as 30 V.


Ampholyte Mixtures , Glutamic Acid , Ampholyte Mixtures/chemistry , Proteins/analysis , Histidine , Hydrogen-Ion Concentration , Isoelectric Focusing/methods , Amino Acids
11.
J Chromatogr A ; 1704: 464117, 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37300912

Paper and thread are widely used as the substrates for fabricating low-cost, disposable, and portable microfluidic analytical devices used in clinical, environmental, and food safety monitoring. Concerning separation methods including chromatography and electrophoresis, these substrates provide unique platforms for developing portable devices. This review focuses on summarizing recent research on the miniaturization of the separation techniques using paper and thread. Preconcentration, purification, desalination, and separation of various analytes are achievable using electrophoresis and chromatography methods integrated with modified or unmodified paper/thread wicking channels. A variety of 2D and 3D designs of paper/thread platforms for zone electrophoresis, capillary electrophoresis, and modified/unmodified chromatography are discussed with emphasis on their limitation and improvements. The current progress in the signal amplification strategies such as isoelectric focusing, isotachophoresis, ion concentration polarization, isoelectric focusing, and stacking methods in paper-based devices are reviewed. Different strategies for chromatographic separations based on paper/thread will be explained. The separation of target species from complex samples and their determination by integration with other analytical methods like spectroscopy and electrochemistry are well-listed. Furthermore, the innovations for plasma and cell separation from blood as an important human biofluid are presented, and the related paper/thread modification methods are explored.


Isotachophoresis , Microfluidic Analytical Techniques , Humans , Microfluidics , Electrophoresis, Capillary/methods , Isoelectric Focusing/methods , Isotachophoresis/methods , Chromatography
12.
Molecules ; 28(11)2023 May 30.
Article En | MEDLINE | ID: mdl-37298922

Detection of erythropoietin (Epo) was difficult until a method was developed by the World Anti-Doping Agency (WADA). WADA recommended the Western blot technique using isoelectric focusing (IEF)-PAGE to show that natural Epo and injected erythropoiesis-stimulating agents (ESAs) appear in different pH areas. Next, they used sodium N-lauroylsarcosinate (SAR)-PAGE for better differentiation of pegylated proteins, such as epoetin ß pegol. Although WADA has recommended the use of pre-purification of samples, we developed a simple Western blotting method without pre-purification of samples. Instead of pre-purification, we used deglycosylation of samples before SDS-PAGE. The double detection of glycosylated and deglycosylated Epo bands increases the reliability of the detection of Epo protein. All of the endogenous Epo and exogenous ESAs shift to 22 kDa, except for Peg-bound epoetin ß pegol. All endogenous Epo and exogenous ESAs were detected as 22 kDa deglycosylated Epo by liquid chromatography/mass spectrum (LC/MS) analysis. The most important factor for the detection of Epo is the selection of the antibody against Epo. WADA recommended clone AE7A5, and we used sc-9620. Both antibodies are useful for the detection of Epo protein by Western blotting.


Body Fluids , Erythropoietin , Reproducibility of Results , Isoelectric Focusing/methods , Blotting, Western , Antibodies , Electrophoresis, Polyacrylamide Gel , Substance Abuse Detection/methods , Recombinant Proteins
13.
Talanta ; 260: 124633, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37172435

Monoclonal antibodies are increasingly used in cancer therapy. To guarantee the quality of these mAbs from compounding to patient administration, characterization methods are required (e.g. identity). In a clinical setting, these methods must be fast and straightforward. For this reason, we investigated the potential of image capillary isoelectric focusing (icIEF) combined with Principal Component Analysis (PCA) and Partial least squares-discriminant analysis (PLS-DA). icIEF profiles obtained from monoclonals antibodies (mAbs) analysis have been pre-processed and the data submitted to principal component analysis (PCA). This pre-processing method has been designed to avoid the impact of concentration and formulation. Analysis of four commercialized mAbs (Infliximab, Nivolumab, Pertuzumab, and Adalimumab) by icIEF-PCA led to the formation of four clusters corresponding to each mAb. Partial least squares-discriminant analysis (PLS-DA) applied to these data allowed us to build models to predict which monoclonal antibody is analyzed. The validation of this model was obtained from k-fold cross-validation and prediction tests. The selectivity and the specificity of the model performance parameters were assessed by the excellent classification obtained. In conclusion, we established that the combination of icIEF and chemometric approaches is a reliable approach for unambiguously identifying compounded therapeutic monoclonal antibodies (mAbs) before patient administration.


Antibodies, Monoclonal , Capillary Isoelectric Focusing , Humans , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/analysis , Electrophoresis, Capillary/methods , Infliximab/analysis , Isoelectric Focusing/methods , Quality Control
14.
Electrophoresis ; 44(15-16): 1258-1266, 2023 08.
Article En | MEDLINE | ID: mdl-37138377

Post-translational modifications (PTMs) of adeno-associated virus (AAV) capsid proteins tune and regulate the AAV infective life cycle, which can impact the safety and efficacy of AAV gene therapy products. Many of these PTMs induce changes in protein charge heterogeneity, including deamidation, oxidation, glycation, and glycosylation. To characterize the charge heterogeneity of a protein, imaged capillary isoelectric focusing (icIEF) has become the gold standard method. We have previously reported an icIEF method with native fluorescence detection for denatured AAV capsid protein charge heterogeneity analysis. Although well suited for final products, the method does not have sufficient sensitivity for upstream, low-concentration AAV samples, and lacks the specificity for capsid protein detection in complex samples like cell culture supernatants and cell lysates. In contrast, the combination of icIEF, protein capture, and immunodetection affords significantly higher sensitivity and specificity, addressing the challenges of the icIEF method. By leveraging different primary antibodies, the icIEF immunoassay provides additional selectivity and affords a detailed characterization of individual AAV capsid proteins. In this study, we describe an icIEF immunoassay method for AAV analysis that is 90 times more sensitive than native fluorescence icIEF. This icIEF immunoassay provides AAV stability monitoring, where changes in individual capsid protein charge heterogeneity can be observed in response to heat stress. When applied to different AAV serotypes, this method also provides serotype identity with reproducible quantification of VP protein peak areas and apparent isoelectric point (pI). Overall, the described icIEF immunoassay is a sensitive, reproducible, quantitative, specific, and selective tool that can be used across the AAV biomanufacturing process, especially in upstream process development where complex sample types are often encountered.


Capsid Proteins , Dependovirus , Dependovirus/metabolism , Antibodies, Monoclonal/analysis , Protein Processing, Post-Translational , Glycosylation , Isoelectric Focusing/methods
15.
Electrophoresis ; 44(7-8): 667-674, 2023 04.
Article En | MEDLINE | ID: mdl-36640145

In 1961, Svensson described isoelectric focusing (IEF), the separation of ampholytic compounds in a stationary, natural pH gradient that was formed by passing current through a sucrose density gradient-stabilized ampholyte mixture in a constant cross-section apparatus, free of mixing. Stable pH gradients were formed as the electrophoretic transport built up a series of isoelectric ampholyte zones-the concentration of which decreased with their distance from the electrodes-and a diffusive flux which balanced the generating electrophoretic flux. When polyacrylamide gel replaced the sucrose density gradient as the stabilizing medium, the spatial and temporal stability of Svensson's pH gradient became lost, igniting a search for the explanation and mitigation of the loss. Over time, through a series of insightful suggestions, the currently held notion emerged that in the modern IEF experiment-where the carrier ampholyte (CA) mixture is placed between the anolyte- and catholyte-containing large-volume electrode vessels (open-system IEF)-a two-stage process operates that comprises a rapid first phase during which a linear pH gradient develops, and a subsequent slow, second stage, during which the pH gradient decays as isotachophoretic processes move the extreme pI CAs into the electrode vessels. Here we trace the development of the two-stage IEF model using quotes from the original publications and point out critical results that the IEF community should have embraced but missed. This manuscript sets the foundation for the companion papers, Parts 2 and 3, in which an alternative model, transient bidirectional isotachophoresis is presented to describe the open-system IEF experiment.


Ampholyte Mixtures , Isotachophoresis , Hydrogen-Ion Concentration , Isoelectric Focusing/methods , Ampholyte Mixtures/chemistry
16.
Electrophoresis ; 44(7-8): 675-688, 2023 04.
Article En | MEDLINE | ID: mdl-36641504

The carrier ampholytes-based (CA-based) isoelectric focusing (IEF) experiment evolved from Svensson's closed system IEF (constant spatial current density, absence of convective mixing, counter-balancing electrophoretic and diffusive fluxes yielding a steady state pH gradient) to the contemporary open system IEF (absence of convective mixing, large cross-sectional area electrode vessels, lack of counter-balancing electrophoretic- and diffusive fluxes leading to transient pH gradients). Open system IEF currently is described by a two-stage model: In the first stage, a rapid IEF process forms the pH gradient which, in the second stage, is slowly degraded by isotachophoretic processes that move the most acidic and most basic CAs into the electrode vessels. An analysis of the effective mobilities and the effective mobility to conductivity ratios of the anolyte, catholyte, and the CAs indicates that in open system IEF experiments a single process, transient bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on until it is turned off. In tbdITP, the anolyte and catholyte provide the leading ions and the pI 7 CA or the reactive boundary of the counter-migrating H3 O+ and OH- ions serves as the shared terminator. The outcome of the tbdITP process is determined by the ionic mobilities, pKa values, and loaded amounts of all ionic and ionizable components: It is constrained by both the transmitted amount of charge and the migration space available for the leading ions. tbdITP and the resulting pH gradient can never reach steady state with respect to the spatial coordinate of the separation channel.


Isotachophoresis , Hydrogen-Ion Concentration , Isoelectric Focusing/methods , Ampholyte Mixtures , Electric Conductivity
17.
Electrophoresis ; 44(7-8): 689-700, 2023 04.
Article En | MEDLINE | ID: mdl-36593722

In modern isoelectric focusing (IEF) systems, where (i) convective mixing is prevented by gels or small cross-sectional area separation channels, (ii) current densities vary spatially due to the presence of electrode vessels with much larger cross-sectional areas than those of the gels or separation channels, and (iii) electrophoretic and diffusive fluxes do not balance each other, stationary, steady-state pH gradients cannot form (open-system IEF). Open-system IEF is currently described as a two-stage process: A rapid IEF process forms the pH gradient from the carrier ampholytes (CAs) in the first stage, then isotachophoretic processes degrade the pH gradient in the second stage as the extreme pI CAs are moved into the electrode vessels where they become diluted. Based on the ratios of the local effective mobilities and the local conductivities ( µ L eff ( x ) $\mu _{\rm{L}}^{{\rm{eff}}}( x )$ / κ ( x ) $\kappa ( x )$ values) of the anolyte, catholyte, and the CAs, we pointed out in the preceding paper (Vigh G, Gas B, Electrophoresis 2023, 44, 675-88) that in open-system IEF, a single process, transient, bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on. In this paper, we demonstrate some of the operational features of the tbdITP model using the new ITP/IEF version of Simul 6.


Ampholyte Mixtures , Isotachophoresis , Hydrogen-Ion Concentration , Isoelectric Focusing/methods , Gels
18.
Anal Chem ; 95(4): 2548-2560, 2023 01 31.
Article En | MEDLINE | ID: mdl-36656605

Imaged capillary isoelectric focusing (icIEF) and ion-exchange chromatography (IEX) are two essential techniques that are routinely used for charge variant analysis of therapeutic monoclonal antibodies (mAbs) during their development and in quality control. These two techniques that separate mAb charge variants based on different mechanisms and IEX have been developed as front-end separation techniques for online mass spectrometry (MS) detection, which is robust for intact protein identification. Recently, an innovative, coupled icIEF-MS technology has been constructed for protein charge variant analysis in our laboratory. In this study, icIEF-MS developed and strong cation exchange (SCX)-MS were optimized for charge heterogeneity characterization of a diverse of mAbs and their results were compared based on methodological validation. It was found that icIEF-MS outperformed SCX-MS in this study by demonstrating outstanding sensitivity, low carryover effect, accurate protein identification, and higher separation resolution although SCX-MS contributed to higher analysis throughput. Ultimately, integrating our novel icIEF-HRMS analysis with the more common SCX-MS can provide a promising and comprehensive strategy for accelerating the development of complex protein therapeutics.


Antibodies, Monoclonal , Capillary Isoelectric Focusing , Antibodies, Monoclonal/chemistry , Mass Spectrometry/methods , Isoelectric Focusing/methods , Chromatography, Ion Exchange/methods
19.
Drug Test Anal ; 15(2): 163-172, 2023 Feb.
Article En | MEDLINE | ID: mdl-33450134

Erythropoietin (EPO) is a hormone, which stimulates the production of red blood cells. Due to its performance-enhancing effect, it is prohibited by the World Anti-Doping Agency (WADA). In order to reduce the detection window of EPO doping, athletes have been applying low doses of recombinant EPO (e.g., <10 IU/kg body weight, daily or every second day) instead of larger doses twice or more per week (e.g., 30 IU/kg). Microdoses of Retacrit (epoetin zeta), an EPO biosimilar, were administered intravenously and subcutaneously to human males and females. Urine and serum samples were collected and analysed applying the new biotinylated clone AE7A5 EPO antibody and a further optimized sarcosyl polyacrylamide gel electrophoresis (SAR-PAGE) protocol. With the improved protocol, microdosed Retacrit (7.5 IU/kg body weight [BW]) was detectable for at least 52 h after intravenous administration. Detection windows were approximately the same for serum and urine and doubled after subcutaneous administration (~104 h). Previous studies applying different electrophoretic techniques and the not further optimized SAR-PAGE protocol revealed considerably shorter detection windows for recombinant human erythropoietin (rhEPO) microdoses. Because the new biotinylated antibody performed significantly more sensitive than the nonbiotinylated version, the new protocol will improve the sensitivity and hence detectability of recombinant EPO in doping control.


Doping in Sports , Erythropoietin , Male , Female , Humans , Isoelectric Focusing/methods , Recombinant Proteins , Antibodies , Epoetin Alfa , Electrophoresis, Polyacrylamide Gel , Substance Abuse Detection/methods , Body Weight
20.
Proteomics ; 23(2): e2200307, 2023 01.
Article En | MEDLINE | ID: mdl-36349823

Passive rehydration of immobilized pH gradient (IPG) strips for two-dimensional gel electrophoresis (2DE) has, to our knowledge, never been quantitatively evaluated to determine an ideal rehydration time. Seeking to increase throughput without sacrificing analytical rigor, we report that a substantially shorter rehydration time is accomplished when surface area of IPG strips is increased via microneedling. Rehydration for 4 h, post microneedling, provides comparable results to overnight rehydration in final analyses by 2DE, while also shortening the overall protocol by 1 day.


Proteomics , Proteomics/methods , Hydrogen-Ion Concentration , Electrophoresis, Gel, Two-Dimensional/methods , Isoelectric Focusing/methods
...