Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.247
1.
Immun Inflamm Dis ; 12(5): e1077, 2024 May.
Article En | MEDLINE | ID: mdl-38722267

BACKGROUND: Considering the antihepatitis effects of Tectorigenin (TEC), and the same adenosine mitogen-activated protein kinase (MAPK) pathway in both hepatitis and inflammatory bowel disease (IBD) models, exploring the role of TEC in IBD is contributive to develop a new treatment strategy against IBD. METHODS: The IBD mouse model was constructed by feeding with dextran sodium sulfate (DSS) and injection of TEC. Afterward, the mouse body weight, colon length, and disease activity index (DAI) were tested to assess the enteritis level. Mouse intestine lesions were detected by hematoxylin and eosin staining. Murine macrophages underwent lipopolysaccharide (LPS) induction to establish an inflammation model. Cell viability was determined by cell counting kit-8 assay. Enzyme-linked immunosorbent assay was performed to measure interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) levels. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions were quantified via quantitative reverse transcription polymerase chain reaction. Levels of MAPK pathway-related proteins (p-P38, P38, p-Jun N-terminal kinase (JNK), JNK, signal-regulated kinase (ERK), p-ERK), COX-2 and iNOS were quantitated by Western blot. RESULTS: TEC improved the inflammatory response through ameliorating weight loss, shortening colon, and increasing DAI score in IBD mouse. Expressions of intestinal inflammatory factors (IL-6, TNF-α, iNOS and COX-2) and MAPK pathway-related proteins (p-P38, p-JNK, and p-ERK) were increased both in DSS-induced mouse intestinal tissue, but TEC inhibited expressions of inflammatory factors. The same increased trend was identified in LPS-induced macrophages, but TEC improved macrophage inflammation, as evidenced by downregulation of inflammatory factors. CONCLUSION: TEC mitigates IBD and LPS-induced macrophage inflammation in mice via inhibiting MAPK signaling pathway.


Inflammatory Bowel Diseases , Isoflavones , Lipopolysaccharides , MAP Kinase Signaling System , Macrophages , Animals , Mice , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , MAP Kinase Signaling System/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Isoflavones/pharmacology , Isoflavones/therapeutic use , Disease Models, Animal , Dextran Sulfate/toxicity , Inflammation/drug therapy , Inflammation/immunology , Male , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism
2.
BMC Public Health ; 24(1): 1362, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773414

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) accounts as a crucial health concern with a huge burden on health and economic systems. The aim of this study is to evaluate the effect of soy isoflavones supplementation on metabolic status in patients with NAFLD. METHODS: In this randomized clinical trial, 50 patients with NAFLD were randomly allocated to either soy isoflavone or placebo groups for 12 weeks. The soy isoflavone group took 100 mg/d soy isoflavone and the placebo group took the similar tablets containing starch. Anthropometric indices, blood lipids, glycemic parameters and blood pressure were measured at the beginning and at the end of the study. RESULTS: At the end of week 12 the level of serum triglyceride (TG), low density lipoprotein (LDL) and total cholesterol (TC) was significantly decreased only in soy isoflavone group compared to baseline (P < 0.05). Although waist circumference (WC) decreased significantly in both groups after 12 weeks of intervention (P < 0.05), hip circumference (HC) decreased significantly only in soy isoflavone group (P = 0.001). No significant changes observed regarding high density lipoprotein (HDL) and blood pressure in both groups. At the end of the study, serum glucose level was significantly decreased in the placebo group compared to baseline (P = 0.047). No significant changes demonstrated in the soy isoflavone group in regard to glycemic parameters (P > 0.05). CONCLUSIONS: This study revealed that soy isoflavones could significantly reduce TG, LDL TC, WC and HC in NAFLD patients. TRIAL REGISTRATION: The Ethics committee of Ahvaz Jundishapur University of Medical Sciences approved the protocol of the present clinical research (IR.AJUMS.REC.1401.155). The study was in accordance with the Declaration of Helsinki. This study's registered number and date are IRCT20220801055597N1 and 20.09.2022, respectively at https://fa.irct.ir .


Dietary Supplements , Isoflavones , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/diet therapy , Non-alcoholic Fatty Liver Disease/metabolism , Isoflavones/pharmacology , Male , Female , Middle Aged , Adult , Glycine max/chemistry
3.
J Biochem Mol Toxicol ; 38(6): e23735, 2024 Jun.
Article En | MEDLINE | ID: mdl-38773908

Cancer is one of the major causes of death worldwide, with more than 10 million deaths annually. Despite tremendous advances in the health sciences, cancer continues to be a substantial global contributor to mortality. The current treatment methods demand a paradigm shift that not only improves therapeutic efficacy but also minimizes the side effects of conventional medications. Recently, an increased interest in the potential of natural bioactive compounds in the treatment of several types of cancer has been observed. Ononin, also referred to as formononetin-7-O-ß-d-glucoside, is a natural isoflavone glycoside, derived from the roots, stems, and rhizomes of various plants. It exhibits a variety of pharmacological effects, including Antiangiogenic, anti-inflammatory, antiproliferative, proapoptotic, and antimetastatic activities. The current review presents a thorough overview of sources, chemistry, pharmacokinetics, and the role of ononin in affecting various mechanisms involved in cancer. The review also discusses potential synergistic interactions with other compounds and therapies. The combined synergistic effect of ononin with other compounds increased the efficacy of treatment methods. Finally, the safety studies, comprising both in vitro and in vivo assessments of ononin's anticancer activities, are described.


Isoflavones , Neoplasms , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/therapeutic use , Humans , Animals , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Glucosides/pharmacology , Glucosides/therapeutic use , Glucosides/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Glycosides/pharmacology , Glycosides/therapeutic use , Glycosides/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry
4.
J Cell Mol Med ; 28(10): e18239, 2024 May.
Article En | MEDLINE | ID: mdl-38774996

The occurrence and development of diabetic vascular diseases are closely linked to inflammation-induced endothelial dysfunction. Puerarin (Pue), the primary component of Pueraria lobata, possesses potent anti-inflammatory properties. However, its vasoprotective role remains elusive. Therefore, we investigated whether Pue can effectively protect against vascular damage induced by diabetes. In the study, Pue ameliorated lipopolysaccharide-adenosine triphosphate (LPS-ATP) or HG-primed cytotoxicity and apoptosis, while inhibited reactive oxygen species (ROS)-mediated NLR family pyrin domain containing 3 (NLRP3) inflammasome in HUVECs, as evidenced by significantly decreased ROS level, NOX4, Caspase-1 activity and expression of NLRP3, GSDMD, cleaved caspase-1, IL-1ß and IL-18. Meanwhile, ROS inducer CoCI2 efficiently weakened the effects of Pue against LPS-ATP-primed pyroptosis. In addition, NLRP3 knockdown notably enhanced Pue's ability to suppress pyroptosis in LPS-ATP-primed HUVECs, whereas overexpression of NLRP3 reversed the inhibitory effects of Pue. Furthermore, Pue inhibited the expression of ROS and NLRP3 inflammasome-associated proteins on the aorta in type 2 diabetes mellitus rats. Our findings indicated that Pue might ameliorate LPS-ATP or HG-primed damage in HUVECs by inactivating the ROS-NLRP3 signalling pathway.


Adenosine Triphosphate , Human Umbilical Vein Endothelial Cells , Inflammasomes , Isoflavones , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Signal Transduction , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Isoflavones/pharmacology , Isoflavones/therapeutic use , Humans , Animals , Signal Transduction/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Rats , Male , Adenosine Triphosphate/metabolism , Inflammasomes/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Pyroptosis/drug effects , Rats, Sprague-Dawley , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Glucose/metabolism , Apoptosis/drug effects
5.
J Cell Mol Med ; 28(10): e18331, 2024 May.
Article En | MEDLINE | ID: mdl-38780500

Heart failure is a leading cause of death in the elderly. Traditional Chinese medicine, a verified alternative therapeutic regimen, has been used to treat heart failure, which is less expensive and has fewer adverse effects. In this study, a total of 15 active ingredients of Astragalus membranaceus (Huangqi, HQ) were obtained; among them, Isorhamnetin, Quercetin, Calycosin, Formononetin, and Kaempferol were found to be linked to heart failure. Ang II significantly enlarged the cell size of cardiomyocytes, which could be partially reduced by Quercetin, Isorhamnetin, Calycosin, Kaempferol, or Formononetin. Ang II significantly up-regulated ANP, BNP, ß-MHC, and CTGF expressions, whereas Quercetin, Isorhamnetin, Calycosin, Kaempferol or Formononetin treatment partially downregulated ANP, BNP, ß-MHC and CTGF expressions. Five active ingredients of HQ attenuated inflammation in Ang II-induced cardiomyocytes by inhibiting the levels of TNF-α, IL-1ß, IL-18 and IL-6. Molecular docking shows Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol can bind with its target protein ESR1 in a good bond by intermolecular force. Quercetin, Calycosin, Kaempferol or Formononetin treatment promoted the expression levels of ESR1 and phosphorylated ESR1 in Ang II-stimulated cardiomyocytes; however, Isorhamnetin treatment had no effect on ESR1 and phosphorylated ESR1 expression levels. In conclusion, our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of HQ against heart failure. Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol might be the primary active ingredients of HQ, dominating its cardioprotective effects against heart failure through regulating ESR1 expression, which provided a basis for the clinical application of HQ to regulate cardiac hypertrophy and heart failure.


Astragalus propinquus , Drugs, Chinese Herbal , Heart Failure , Molecular Docking Simulation , Myocytes, Cardiac , Network Pharmacology , Astragalus propinquus/chemistry , Heart Failure/drug therapy , Heart Failure/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/analogs & derivatives , Angiotensin II/metabolism , Kaempferols/pharmacology , Kaempferols/chemistry , Rats , Humans , Isoflavones/pharmacology , Isoflavones/chemistry
6.
Nutrients ; 16(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38732519

Metabolic syndrome (MetS) is a cluster of risk factors for cardiovascular diseases (CVDs) that has become a global public health problem. Puerarin (PUE), the principal active compound of Pueraria lobata, has the effects of regulating glucose and lipid metabolism and protecting against cardiovascular damage. This study aimed to investigate whether dietary supplementation with PUE could ameliorate MetS and its associated cardiovascular damage. Rats were randomly divided into three groups: the normal diet group (NC), the high-fat/high-sucrose diet group (HFHS), and the HFHS plus PUE diet group (HFHS-PUE). The results showed that PUE-supplemented rats exhibited enhanced glucose tolerance, improved lipid parameters, and reduced blood pressure compared to those on the HFHS diet alone. Additionally, PUE reversed the HFHS-induced elevations in the atherogenic index (AI) and the activities of serum lactate dehydrogenase (LDH) and creatine kinase (CK). Ultrasonic evaluations indicated that PUE significantly ameliorated cardiac dysfunction and arterial stiffness. Histopathological assessments further confirmed that PUE significantly mitigated cardiac remodeling, arterial remodeling, and neuronal damage in the brain. Moreover, PUE lowered systemic inflammatory indices including C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and systemic immune-inflammation index (SII). In conclusion, dietary supplementation with PUE effectively moderated metabolic disorders, attenuated systemic inflammation, and minimized cardiovascular damage in rats with MetS induced by an HFHS diet. These results provide novel insights into the potential benefits of dietary PUE supplementation for the prevention and management of MetS and its related CVDs.


Cardiovascular Diseases , Diet, High-Fat , Isoflavones , Metabolic Syndrome , Animals , Metabolic Syndrome/etiology , Metabolic Syndrome/drug therapy , Isoflavones/pharmacology , Diet, High-Fat/adverse effects , Male , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Rats , Dietary Supplements , Rats, Sprague-Dawley , Blood Pressure/drug effects , Blood Glucose/metabolism , Dietary Sucrose/adverse effects , Vascular Stiffness/drug effects , Disease Models, Animal , Lipids/blood , Pueraria/chemistry
7.
Medicine (Baltimore) ; 103(18): e38023, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701310

Cancer remains a significant challenge in the field of oncology, with the search for novel and effective treatments ongoing. Calycosin (CA), a phytoestrogen derived from traditional Chinese medicine, has garnered attention as a promising candidate. With its high targeting and low toxicity profile, CA has demonstrated medicinal potential across various diseases, including cancers, inflammation, and cardiovascular disease. Studies have revealed that CA possesses inhibitory effects against a diverse array of cancers. The underlying mechanism of action involves a reduction in tumor cell proliferation, induction of tumor cell apoptosis, and suppression of tumor cell migration and invasion. Furthermore, CA has been shown to enhance the efficacy of certain chemotherapeutic drugs, making it a potential component in treating malignant tumors. Given its high efficacy, low toxicity, and multi-targeting characteristics, CA holds considerable promise as a therapeutic agent for cancer treatment. The objective of this review is to present a synthesis of the current understanding of the antitumor mechanism of CA and its research progress.


Isoflavones , Neoplasms , Phytoestrogens , Isoflavones/therapeutic use , Isoflavones/pharmacology , Humans , Phytoestrogens/therapeutic use , Phytoestrogens/pharmacology , Neoplasms/drug therapy , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 236-246, 2024 Feb 28.
Article En, Zh | MEDLINE | ID: mdl-38755719

OBJECTIVES: Hypoxia is a common pathological phenomenon, usually caused by insufficient oxygen supply or inability to use oxygen effectively. Hydroxylated and methoxylated flavonoids have significant anti-hypoxia activity. This study aims to explore the synthesis, antioxidant and anti-hypoxia activities of 6-hydroxygenistein (6-OHG) and its methoxylated derivatives. METHODS: The 6-OHG and its methoxylated derivatives, including 4',6,7-trimethoxy-5-hydroxyisoflavone (compound 3), 4',5,6,7-tetramethoxyisoflavone (compound 4), 4',6-imethoxy-5,7-dihydroxyisoflavone (compound 6), and 4'-methoxy-5,6,7-trihydroxyisoflavone (compound 7), were synthesized by methylation, bromination, methoxylation, and demethylation using biochanin A as raw material. The structure of these products were characterized by 1hydrogen-nuclear magnetic resonance spectroscopy (1H-NMR) and mass spectrometry (MS). The purity of these compounds was detected by high pressure chromatography (HPLC). The antioxidant activity in vitro was investigated by 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) free radical scavenging assay. PC12 cells were divided into a normal group, a hypoxia model group, rutin (1×10-9-1×10-5 mol/L) groups, and target compounds (1×10-9-1×10-5 mol/L) groups under normal and hypoxic conditions. Cell viability was detected by cell counting kit-8 (CCK-8) assay, the target compounds with excellent anti-hypoxia activity and the drug concentration at the maximum anti-hypoxia activity were screened. PC12 cells were treated with the optimal concentration of the target compound or rutin with excellent anti-hypoxia activity, and the cell morphology was observed under light microscope. The apoptotic rate was determined by flow cytometry, and the expressions of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) were detected by Western blotting. RESULTS: The structure of 6-OHG and its 4 methylated derivatives were correct, and the purity was all more than 97%. When the concentration was 4 mmol/L, the DPPH free radical removal rates of chemical compounds 7 and 6-OHG were 81.16% and 86.94%, respectively, which were higher than those of rutin, the positive control. The removal rates of chemical compounds 3, 4, and 6 were all lower than 20%. Compared with the normal group, the cell viability of the hypoxia model group was significantly decreased (P<0.01). Compared with the hypoxia model group, compounds 3, 4, and 6 had no significant effect on cell viability under hypoxic conditions. At all experimental concentrations, the cell viability of the 6-OHG group was significantly higher than that of the hypoxia model group (all P<0.05). The cell viability of compound 7 group at 1×10-7 and 1×10-6 mol/L was significantly higher than that of the hypoxia model group (both P<0.05). The anti-hypoxia activity of 6-OHG and compound 7 was excellent, and the optimal drug concentration was 1×10-6 and 1×10-7 mol/L. After PC12 cells was treated with 6-OHG (1×10-6 mol/L) and compound 7 (1×10-7 mol/L), the cell damage was reduced, the apoptotic rate was significantly decreased (P<0.01), and the protein expression levels of HIF-1α and VEGF were significantly decreased in comparison with the hypoxia model group (both P<0.01). CONCLUSIONS: The optimized synthesis route can increase the yield of 6-OHG and obtain 4 derivatives by methylation and selective demethylation. 6-OHG and compound 7 have excellent antioxidant and anti-hypoxia activities, which are related to the structure of the A-ring ortho-triphenol hydroxyl group in the molecule.


Antioxidants , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Rats , Animals , PC12 Cells , Methylation , Cell Hypoxia/drug effects , Vascular Endothelial Growth Factor A/metabolism , Isoflavones/pharmacology , Isoflavones/chemical synthesis , Isoflavones/chemistry , Flavones/pharmacology
9.
J Cell Mol Med ; 28(9): e18358, 2024 May.
Article En | MEDLINE | ID: mdl-38693868

Gastric cancer is considered a class 1 carcinogen that is closely linked to infection with Helicobacter pylori (H. pylori), which affects over 1 million people each year. However, the major challenge to fight against H. pylori and its associated gastric cancer due to drug resistance. This research gap had led our research team to investigate a potential drug candidate targeting the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. In this study, a total of 45 daidzein derivatives were investigated and the best 10 molecules were comprehensively investigated using in silico approaches for drug development, namely pass prediction, quantum calculations, molecular docking, molecular dynamics simulations, Lipinski rule evaluation, and prediction of pharmacokinetics. The molecular docking study was performed to evaluate the binding affinity between the target protein and the ligands. In addition, the stability of ligand-protein complexes was investigated by molecular dynamics simulations. Various parameters were analysed, including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM). The results has confirmed that the ligand-protein complex CID: 129661094 (07) and 129664277 (08) formed stable interactions with the target protein. It was also found that CID: 129661094 (07) has greater hydrogen bond occupancy and stability, while the ligand-protein complex CID 129664277 (08) has greater conformational flexibility. Principal component analysis revealed that the ligand-protein complex CID: 129661094 (07) is more compact and stable. Hydrogen bond analysis revealed favourable interactions with the reported amino acid residues. Overall, this study suggests that daidzein derivatives in particular show promise as potential inhibitors of H. pylori.


Helicobacter pylori , Isoflavones , Molecular Docking Simulation , Molecular Dynamics Simulation , Helicobacter pylori/drug effects , Helicobacter pylori/metabolism , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/metabolism , Humans , Hydrogen Bonding , Ligands , Protein Binding , Principal Component Analysis , Helicobacter Infections/microbiology , Helicobacter Infections/drug therapy , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Stomach Neoplasms/microbiology , Stomach Neoplasms/drug therapy
10.
Int J Mol Sci ; 25(10)2024 May 12.
Article En | MEDLINE | ID: mdl-38791314

Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver triglyceride, liver free fatty acid (FFA), and improved gut microbiota dysbiosis in obese mice. Puerarin's beneficial metabolic effects were attenuated when farnesoid X receptor (FXR) was antagonized, suggesting FXR-mediated mechanisms. In hepatocytes, puerarin ameliorated high FFA-induced sterol regulatory element-binding protein (SREBP) 1 signaling, inflammation, and mitochondrial dysfunction in an FXR-dependent manner. In obese mice, puerarin reduced liver damage, regulated hepatic lipogenesis, decreased inflammation, improved mitochondrial function, and modulated mitophagy and ubiquitin-proteasome pathways, but was less effective in FXR knockout mice. Puerarin upregulated hepatic expression of FXR, bile salt export pump (BSEP), and downregulated cytochrome P450 7A1 (CYP7A1) and sodium taurocholate transporter (NTCP), indicating modulation of bile acid synthesis and transport. Puerarin also restored gut microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of Clostridium celatum and Akkermansia muciniphila. This study demonstrates that puerarin effectively ameliorates metabolic disturbances and gut microbiota dysbiosis in obese mice, predominantly through FXR-dependent pathways. These findings underscore puerarin's potential as a therapeutic agent for managing obesity and enhancing gut health, highlighting its dual role in improving metabolic functions and modulating microbial communities.


Diet, High-Fat , Gastrointestinal Microbiome , Isoflavones , Liver , Obesity , Receptors, Cytoplasmic and Nuclear , Animals , Isoflavones/pharmacology , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Receptors, Cytoplasmic and Nuclear/metabolism , Mice , Obesity/metabolism , Obesity/drug therapy , Liver/metabolism , Liver/drug effects , Male , Dysbiosis , Mice, Obese , Mice, Inbred C57BL , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Mice, Knockout , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/metabolism , Symporters/genetics , Lipid Metabolism/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Akkermansia
11.
Int J Mol Sci ; 25(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38791455

Diabetes mellitus resulting from hyperglycemia stands as the primary cause of diabetic kidney disease. Emerging evidence suggests that plasma concentrations of soy isoflavones, substances with well-established antidiabetic properties, rise following supplemental inulin administration. The investigation encompassed 36 male Sprague-Dawley (SD) rats segregated into two cohorts: non-diabetic and diabetic, induced with type 2 diabetes (high-fat diet + two intraperitoneal streptozotocin injections). Each cohort was further divided into three subgroups (n = 6): control, isoflavone-treated, and isoflavone plus inulin-treated rats. Tail blood glucose and ketone levels were gauged. Upon termination, blood samples were drawn directly from the heart for urea, creatinine, and HbA1c/HbF analyses. One kidney per rat underwent histological (H-E) and immunohistochemical assessments (anti-AQP1, anti-AQP2, anti-AVPR2, anti-SLC22A2, anti-ACC-alpha, anti-SREBP-1). The remaining kidney underwent fatty acid methyl ester analysis. Results unveiled notable alterations in water intake, body and kidney mass, kidney morphology, fatty acids, AQP2, AVPR2, AcetylCoA, SREBP-1, blood urea, creatinine, and glucose levels in control rats with induced type 2 diabetes. Isoflavone supplementation exhibited favorable effects on plasma urea, plasma urea/creatinine ratio, glycemia, water intake, and kidney mass, morphology, and function in type 2 diabetic rats. Additional inulin supplementation frequently modulated the action of soy isoflavones.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Fatty Acids , Glycine max , Inulin , Isoflavones , Kidney , Rats, Sprague-Dawley , Animals , Isoflavones/pharmacology , Inulin/pharmacology , Inulin/administration & dosage , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Male , Rats , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Glycine max/chemistry , Blood Glucose/metabolism , Blood Glucose/drug effects , Diet, High-Fat/adverse effects , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
12.
Biomed Pharmacother ; 174: 116589, 2024 May.
Article En | MEDLINE | ID: mdl-38636400

Diabetic cardiomyopathy (DCM) is a common severe complication of diabetes that occurs independently of hypertension, coronary artery disease, and valvular cardiomyopathy, eventually leading to heart failure. Previous studies have reported that Tectorigenin (TEC) possesses extensive anti-inflammatory and anti-oxidative stress properties. In this present study, the impact of TEC on diabetic cardiomyopathy was examined. The model of DCM in mice was established with the combination of a high-fat diet and STZ treatment. Remarkably, TEC treatment significantly attenuated cardiac fibrosis and improved cardiac dysfunction. Concurrently, TEC was also found to mitigate hyperglycemia and hyperlipidemia in the DCM mouse. At the molecular level, TEC is involved in the activation of AMPK, both in vitro and in vivo, by enhancing its phosphorylation. This is achieved through the regulation of endothelial-mesenchymal transition via the AMPK/TGFß/Smad3 pathway. Furthermore, it was demonstrated that the level of ubiquitination of the adiponectin receptor 1 (AdipoR1) protein is associated with TEC-mediated improvement of cardiac dysfunction in DCM mice. Notably the substantial reduction of myocardial fibrosis. In conclusion, TEC improves cardiac fibrosis in DCM mice by modulating the AdipoR1/AMPK signaling pathway. These findings suggest that TEC could be an effective therapeutic agent for the treatment of diabetic cardiomyopathy.


Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Isoflavones , Animals , Mice , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/etiology , Diet, High-Fat/adverse effects , Epithelial-Mesenchymal Transition/drug effects , Fibrosis/drug therapy , Isoflavones/pharmacology , Isoflavones/therapeutic use , Mice, Inbred C57BL , Myocardium/pathology , Myocardium/metabolism , Receptors, Adiponectin/drug effects , Receptors, Adiponectin/metabolism , Signal Transduction/drug effects , Smad3 Protein/metabolism , Streptozocin
13.
Eur J Pharmacol ; 974: 176621, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38679118

BACKGROUND AND AIM: Necrosis of random-pattern flaps restricts their application in clinical practice. Puerarin has come into focus due to its promising therapeutic effects in ischemic diseases. Here, we employed Puerarin and investigated its role and potential mechanisms in flap survival. EXPERIMENTAL PROCEDURE: The effect of Puerarin on the viability of human umbilical vein endothelial cells (HUVECs) was assessed by CCK-8, EdU staining, migration, and scratch assays. Survival area measurement and laser Doppler blood flow (LDBF) were utilized to assess the viability of ischemic injury flaps. Levels of molecules related to oxidative stress, pyroptosis, autophagy, transcription factor EB (TFEB), and the AMPK-TRPML1-Calcineurin signaling pathway were detected using western blotting, immunofluorescence, dihydroethidium (DHE) staining, RT-qPCR and Elisa. KEY RESULTS: The findings demonstrated that Puerarin enhanced the survivability of ischemic flaps. Autophagy, oxidative stress, and pyroptosis were implicated in the ability of Puerarin in improving flap survival. Increased autophagic flux and augmented tolerance to oxidative stress contribute to Puerarin's suppression of pyroptosis. Additionally, Puerarin modulated the activity of TFEB through the AMPK-TRPML1-Calcineurin signaling pathway, thereby enhancing autophagic flux. CONCLUSIONS AND IMPLICATIONS: Puerarin promoted flap survival from ischemic injury through upregulation of TFEB-mediated autophagy and inhibition of oxidative stress. Our findings offered valuable support for the clinical application of Puerarin in the treatment of ischemic diseases, including random-pattern flaps.


Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Human Umbilical Vein Endothelial Cells , Ischemia , Isoflavones , Pyroptosis , Reactive Oxygen Species , Isoflavones/pharmacology , Isoflavones/therapeutic use , Autophagy/drug effects , Humans , Pyroptosis/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Ischemia/drug therapy , Ischemia/metabolism , Reactive Oxygen Species/metabolism , Animals , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Male , Oxidative Stress/drug effects , Surgical Flaps/blood supply , Mice , Signal Transduction/drug effects , Skin/drug effects , Skin/metabolism , Skin/blood supply , Skin/pathology
14.
J Nat Prod ; 87(4): 1003-1012, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38579352

Three new (1-3) and six known rotenoids (5-10), along with three known isoflavones (11-13), were isolated from the leaves of Millettia oblata ssp. teitensis. A new glycosylated isoflavone (4), four known isoflavones (14-18), and one known chalcone (19) were isolated from the root wood extract of the same plant. The structures were elucidated by NMR and mass spectrometric analyses. The absolute configuration of the chiral compounds was established by a comparison of experimental ECD and VCD data with those calculated for the possible stereoisomers. This is the first report on the use of VCD to assign the absolute configuration of rotenoids. The crude leaves and root wood extracts displayed anti-RSV (human respiratory syncytial virus) activity with IC50 values of 0.7 and 3.4 µg/mL, respectively. Compounds 6, 8, 10, 11, and 14 showed anti-RSV activity with IC50 values of 0.4-10 µM, while compound 3 exhibited anti-HRV-2 (human rhinovirus 2) activity with an IC50 of 4.2 µM. Most of the compounds showed low cytotoxicity for laryngeal carcinoma (HEp-2) cells; however compounds 3, 11, and 14 exhibited low cytotoxicity also in primary lung fibroblasts. This is the first report on rotenoids showing antiviral activity against RSV and HRV viruses.


Antiviral Agents , Isoflavones , Millettia , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/isolation & purification , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Millettia/chemistry , Molecular Structure , Humans , Rotenone/pharmacology , Rotenone/chemistry , Rotenone/analogs & derivatives , Plant Leaves/chemistry , Plant Roots/chemistry , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Viruses/drug effects
15.
Medicina (Kaunas) ; 60(4)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38674244

Background and Objectives: Hormonal changes physiologically occurring in menopausal women may increase the risk of developing metabolic and vasomotor disturbances, which contribute to increase the risk of developing other concomitant pathologies, such as metabolic syndrome (MetS). Materials and Methods: Retrospective data from 200 menopausal women with MetS and vasomotor symptoms taking one sachet per day of the dietary supplement INOFOLIC® NRT (Farmares srl, Rome, Italy) were collected. Each sachet consisted of myo-Inositol (2000 mg), cocoa polyphenols (30 mg), and soy isoflavones (80 mg, of which 50 mg is genistin). Patients recorded their symptoms through a medical questionnaire at the beginning of the administration (T0) and after 6 months (T1). Results: We observed an improvement in both the frequency and the severity of hot flushes: increased percentage of 2-3 hot flushes (28 at T0 vs. 65% at T1, p value < 0.001) and decreased percentage of 4-9 hot flushes (54% at T0 vs. 18% at T1, p value < 0.001). Moreover, symptoms of depression improved after supplementation (87% at T0 vs. 56% at T1 of patients reported moderate depression symptoms, p value < 0.001). Regarding metabolic profile, women improved body mass index and waist circumference with a reduction in the percentage of overweight and obesity women (88% at T0 vs. 51% at T1, p value = 0.01; 14% at T0 vs. 9% at T1, p value = 0.04). In addition, the number of women suffering from non-insulin dependent diabetes reduced (26% at T0 vs. 16% at T1, p value = 0.04). Conclusions: These data corroborate previously observed beneficial effects of the oral administration of myo-Inositol, cocoa polyphenols, and soy isoflavones against menopausal symptoms in the study population. Considering the promising results of the present study, further prospective controlled clinical trials are needed to deeply understand and support the efficacy of these natural compounds for the management of menopausal symptoms.


Dietary Supplements , Glycine max , Hot Flashes , Inositol , Isoflavones , Menopause , Metabolic Syndrome , Polyphenols , Humans , Female , Metabolic Syndrome/drug therapy , Retrospective Studies , Isoflavones/therapeutic use , Isoflavones/pharmacology , Isoflavones/administration & dosage , Middle Aged , Polyphenols/administration & dosage , Polyphenols/therapeutic use , Polyphenols/analysis , Inositol/therapeutic use , Inositol/administration & dosage , Inositol/analysis , Hot Flashes/drug therapy , Menopause/drug effects , Menopause/physiology , Cacao , Metabolome/drug effects
16.
Nutrients ; 16(8)2024 Apr 14.
Article En | MEDLINE | ID: mdl-38674860

Silymarin, salvianolic acids B, and puerarin were considered healthy food agents with tremendous potential to ameliorate non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which they interact with gut microbiota to exert benefits are largely unknown. After 8 weeks of NAFLD modeling, C57BL/6J mice were randomly divided into five groups and fed a normal diet, high-fat diet (HFD), or HFD supplemented with a medium or high dose of Silybum marianum extract contained silymarin or polyherbal extract contained silymarin, salvianolic acids B, and puerarin for 16 weeks, respectively. The untargeted metabolomics and 16S rRNA sequencing were used for molecular mechanisms exploration. The intervention of silymarin and polyherbal extract significantly improved liver steatosis and recovered liver function in the mice, accompanied by an increase in probiotics like Akkermansia and Blautia, and suppressed Clostridium, which related to changes in the bile acids profile in feces and serum. Fecal microbiome transplantation confirmed that this alteration of microbiota and its metabolites were responsible for the improvement in NAFLD. The present study substantiated that alterations of the gut microbiota upon silymarin and polyherbal extract intervention have beneficial effects on HFD-induced hepatic steatosis and suggested the pivotal role of gut microbiota and its metabolites in the amelioration of NAFLD.


Depsides , Diet, High-Fat , Dietary Supplements , Gastrointestinal Microbiome , Isoflavones , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Silymarin , Animals , Gastrointestinal Microbiome/drug effects , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/drug therapy , Diet, High-Fat/adverse effects , Isoflavones/pharmacology , Male , Mice , Silymarin/pharmacology , Benzofurans/pharmacology , Liver/metabolism , Liver/drug effects , Disease Models, Animal , Bile Acids and Salts/metabolism , Plant Extracts/pharmacology
17.
Clin Respir J ; 18(4): e13742, 2024 Apr.
Article En | MEDLINE | ID: mdl-38664220

BACKGROUND: Allergic asthma is an important respiratory system problem characterized by airway inflammation, breathlessness, and bronchoconstriction. Allergic asthma and its outcomes are triggered by type 2 allergic immune responses. Tectorigenin is a methoxy-isoflavone with anti-inflammatory effects. In this study, we investigated the effects of tectorigenin on the pathophysiology of allergic asthma in an animal model. METHODS: Asthmatic mice were treated with tectorigenin. Then airway hyperresponsiveness (AHR), eosinophil percentage, levels of interleukin (IL)-33, IL-25, IL-13, IL-5, IL-4, total and ovalbumin (OVA)-specific immunoglobulin (Ig)E, and lung histopathology were evaluated. RESULT: Tectorigenin significantly (P 〈 0.05) reduced eosinophil infiltration (41 ± 7%) in the broncho-alveolar lavage fluid (BALF), serum IL-5 level (41 ± 5, pg/mL), and bronchial and vascular inflammation (scores of 1.3 ± 0.2 and 1.1 ± 0.3, respectively) but had no significant effects on AHR, serum levels of IL-33, -25, -13, and -4 (403 ± 24, 56 ± 7, 154 ± 11, and 89 ± 6 pg/mL, respectively), total and OVA-specific IgE (2684 ± 265 and 264 ± 19 ng/mL, respectively), goblet cell hyperplasia, and mucus production. CONCLUSION: Tectorigenin could control inflammation and the secretion of inflammatory mediators of asthma, so it can be regarded as a potential antiasthma treatment with the ability to control eosinophilia-related problems.


Anti-Inflammatory Agents , Antioxidants , Asthma , Disease Models, Animal , Isoflavones , Mice, Inbred BALB C , Ovalbumin , Animals , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/immunology , Asthma/pathology , Mice , Ovalbumin/toxicity , Ovalbumin/adverse effects , Isoflavones/pharmacology , Isoflavones/therapeutic use , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Immunoglobulin E/blood , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Female , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/immunology , Cytokines/metabolism
18.
J Agric Food Chem ; 72(19): 10879-10896, 2024 May 15.
Article En | MEDLINE | ID: mdl-38686994

Mammary gland aging is one of the most important problems faced by humans and animals. How to delay mammary gland aging is particularly important. Puerarin is a kind of isoflavone substance extracted from Pueraria lobata, which has anti-inflammatory, antioxidant, and other pharmacological effects. However, the role of puerarin in delaying lipopolysaccharide (LPS)-induced mammary gland aging and its underlying mechanism remains unclear. On the one hand, we found that puerarin could significantly downregulate the expression of senescence-associated secretory phenotype (SASP) and age-related indicators (SA-ß-gal, p53, p21, p16) in mammary glands of mice. In addition, puerarin mainly inhibited the p38MAPK signaling pathway to repair mitochondrial damage and delay mammary gland aging. On the other hand, puerarin could also delay the cellular senescence of mice mammary epithelial cells (mMECs) by targeting gut microbiota and promoting the secretion of gut microbiota metabolites. In conclusion, puerarin could not only directly act on the mMECs but also regulate the gut microbiota, thus, playing a role in delaying the aging of the mammary gland. Based on the above findings, we have discovered a new pathway for puerarin to delay mammary gland aging.


Aging , Gastrointestinal Microbiome , Isoflavones , Mammary Glands, Animal , p38 Mitogen-Activated Protein Kinases , Isoflavones/pharmacology , Animals , Mice , Gastrointestinal Microbiome/drug effects , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Aging/drug effects , Humans , Pueraria/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism , Bacteria/isolation & purification , Signal Transduction/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Cellular Senescence/drug effects , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL
19.
J Immunol ; 212(11): 1670-1679, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38668725

Hashimoto's thyroiditis (HT) is the most common organ-specific autoimmune disease, predominantly affecting women. Although the pathogenesis of HT is incompletely understood, some studies have found that macrophage polarization plays a role. Puerarin is a soy isoflavone compound that has anti-inflammatory and immunomodulatory effects and regulates macrophage immune activity. This study aimed to verify the therapeutic effect of puerarin on HT and explored its regulatory effect on macrophage polarization imbalance in HT. Through bioinformatics analysis and molecular biology methods, it was found that macrophages increased significantly in HT patients and model mice. Immunological staining showed that puerarin intervention could reduce tissue inflammatory cell infiltration. Molecular biological examination displayed that puerarin could inhibit local and systemic inflammation levels, and the expression of marker thyroglobulin and thyroid peroxidase Abs. In vivo experimental results indicated that puerarin regulated macrophage polarity and reduced inflammatory damage, possibly by inhibiting the pyroptosis signaling pathway. In vivo macrophage clearance experiments demonstrated that puerarin relied on macrophages to exert its mechanism of action in treating HT. The results of this study indicate that macrophages are important mediators in the development of HT, and puerarin can regulate macrophage polarity and inflammatory status to provide thyroid tissue protection, which provides a new idea for the treatment of HT.


Isoflavones , Macrophages , Isoflavones/pharmacology , Isoflavones/therapeutic use , Animals , Mice , Macrophages/immunology , Macrophages/drug effects , Humans , Female , Disease Models, Animal , Thyroiditis, Autoimmune/drug therapy , Thyroiditis, Autoimmune/immunology , Hashimoto Disease/drug therapy , Hashimoto Disease/immunology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Pyroptosis/drug effects , Signal Transduction/drug effects
20.
Phytomedicine ; 128: 155412, 2024 Jun.
Article En | MEDLINE | ID: mdl-38579666

BACKGROUND: Psoriasis is a long-lasting, inflammatory, continuous illness caused through T cells and characterized mainly by abnormal growth and division of keratinocytes. Currently, corticosteroids are the preferred option. However, prolonged use of traditional topical medication can lead to adverse reactions and relapse, presenting a significant therapeutic obstacle. Improved alternative treatment options are urgently required. Formononetin (FMN) is a representative component of isoflavones in Huangqi (HQ) [Astragalus membranaceus (Fisch.) Bge.]. It possesses properties that reduce inflammation, combat oxidation, inhibit tumor growth, and mimic estrogen. Although FMN has been shown to ameliorate skin barrier devastation via regulating keratinocyte apoptosis and proliferation, there are no reports of its effectiveness in treating psoriasis. OBJECTIVE: Through transcriptomics clues and experimental investigation, we aimed to elucidate the fundamental mechanisms underlying FMN's action on psoriasis. MATERIALS AND METHODS: Cell viability was examined using CCK8 assay in this study. The results of analysis of differentially expressed genes (DEGs) between FMN-treated HaCaT cells and normal HaCaT cells using RNA-sequencing (RNA-seq) were presented on volcano plots and heatmap. Enrichment analysis was conducted on DEGs using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), and results were validated through RT-qPCR verification. After 12 days of FMN treatment in psoriasis mouse model, we gauged the PASI score and epidermis thickness. A variety of techniques were used to assess FMN's effectiveness on inhibiting inflammation and proliferation related to psoriasis, including RT-qPCR, HE staining, western blot, and immunohistochemistry (IHC). RESULTS: The findings indicated that FMN could suppress the growth of HaCaT cells using CCK8 assay (with IC50 = 40.64 uM) and 20 uM FMN could reduce the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) to the greatest extent. FMN-treated HaCaT cells exhibited 985 up-regulated and 855 down-regulated DEGs compared to normal HaCaT cells. GO analysis revealed that DEGs were linked to interferon (IFN) signaling pathway. Furthermore, FMN improved pathological features, which encompassed decreased erythema, scale, and thickness scores of skin lesions in psoriasis mouse model. In vivo experiments confirmed that FMN down-regulated expression of IFN-α, IFN-ß, IFN-γ, decreased secretion of TNF-α and IL-17 inflammatory factors, inhibited expression of IFN-related chemokines included Cxcl9, Cxcl10, Cxcl11 and Cxcr3 and reduced expression of transcription factors p-STAT1, p-STAT3 and IFN regulatory factor 1 (IRF1) in the imiquimod (IMQ) group. CONCLUSIONS: In summary, these results suggested that FMN played an anti-inflammatory and anti-proliferative role in alleviating psoriasis by inhibiting IFN signaling pathway, and FMN could be used as a potential therapeutic agent.


HaCaT Cells , Isoflavones , Psoriasis , Signal Transduction , Isoflavones/pharmacology , Psoriasis/drug therapy , Animals , Signal Transduction/drug effects , Humans , Mice , Interferons , Cell Survival/drug effects , Keratinocytes/drug effects , Inflammation/drug therapy , Astragalus propinquus/chemistry , Mice, Inbred BALB C , Male , Disease Models, Animal
...