Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.955
Filter
1.
Nat Commun ; 15(1): 5687, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38971862

ABSTRACT

Base editing (BE) faces protospacer adjacent motif (PAM) constraints and off-target effects in both eukaryotes and prokaryotes. For Streptomyces, renowned as one of the most prolific bacterial producers of antibiotics, the challenges are more pronounced due to its diverse genomic content and high GC content. Here, we develop a base editor named eSCBE3-NG-Hypa, tailored with both high efficiency and -fidelity for Streptomyces. Of note, eSCBE3-NG-Hypa recognizes NG PAM and exhibits high activity at challenging sites with high GC content or GC motifs, while displaying minimal off-target effects. To illustrate its practicability, we employ eSCBE3-NG-Hypa to achieve precise key amino acid conversion of the dehydratase (DH) domains within the modular polyketide synthase (PKS) responsible for the insecticide avermectins biosynthesis, achieving domains inactivation. The resulting DH-inactivated mutants, while ceasing avermectins production, produce a high yield of oligomycin, indicating competitive relationships among multiple biosynthetic gene clusters (BGCs) in Streptomyces avermitilis. Leveraging this insight, we use eSCBE3-NG-Hypa to introduce premature stop codons into competitor gene cluster of ave in an industrial S. avermitilis, with the mutant Δolm exhibiting the highest 4.45-fold increase in avermectin B1a compared to the control. This work provides a potent tool for modifying biosynthetic pathways and advancing metabolic engineering in Streptomyces.


Subject(s)
CRISPR-Cas Systems , Cytosine , Gene Editing , Polyketide Synthases , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Gene Editing/methods , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Cytosine/metabolism , Ivermectin/analogs & derivatives , Ivermectin/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Oligomycins
2.
Environ Sci Pollut Res Int ; 31(32): 44717-44729, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954342

ABSTRACT

As a widely used pesticide, abamectin could be a threat to nontarget organisms. In this study, the toxic mechanism of abamectin on osmoregulation in Procambarus clarkii was explored for the first time. The results of this study showed that with increasing abamectin concentration, the membrane structures of gill filaments were damaged, with changes in ATPase activities, transporter contents, biogenic amine contents, and gene expression levels. The results of this study indicated that at 0.2 mg/L abamectin, ion diffusion could maintain osmoregulation. At 0.4 mg/L abamectin, passive transport was inhibited due to damage to the membrane structures of gill filaments, and active transport needed to be enhanced for osmoregulation. At 0.6 mg/L abamectin, the membrane structures of gill filaments were seriously damaged, and the expression level of osmoregulation-related genes decreased, but the organisms were still mobilizing various transporters, ATPases, and biogenic amines to address abamectin stress. This study provided a theoretical basis for further study of the effects of contaminations in aquatic environment on the health of crustaceans.


Subject(s)
Astacoidea , Ivermectin , Osmoregulation , Animals , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Astacoidea/drug effects , Astacoidea/physiology , Water Pollutants, Chemical/toxicity , Gills/drug effects
3.
Environ Sci Pollut Res Int ; 31(32): 44815-44827, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955968

ABSTRACT

To reveal the toxicological mechanisms of pesticide mixtures on soil organisms, this study concentrated on evaluating enzymatic activity and gene expression changes in the earthworm Eisenia fetida (Savigny 1826). Despite being frequently exposed to multiple pesticides, including the common combination of abamectin (ABA) and carbendazim (CAR), environmental organisms have primarily been studied for the effects of individual pesticides. Acute toxicity results exhibited that the combination of ABA and CAR caused a synergistic impact on E. fetida. The levels of MDA, ROS, T-SOD, and caspase3 demonstrated a significant increase across most individual and combined groups, indicating the induction of oxidative stress and cell death. Additionally, the expression of three genes (hsp70, gst, and crt) exhibited a significant decrease following exposure to individual pesticides and their combinations, pointing toward cellular damage and impaired detoxification function. In contrast, a noteworthy increase in ann expression was observed after exposure to both individual pesticides and their mixtures, suggesting the stimulation of reproductive capacity in E. fetida. The present findings contributed to a more comprehensive understanding of the potential toxicity mechanisms of the ABA and CAR mixture, specifically on oxidative stress, cell death, detoxification dysfunction, and reproductive capacity in earthworms. Collectively, these data offered valuable toxicological insights into the combined effects of pesticides on soil organisms, enhancing our understanding of the underlying risks associated with the coexistence of different pesticides in natural soil environments.


Subject(s)
Benzimidazoles , Carbamates , Ivermectin , Oligochaeta , Soil Pollutants , Soil , Animals , Oligochaeta/drug effects , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Carbamates/toxicity , Benzimidazoles/toxicity , Soil/chemistry , Soil Pollutants/toxicity , Oxidative Stress , Pesticides/toxicity
4.
Vet Parasitol ; 330: 110241, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981319

ABSTRACT

Changes to the faecal microbiota of horses associated with administration of anthelmintic drugs is poorly defined. This study included horses with cyathostomin infection where susceptibility and resistance to oxfendazole and abamectin was known. This study assessed the changes to the faecal microbiota associated with administration of two different anthelmintics in this population. Twenty-four adult horses were included. Faecal egg counts were performed on all horses prior to random allocation into abamectin (n=8), oxfendazole (n=8) or Control groups (n=8) and at Day 14 post treatment. Faecal samples were collected for microbiota analysis prior to anthelmintic administration and on Day 3 and Day 14. From each faecal sample, DNA was extracted prior to PCR amplification, next generation sequencing and analysis using QIIME2. Anthelmintic treatment was associated with changes in alpha diversity (p <0.05), with increased evenness and diversity at Day 14 and increased richness at Day 3 within the abamectin group. Differences in relative abundance of bacteria at the phyla, family and genus taxonomic levels occurred after treatment; indicating that the microbiota was altered with anthelmintic administration. The results support that anthelmintic administration and removal of cyathostomins from the large intestine of horses is associated with changes in the faecal microbiota. The results suggest that removal of cyathostomins is associated with greater differences in microbiota, compared to anthelmintic drug administration that is ineffective in reducing cyathostomin infection. Cyathostomin removal was supported by adequate reduction of faecal egg counts, determined by faecal egg count reduction testing.


Subject(s)
Anthelmintics , Feces , Horse Diseases , Ivermectin , Parasite Egg Count , Animals , Horses , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Anthelmintics/administration & dosage , Feces/parasitology , Feces/microbiology , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Ivermectin/therapeutic use , Horse Diseases/drug therapy , Horse Diseases/parasitology , Horse Diseases/microbiology , Parasite Egg Count/veterinary , Female , Male , Microbiota/drug effects , Benzimidazoles
5.
Pestic Biochem Physiol ; 202: 105941, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879332

ABSTRACT

Emamectin benzoate (EMB) is extensively used as a crop protection agent. Overuse of EMB poses a serious threat to the quality of water and non-target organisms in the environment. Resveratrol (RES) is a natural phytoalexin with the function of anti-oxidation and anti-inflammation. Nonetheless, it is unclear whether EMB affects the expression of cytokines and induces autophagy, apoptosis, and necroptosis of hepatocytes (L8824 cell) in grass carp (Ctenopharyngodon idella), and whether RES has an attenuate function in this process. Therefore, we established the L8824 cells model of EMB exposure and treated it with RES. The results showed that compared with the control (CON) group, EMB exposure significantly increased the nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, and the expression of iNOS and phosphorylated nuclear factor kappa B (p-NF-κB) (P < 0.05). In addition, compared with the CON group, the results of flow cytometry and dansylcadaverine (MDC) staining showed a significant increase in apoptosis and autophagy in the EMB-exposed group (P < 0.05) with the activation of the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cysteine-aspartic acid protease 3 (Caspase-3)/cysteine-aspartic acid protease 9 (Caspase-9) pathway and microtubule-associated protein light chain 3 (LC3)/sequestosome 1 (p62)/Beclin1 pathway. EMB exposure significantly increased the mRNA and protein expression of receptor-interacting protein 1 (RIPK1)/receptor-interacting protein 3 (RIPK3)/mixed the lineage kinase domain-like (MLKL) pathway (P < 0.05). Moreover, EMB exposure significantly increased the expression of genes related to immunity (immunoglobulin G (IgG), immunoglobulin M (IgM), and immunoglobulin D (IgD), and antimicrobial peptide-related genes expression including ß-defensin and hepcidin) (P < 0.05). The addition of RES significantly diminished autophagy, apoptosis, necroptosis, and immunity-related gene expression by inhibiting iNOS activity, NO content, and the protein expression of iNOS and p-NF-κB. In conclusion, RES attenuated autophagy, apoptosis, and necroptosis in EMB-exposed L8824 cells via suppression of the NO system/NF-κB signaling pathway.


Subject(s)
Carps , Ivermectin , NF-kappa B , Nitric Oxide , Resveratrol , Signal Transduction , Animals , Carps/metabolism , NF-kappa B/metabolism , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Ivermectin/pharmacology , Nitric Oxide/metabolism , Signal Transduction/drug effects , Resveratrol/pharmacology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Apoptosis/drug effects , Cell Line , Autophagy/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism
6.
Biomater Adv ; 162: 213924, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38875802

ABSTRACT

Chronic myeloid leukemia is a hematological cancer, where disease relapse and drug resistance are caused by bone-hosted-residual leukemia cells. An innovative resolution is bone-homing and selective-active targeting of anticancer loaded-nanovectors. Herein, ivermectin (IVM) and methyl dihydrojasmonate (MDJ)-loaded nanostructured lipid carriers (IVM-NLC) were formulated then dually decorated by lactoferrin (Lf) and alendronate (Aln) to optimize (Aln/Lf/IVM-NLC) for active-targeting and bone-homing potential, respectively. Aln/Lf/IVM-NLC (1 mg) revealed nano-size (73.67 ± 0.06 nm), low-PDI (0.43 ± 0.06), sustained-release of IVM (62.75 % at 140-h) and MDJ (78.7 % at 48-h). Aln/Lf/IVM-NLC afforded substantial antileukemic-cytotoxicity on K562-cells (4.29-fold lower IC50), higher cellular uptake and nuclear fragmentation than IVM-NLC with acceptable cytocompatibility on oral-epithelial-cells (as normal cells). Aln/Lf/IVM-NLC effectively upregulated caspase-3 and BAX (4.53 and 15.9-fold higher than IVM-NLC, respectively). Bone homing studies verified higher hydroxyapatite affinity of Aln/Lf/IVM-NLC (1 mg; 22.88 ± 0.01 % at 3-h) and higher metaphyseal-binding (1.5-fold increase) than untargeted-NLC. Moreover, Aln/Lf/IVM-NLC-1 mg secured 1.35-fold higher in vivo bone localization than untargeted-NLC, with lower off-target distribution. Ex-vivo hemocompatibility and in-vivo biocompatibility of Aln/Lf/IVM-NLC (1 mg/mL) were established, with pronounced amelioration of hepatic and renal toxicity compared to higher Aln doses. The innovative Aln/Lf/IVM-NLC could serve as a promising nanovector for bone-homing, active-targeted leukemia therapy.


Subject(s)
Alendronate , Drug Carriers , Ivermectin , Lactoferrin , Humans , Animals , Drug Carriers/chemistry , Lactoferrin/chemistry , Lactoferrin/pharmacology , Lactoferrin/administration & dosage , Alendronate/chemistry , Alendronate/pharmacology , Alendronate/administration & dosage , Ivermectin/chemistry , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Ivermectin/administration & dosage , Ivermectin/pharmacokinetics , K562 Cells , Nanoparticles/chemistry , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Bone and Bones/drug effects , Bone and Bones/metabolism , Lipids/chemistry , Apoptosis/drug effects
7.
Environ Sci Pollut Res Int ; 31(31): 43987-43995, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38914898

ABSTRACT

One of the most pressing global environmental issues is the widespread abundance and distribution of microplastics (MPs). MPs can act as vectors for other contaminants in the environment making these small plastic particles hazardous for ecosystems. The presence of MPs in aquatic environments may pose threats to aquatic organisms that ingest them. This study examined effects of abamectin (ABM) and polyethylene terephthalate (PET) MP fragments on histopathological and enzymatic biomarkers in zebrafish (Danio rerio). Zebrafish were exposed for 96 h to pristine PET-MPs at concentrations of 5 mg/L and 10 mg/L, ABM alone at 0.006 mg/L, and the same concentration of ABM in the presence of PET-MPs in aquaria. Histopathological analysis revealed tissue content changes in liver and kidney in the presence of ABM individually and in combination with MPs. Results of enzymatic analysis showed that MPs increased the bioavailability and toxicity of pesticides due to inhibition of catalase (CAT) and acid phosphatase (ACP) enzymes. However, MPs did not affect the toxicity of ABM for glutathione s-transferase (GST) enzyme. Despite the inhibition of acetylcholinesterase (AChE) in MPs or ABM treatments, and some neurotoxicity, no change in activity of this enzyme and neurotoxicity was observed in the combined MPs and ABM treatments, although toxicity effects of MPs and ABM on zebrafish require more detailed studies.


Subject(s)
Ivermectin , Polyethylene Terephthalates , Zebrafish , Animals , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Glutathione Transferase/metabolism , Acetylcholinesterase/metabolism
8.
Vet Med Sci ; 10(4): e1500, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38864312

ABSTRACT

BACKGROUND: Sarcoptic mange is rare in cats. The main symptoms reported in cases of feline sarcoptic mange include crusty lesions and pruritus, although these may vary in severity among individuals. OBJECTIVES: This report describes three cats infested with Sarcoptes scabiei, all presenting with pruritus and excoriation. METHODS: The diagnosis was confirmed by microscopic observation of skin scrape samples. RESULTS: All three cats were treated successfully using moxidectin and imidacloprid, selamectin and ivermectin, respectively. CONCLUSIONS: The clinical presentation of feline scabies appears to be more variable in cats than in dogs. Infestation with S. scabiei should be considered a differential diagnosis for cats presenting with pruritic inflammatory skin disease.


Subject(s)
Cat Diseases , Sarcoptes scabiei , Scabies , Animals , Scabies/veterinary , Scabies/drug therapy , Scabies/diagnosis , Cat Diseases/parasitology , Cat Diseases/drug therapy , Cat Diseases/diagnosis , Cats , Male , Female , Poland , Sarcoptes scabiei/drug effects , Ivermectin/therapeutic use , Ivermectin/analogs & derivatives , Nitro Compounds/therapeutic use , Neonicotinoids/therapeutic use , Insecticides/therapeutic use , Macrolides
9.
J Hazard Mater ; 475: 134847, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38885583

ABSTRACT

Herein, we developed a technique for loading nanopesticides onto Metal-Organic Frameworks (MOFs) to control Spodoptera litura. The average short-axis length of the synthesized carrier emamectin benzoate@PCN-222 @hyaluronic acid (EB@PCN-222 @HA) was ∼40 nm, with an average long-axis length of ∼80 nm. This enabled the manipulation of its size, contact angle, and surface tension on the surface of leaves. Pesticide-loading capacity, determined via thermogravimetric analysis, was measured at ∼16 %. To ensure accurate pesticide release in the alkaline intestine of Spodoptera litura, EB@PCN-222 @HA was engineered to decompose under alkaline conditions. In addition, the carrier delayed the degradation rate of EB, enhancing EB's stability. Loading Nile red onto PCN-222 @HA revealed potential entry into the insect body through feeding, which was supported by bioassay experiments. Results demonstrated the sustained-release performance of EB@PCN-222 @HA, extending its effective duration. The impact of different carrier concentrations on root length, stem length, fresh weight, and germination rate of pakchoi and tomato were assessed. Promisingly, the carrier exhibited a growth-promoting effect on the fresh weight of both the crops. Furthermore, cytotoxicity experiments confirmed its safety for humans. In cytotoxicity assays, PCN-222 @HA showed minimal toxicity at concentrations up to 100 mg/L, with cell survival rates above 80 %. Notably, the EB@PCN-222 @HA complex demonstrated reduced cytotoxicity compared to EB alone, supporting its safety for human applications. This study presents a safe and effective approach for pest control using controlled-release pesticides with extended effective durations.


Subject(s)
Ivermectin , Metal-Organic Frameworks , Spodoptera , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Ivermectin/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/toxicity , Animals , Hydrogen-Ion Concentration , Spodoptera/drug effects , Insecticides/toxicity , Insecticides/chemistry , Drug Compounding , Hyaluronic Acid/chemistry , Hyaluronic Acid/toxicity , Solanum lycopersicum
10.
World J Microbiol Biotechnol ; 40(7): 228, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822927

ABSTRACT

Doramectin, an essential animal anthelmintic, is synthesized through the fermentation process of Streptomyces avermitilis. This study delves into the transcriptomic profiles of two strains, namely the doramectin-producing wild-type S. avermitilis N72 and its highly doramectin-producing mutant counterpart, S. avermitilis XY-62. Comparative analysis revealed 860 up-regulated genes and 762 down-regulated genes in the mutant strain, notably impacting the expression of key genes pivotal in doramectin biosynthesis, including aveA1, aveA2, aveA3, aveA4, aveE, and aveBI. These findings shed light on the molecular mechanisms underpinning the heightened doramectin production in S. avermitilis XY-62, presenting promising avenues for optimizing doramectin production processes.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Bacterial , Ivermectin , Mutation , Streptomyces , Transcriptome , Streptomyces/genetics , Streptomyces/metabolism , Ivermectin/analogs & derivatives , Ivermectin/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fermentation , Anthelmintics/metabolism
11.
Toxicon ; 246: 107789, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38843999

ABSTRACT

In recent years, contamination of aquatic systems with Avermectin (AVM) has emerged as a significant concern. This contamination poses substantial challenges to freshwater aquaculture. Plant-derived Quercetin (QUE), known for its anti-inflammatory, antioxidant, and ferroptosis-inhibiting properties, is commonly employed as a supplement in animal feed. However, its protective role against chronic renal injury in freshwater carp induced by AVM remains unclear. This study assesses the influence of dietary supplementation with QUE on the consequences of chronic AVM exposure on carp renal function. The carp were subjected to a 30-day exposure to AVM and were provided with a diet containing 400 mg/kg of QUE. Pathological observations indicated that QUE alleviated renal tissue structural damage caused by AVM. RT-QPCR study revealed that QUE effectively reduced the increased expression levels of pro-inflammatory factors mRNA produced by AVM exposure, by concurrently raising the mRNA expression level of the anti-inflammatory factor. Quantitative analysis using DHE tests and biochemical analysis demonstrated that QUE effectively reduced the buildup of ROS in the renal tissues of carp, activity of antioxidant enzymes CAT, SOD, and GSH-px, which were inhibited by AVM, and increased the content of GSH, which was induced by prolonged exposure to AVM. QUE also reduced the levels of MDA, a marker of oxidative damage. Furthermore, assays for ferroptosis markers indicated that QUE increased the mRNA expression levels of gpx4 and slc7a11, which were reduced due to AVM induction, and it caused a reduction in the mRNA expression levels of ftl, ncoa4, and cox2, along with a drop in the Fe2+ concentration. In summary, QUE mitigates chronic AVM exposure-induced renal inflammation in carp by inhibiting the transcription of pro-inflammatory cytokines. By blocking ROS accumulation, renal redox homeostasis is restored, thereby inhibiting renal inflammation and ferroptosis. This provides a theoretical basis for the development of freshwater carp feed formula.


Subject(s)
Carps , Ferroptosis , Ivermectin , Quercetin , Animals , Quercetin/analogs & derivatives , Quercetin/pharmacology , Ferroptosis/drug effects , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Kidney/drug effects , Kidney/pathology , Dietary Supplements , Antioxidants/pharmacology , Animal Feed/analysis , Pesticides/toxicity
12.
Chemosphere ; 361: 142423, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830461

ABSTRACT

This study investigates the effects of glyphosate-based herbicide (GLY) and pure emamectin benzoate (EB) insecticide on the brackish copepod Pseudodiaptomus annandalei. The 96h median lethal concentration (96 h LC50) was higher in the GLY exposure (male: 3420.96 ± 394.67 µg/L; female: 3093.46 ± 240.67 µg/L) than in the EB (male: 79.10 ± 7.30 µg/L; female: 6.38 ± 0.72 µg/L). Based on the result of 96h LC50, we further examined the effects of GLY and EB exposures at sub-lethal concentrations on the naupliar production of P. annandalei. Subsequently, a multigenerational experiment was conducted to assess the long-term impact of GLY and EB at concentrations 375 µg/L, and 0.025 µg/L respectively determined by sub-lethal exposure testing. During four consecutive generations, population growth, clutch size, prosome length and width, and sex ratio were measured. The copepods exposed to GLY and EB showed lower population growth but higher clutch size than the control group in most generations. Gene expression analysis indicated that GLY and EB exposures resulted in the downregulation of reproduction-related (vitellogenin) and growth-related (myosin heavy chain) genes, whereas a stress-related gene (heat shock protein 70) was upregulated after multigenerational exposure. The results of the toxicity test after post-multigenerational exposure indicated that the long-term GLY-exposed P. annandalei displayed greater vulnerability towards GLY toxicity compared to newly-exposed individuals. Whereas, the tolerance of EB was significantly higher in the long-term exposed copepod than in newly-exposed individuals. This suggests that P. annandalei might have greater adaptability towards EB toxicity than towards GLY toxicity. This study reports for the first time the impacts of common pesticides on the copepod P. annandalei, which have implications for environmental risk assessment and contributes to a better understanding of copepod physiological responses towards pesticide contaminations.


Subject(s)
Copepoda , Glycine , Glyphosate , Herbicides , Insecticides , Ivermectin , Reproduction , Water Pollutants, Chemical , Animals , Copepoda/drug effects , Copepoda/genetics , Glycine/analogs & derivatives , Glycine/toxicity , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Herbicides/toxicity , Reproduction/drug effects , Insecticides/toxicity , Female , Water Pollutants, Chemical/toxicity , Male , Gene Expression/drug effects
13.
Food Chem Toxicol ; 190: 114827, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901726

ABSTRACT

The frequency presence of emamectin benzoate in agricultural production highlights the need for studying their toxicity against human intestinal epithelial barrier (IEB). Herein, we combined a Caco-2 cell model with transcriptome analysis to assess the intestinal toxicity of emamectin benzoate and its disease-causing potential. Results showed that the half maximal inhibitory concentration (IC50) of emamectin benzoate on Caco-2 cell viability after 24, 48, and 72 h of exposure were 18.1, 9.9, and 8.3 µM, respectively. Emamectin benzoate exposure enhanced the Caco-2 monolayer paracellular permeability, damaged the IEB, and increased cellular apoptosis. Key driver gene analysis of 42 apoptosis - related DEGs, identified 10 genes (XIAP, KRAS, MCL1, NRAS, PIK3CA, CYCS, MAPK8, CASP3, FADD, and TNFRSF10B) with the strongest correlation with emamectin benzoate - induced apoptosis. Transcriptomics identified 326 differentially expressed genes (DEGs, 204 upregulated and 122 downregulated). The functional terms of neurodegeneration - multiple diseases was enriched with the most number of DEGs, and the Parkinson disease pathway had the highest enrichment degree. Our findings provided support for environmental toxicology studies and the health risk assessment of emamectin benzoate.


Subject(s)
Apoptosis , Intestinal Mucosa , Ivermectin , Humans , Apoptosis/drug effects , Caco-2 Cells , Cell Survival/drug effects , Intestinal Mucosa/drug effects , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Transcriptome/drug effects
14.
Int J Biol Macromol ; 271(Pt 1): 132562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821809

ABSTRACT

OA-AP, DTAB-AP, DDBAB-AP complexes were synthesized by introducing surfactants of OA, DTAB and DDBAB into attapulgite (AP). The complexes were systematically characterized. The appearance of new diffraction peaks at low angle indicated a new lamellar structure of OA (DTAB, DDBAB)-AP complexes. Then, the pesticide avermectin (AV) composites of AV/DTAB-OA-AP, AV/DDBAB-OA-AP, sodium alginate (SA) @AV/DTAB-OA-AP and SA@AV/DDBAB-OA-AP were prepared and investigated detailedly. The basal spacings of AV/DTAB-OA-AP and AV/DDBAB-OA-AP were bigger than those of OA-AP and DTAB(DDBAB)-AP. The existences of AV, surfactants and SA molecules of the composites were further confirmed. Furthermore the effect of SA on AV release behaviors of SA@AV/DTAB (DDBAB)-OA-AP microspheres was investigated and compared. Compared to AV/DTAB (DDBAB)-OA-AP, the released rate of the microspheres decreased remarkably. The AV release behaviors of AV/DTAB (DDBAB)-OA-AP could be fitted with pseudo second-order model, while the first-order model was better to describe those of the microspheres. Finally, the bioassay of the microspheres were studied and analyzed. The microspheres had a longer duration and control effect on Mythimna separata. This study could be helpful to provide a pesticide delivery system to improve the utilization efficiency of pesticides.


Subject(s)
Alginates , Ivermectin , Magnesium Compounds , Silicon Compounds , Surface-Active Agents , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Ivermectin/pharmacology , Alginates/chemistry , Magnesium Compounds/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis , Silicon Compounds/chemistry , Microspheres , Drug Liberation
15.
Int J Biol Macromol ; 270(Pt 2): 132228, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734355

ABSTRACT

Panonychus citri (McGregor) strains have developed a high level of resistance to abamectin, but the underlying molecular mechanism is unknown. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are critical for the removal of a variety of exogenous and endogenous substances. In this study, an enzyme activity assay revealed that UGTs potentially contribute to P. citri abamectin resistance. Spatiotemporal expression profiles showed that only PcUGT202A9 was significantly overexpressed in the abamectin-resistant strain (AbR) at all developmental stages. Moreover, UGT activity decreased significantly, whereas abamectin susceptibility increased significantly, in AbR after PcUGT202A9 was silenced. Three-dimensional modeling and molecular docking analyses revealed that PcUGT202A9 can bind stably to abamectin. Recombinant PcUGT202A9 activity was detected when α-naphthol was used, but the enzymatic activity was inhibited by abamectin (50 % inhibitory concentration: 803.3 ±â€¯14.20 µmol/L). High-performance liquid chromatography and mass spectrometry analyses indicated that recombinant PcUGT202A9 can effectively degrade abamectin and catalyze the conjugation of UDP-glucose to abamectin. These results imply PcUGT202A9 contributes to P. citri abamectin resistance.


Subject(s)
Glycosyltransferases , Ivermectin , Molecular Docking Simulation , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Animals , Drug Resistance/genetics
16.
Toxicon ; 244: 107755, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740097

ABSTRACT

Avermectin (AVM) has been utilized extensively in agricultural production since it is a low-toxicity pesticide. However, the pollution caused by its residues to fisheries aquaculture has been neglected. As an abundant polyphenolic substance in plants, ferulic acid (FA) possesses anti-inflammatory and antioxidant effects. The goal of the study is to assess the FA's ability to reduce liver damage in carp brought on by AVM exposure. Four groups of carp were created at random: the control group; the AVM group; the FA group; and the FA + AVM group. On day 30, and the liver tissues of carp were collected and examined for the detection of four items of blood lipid as well as the activity of the antioxidant enzymes catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) in carp liver tissues by biochemical kits, and the transcript levels of indicators of oxidative stress, inflammation and apoptosis by qPCR. The results showed that liver injury, inflammation, oxidative stress, and apoptosis were attenuated in the FA + AVM group compared to the AVM group. In summary, dietary addition of FA could ameliorate the hepatotoxicity caused by AVM in carp by alleviating oxidative stress, inflammation, apoptosis in liver tissues.


Subject(s)
Apoptosis , Carps , Coumaric Acids , Inflammation , Ivermectin , Liver , Oxidative Stress , Animals , Coumaric Acids/pharmacology , Oxidative Stress/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Apoptosis/drug effects , Inflammation/drug therapy , Dietary Supplements , Antioxidants/pharmacology
17.
J Agric Food Chem ; 72(22): 12489-12497, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38773677

ABSTRACT

The glutathione S-transferases (GSTs) are important detoxifying enzymes in insects. Our previous studies found that the susceptibility of Chilo suppressalis to abamectin was significantly increased when the CsGST activity was inhibited by glutathione (GSH) depletory. In this study, the potential detoxification mechanisms of CsGSTs to abamectin were explored. Six CsGSTs of C. suppressalis were expressed in vitro. Enzymatic kinetic parameters including Km and Vmax of recombinant CsGSTs were determined, and results showed that all of the six CsGSTs were catalytically active and displaying glutathione transferase activity. Insecticide inhibitions revealed that a low concentration of abamectin could effectively inhibit the activities of CsGSTs including CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1. However, the in vitro metabolism assay found that the six CsGSTs could not metabolize abamectin directly. Additionally, the glutathione transferase activity of CsGSTs in C. suppressalis was significantly increased post-treatment with abamectin. Comprehensive analysis of the results in present and our previous studies demonstrated that CsGSTs play an important role in detoxification of abamectin by catalyzing the conjugation of GSH to abamectin in C. suppressalis, and the high binding affinities of CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1 with abamectin might also suggest the involvement of CsGSTs in detoxification of abamectin via the noncatalytic passive binding and sequestration instead of direct metabolism. These studies are helpful to better understand the detoxification mechanisms of GSTs in insects.


Subject(s)
Glutathione Transferase , Insect Proteins , Insecticides , Ivermectin , Moths , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/chemistry , Animals , Insecticides/metabolism , Insecticides/pharmacology , Insecticides/chemistry , Moths/metabolism , Moths/drug effects , Moths/enzymology , Ivermectin/analogs & derivatives , Ivermectin/metabolism , Ivermectin/pharmacology , Ivermectin/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Kinetics , Oryza/metabolism , Oryza/parasitology , Oryza/chemistry , Glutathione/metabolism , Glutathione/chemistry
18.
Chemosphere ; 359: 142288, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750729

ABSTRACT

Helicoverpa armigera, a ubiquitous polyphagous pest, poses a significant threat to global agriculture, causing substantial economic losses and demonstrating resistance to synthetic pesticides. This study investigates the potential of emamectin benzoate (EMB), an avermectin derivative, as an effective control agent against H. armigera. The larvae of the NBII-MP-NOC-01 strain of H. armigera were reared on an artificial diet. The impact of dietary EMB was examined on four midgut enzymes; alanine aminotransferase (ALT), aspartate aminotransferase (AST), acid phosphatase (ACP), and alkaline phosphatase (ALP). Results showed a dose-dependent and time-dependent reduction in ALT and AST activity, while an initial increase and subsequent decline in ACP and ALP activity at higher EMB concentrations. Computational modelling of enzyme structures and molecular docking studies revealed differential binding of EMB with the midgut enzymes. The strongest interaction was observed between EMB and ALT residues, contrasting with weakest interactions observed with AST. The study also showed that decreased activity of transaminases in H. armigera caused by EMB may be because of stability-activity trade-off, while in phosphatases reverse may be the case. This research provides crucial insights into the biochemical responses and the intricate insecticide-enzyme interactions in H. armigera caused by EMB exposure. This study lays the foundation for further research aimed at developing environmentally friendly approaches for managing H. armigera, addressing the challenges associated with conventional pesticides.


Subject(s)
Acid Phosphatase , Alanine Transaminase , Alkaline Phosphatase , Aspartate Aminotransferases , Insecticides , Ivermectin , Larva , Molecular Docking Simulation , Moths , Animals , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Larva/drug effects , Moths/drug effects , Insecticides/toxicity , Insecticides/chemistry , Insecticides/metabolism , Alkaline Phosphatase/metabolism , Acid Phosphatase/metabolism , Alanine Transaminase/metabolism , Aspartate Aminotransferases/metabolism , Helicoverpa armigera
19.
Sci Total Environ ; 933: 173126, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38734105

ABSTRACT

Studying the toxic effects of pesticides on bees has consistently been a prominent area of interest for researchers. Nonetheless, existing research has predominantly concentrated on individual toxicity assessments, leaving a gap in our understanding of mixed toxicity. This study delves into the individual and combined toxic effects of abamectin (ABA) and lambda-cyhalothrin (LCY) on honey bees (Apis mellifera) in laboratory settings. We discovered that ABA (96 h-LC50 value of 0.079 mg/L) exhibited greater acute toxicity to honey bees compared to LCY (96 h-LC50 value of 9.177 mg/L). Moreover, the mixture of ABA and LCY presented an acute antagonistic effect on honey bees. Additionally, our results indicated that exposure to LCY, at medium concentration, led to a reduction in the abundance of gut core bacterium Snodgrassella. However, an increase in the abundance of Bifidobacterium was noted when exposed to a medium concentration of LCY and its mixture with ABA. Transcriptomic analysis revealed significant regulation of certain genes in the medium concentration of all three treatments compared to the control group, primarily enriching in metabolism and immune-related pathways. Following chronic exposure to field-relevant concentrations of ABA, LCY, and their mixture, there were significant alterations in the activities of immunity-related enzyme polyphenol oxidase (PPO) and detoxification enzymes glutathione S-transferase (GST) and carboxylesterase (CarE). Additionally, the expression of four genes (abaecin, cyp9e2, cyp302a1, and GstD1) associated with immune and detoxification metabolism was significantly altered. These findings suggest a potential health risk posed by the insecticides ABA and LCY to honey bees. Despite exhibiting acute antagonistic effect, mixed exposure still induced damage to bees at all levels. This study advances our knowledge of the potential adverse effects of individual or combined exposure to these two pesticides on non-target pollinators and offers crucial guidance for the use of insecticides in agricultural production.


Subject(s)
Insecticides , Ivermectin , Nitriles , Pyrethrins , Animals , Pyrethrins/toxicity , Bees/drug effects , Bees/physiology , Nitriles/toxicity , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Insecticides/toxicity
20.
J Agric Food Chem ; 72(21): 12146-12155, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747516

ABSTRACT

In this study, an α-amylase-responsive controlled-release formulation was developed by capping polydopamine onto ß-cyclodextrin-modified abamectin-loaded hollow mesoporous silica nanoparticles. The prepared Aba@HMS@CD@PDA were subjected to characterization using various analytical techniques. The findings revealed that Aba@HMS@CD@PDA, featuring a loading rate of 18.8 wt %, displayed noteworthy release behavior of abamectin in the presence of α-amylase. In comparison to abamectin EC, Aba@HMS@CD@PDA displayed a significantly foliar affinity and improved rainfastness on lotus leaves. The results of field trail demonstrated a significantly higher control efficacy against Spodoptera litura Fabricius compared to abamectin EC at all concentrations after 7, 14, and 21 days of spaying, showcasing the remarkable persistence of Aba@HMS@CD@PDA. These results underscore the potential of Aba@HMS@CD@PDA as a novel and persistently effective strategy for sustainable on-demand crop protection. The application of nanopesticides can enhance the effectiveness and efficiency of pesticide utilization, contributing to more sustainable agricultural practices.


Subject(s)
Crop Protection , Insecticides , Nanoparticles , Spodoptera , alpha-Amylases , Animals , alpha-Amylases/chemistry , alpha-Amylases/metabolism , alpha-Amylases/antagonists & inhibitors , Nanoparticles/chemistry , Crop Protection/methods , Spodoptera/drug effects , Insecticides/chemistry , Insecticides/pharmacology , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Ivermectin/pharmacology , Polymers/chemistry , Silicon Dioxide/chemistry , Insect Control , Pesticides/chemistry , Pesticides/pharmacology , Indoles/chemistry , Indoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...