Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
PLoS Biol ; 22(8): e3002779, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39159283

ABSTRACT

Neutrophils are the first immune cells to reach inflamed sites and contribute to the pathogenesis of chronic inflammatory skin diseases. Yet, little is known about the pattern of neutrophil infiltration in inflamed skin in vivo and the mechanisms mediating their recruitment. Here, we provide insight into the dynamics of neutrophil infiltration in skin in response to acute or repeated inflammatory stress, highlighting a novel keratinocyte- and keratin 17 (K17)-dependent mechanism that regulates neutrophil recruitment to inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12 h and resolves within 24 h. A subsequent TPA treatment or a UVB challenge, when applied 24 h but not 48 h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of chemoattractants by stressed keratinocytes. K17 binds RACK1, a scaffold protein essential for PKCα activity. The N-terminal head domain of K17 is crucial for its association with RACK1 and regulation of PKCα activity. Analysis of RNAseq data reveals a signature consistent with TAR and PKCα activation in inflammatory skin diseases. These findings uncover a novel, keratin-dependent mechanism that amplifies neutrophil recruitment in skin under stress, with direct implications for inflammatory skin disorders.


Subject(s)
Keratin-17 , Keratinocytes , Neutrophil Infiltration , Neutrophils , Protein Kinase C-alpha , Skin , Animals , Humans , Male , Mice , Inflammation/metabolism , Inflammation/pathology , Keratin-17/metabolism , Keratin-17/genetics , Keratinocytes/metabolism , Mice, Inbred C57BL , Neutrophils/metabolism , Protein Kinase C-alpha/metabolism , Receptors for Activated C Kinase/metabolism , Receptors for Activated C Kinase/genetics , Skin/metabolism , Skin/pathology , Stress, Physiological , Tetradecanoylphorbol Acetate/pharmacology , Ultraviolet Rays/adverse effects
2.
FASEB J ; 38(15): e23867, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39101950

ABSTRACT

There is a significant difference in prognosis and response to chemotherapy between basal and classical subtypes of pancreatic ductal adenocarcinoma (PDAC). Further biomarkers are required to identify subtypes of PDAC. We selected candidate biomarkers via review articles. Correlations between these candidate markers and the PDAC molecular subtype gene sets were analyzed using bioinformatics, confirming the biomarkers for identifying classical and basal subtypes. Subsequently, 298 PDAC patients were included, and their tumor tissues were immunohistochemically stratified using these biomarkers. Survival data underwent analysis, including Cox proportional hazards modeling. Our results indicate that the pairwise and triple combinations of KRT5/KRT17/S100A2 exhibit a higher correlation coefficient with the basal-like subtype gene set, whereas the corresponding combinations of GATA6/HNF4A/TFF1 show a higher correlation with the classical subtype gene set. Whether analyzing unmatched or propensity-matched data, the overall survival time was significantly shorter for the basal subtype compared with the classical subtype (p < .001), with basal subtype patients also facing a higher risk of mortality (HR = 4.017, 95% CI 2.675-6.032, p < .001). In conclusion, the combined expression of KRT5, KRT17, and S100A2, in both pairwise and triple combinations, independently predicts shorter overall survival in PDAC patients and likely identifies the basal subtype. Similarly, the combined expression of GATA6, HNF4A, and TFF1, in the same manner, may indicate the classical subtype. In our study, the combined application of established biomarkers offers valuable insights for the prognostic evaluation of PDAC patients.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Keratin-17 , Keratin-5 , Pancreatic Neoplasms , S100 Proteins , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Male , Female , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , S100 Proteins/genetics , S100 Proteins/metabolism , Keratin-5/genetics , Keratin-5/metabolism , Aged , Keratin-17/genetics , Keratin-17/metabolism , Prognosis , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Adult , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Chemotactic Factors
3.
Clin Biochem ; 131-132: 110808, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39069115

ABSTRACT

INTRODUCTION: Current diagnostic approaches for bladder cancer (BLCA) are often invasive or lack the required sensitivity and specificity. This underscores the need for an early non-invasive diagnostic test for BLCA. This work aimed to explore the potential of molecular markers in urine-exfoliated cells for the diagnosis of non-muscle-invasive bladder cancer (NMIBC). MATERIALS AND METHODS: Urine specimens (n = 140) were collected from NMIBC patients (n = 68) and control subjects (31 healthy volunteers and 41 non-cancer patients with common urological diseases [CUD]. Total RNA was extracted from the cells isolated from urine specimens. mRNA expression of selected genes: CDC20, KRT15, FOXM1, CXCR2, UPK1B, MDK, KRT20, and KRT17 was determined using RT-qPCR. The receiver operating characteristic (ROC) curve was then plotted to obtain the area under the curve (AUC), specificity, and sensitivity of the urinary mRNA markers. RESULTS: The expression of CDC20, MDK, UPK1B, FOXM1, KRT17, and KRT20 was up-regulated in samples obtained from low- and high-grade pathological grades of NMIBC compared to that measured in healthy subjects. Notably, MDK and KRT17 mRNA levels in the low- and high-grade cases were substantially higher than in normal and CUD groups. The AUC of the KRT17 and MDK combination in diagnosing NMIBC was 0.92, surpassing that of single genes. The sensitivity and specificity of the KRT17 and MDK combination were 74% and 94%, respectively. In diagnosing low-grade from healthy and CUD groups, analysis of the KRT17 and MDK combination yielded AUCs of 0.94 and 0.95, respectively, with sensitivities of 85% and 97%, and specificities of 93% and 85%. CONCLUSION: The findings of this study revealed that KRT17 and MDK together are potential urine-based biomarkers for early diagnosis of NMIBC.


Subject(s)
Biomarkers, Tumor , Keratin-17 , RNA, Messenger , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/urine , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/pathology , Keratin-17/genetics , Keratin-17/urine , Male , Female , RNA, Messenger/urine , RNA, Messenger/genetics , Middle Aged , Biomarkers, Tumor/urine , Biomarkers, Tumor/genetics , Aged , Gene Expression Regulation, Neoplastic , Adult , Non-Muscle Invasive Bladder Neoplasms
4.
Clin Respir J ; 18(7): e13793, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979664

ABSTRACT

One hundred eighty pairs of tissues of esophageal squamous cell carcinoma (ESCC) were tested by the transcriptome sequencing in order to explore etiology factors. The chi-square test and correlation analysis demonstrated that the relative expression levels of keratin 17 (KRT17) and collagen type I α1 chain (COL1A1) were significantly higher in EC with diabetes. Expression of KRT17 was correlated with blood glucose (r = 0.204, p = 0.001) and tumor size (r = -0.177, p = 0.038) in patients. COL1A1 correlated with age (r = -0.170, p = 0.029) and blood glucose levels (r = 0.190, p = 0.015). Experimental results of qRT-PCR: KRT17 and COL1A1 genes were highly expressed in ESCC (p < 0.05). When the two genes were used as a combination test, the positive detection rate of EC was 90.6%, and the ROC curve had greater power. The KRT17 and COL1A1 genes had the potential to be biomarkers for the diagnosis of ESCC.


Subject(s)
Biomarkers, Tumor , Collagen Type I, alpha 1 Chain , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Keratin-17 , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , Keratin-17/genetics , Keratin-17/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Aged , Gene Expression Regulation, Neoplastic
5.
Am J Clin Pathol ; 162(3): 314-326, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38642081

ABSTRACT

OBJECTIVES: To determine the role of keratin 17 (K17) as a predictive biomarker for response to chemotherapy by defining thresholds of K17 expression based on immunohistochemical tests that could be used to optimize therapeutic intervention for patients with pancreatic ductal adenocarcinoma (PDAC). METHODS: We profiled K17 expression, a hallmark of the basal molecular subtype of PDAC, by immunohistochemistry in 2 cohorts of formalin-fixed, paraffin-embedded PDACs (n = 305). We determined a K17 threshold of expression to optimize prognostic stratification according to the lowest Akaike information criterion and explored the potential relationship between K17 and chemoresistance by multivariate predictive analyses. RESULTS: Patients with advanced-stage, low K17 PDACs treated using 5-fluorouracil (5-FU)-based chemotherapeutic regimens had 3-fold longer survival than corresponding cases treated with gemcitabine-based chemotherapy. By contrast, PDACs with high K17 did not respond to either regimen. The predictive value of K17 was independent of tumor mutation status and other clinicopathologic variables. CONCLUSIONS: The detection of K17 in 10% or greater of PDAC cells identified patients with shortest survival. Among patients with low K17 PDACs, 5-FU-based treatment was more likely than gemcitabine-based therapies to extend survival.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Keratin-17 , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/diagnosis , Biomarkers, Tumor/metabolism , Male , Female , Prognosis , Middle Aged , Aged , Keratin-17/metabolism , Keratin-17/genetics , Fluorouracil/therapeutic use , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Gemcitabine , Immunohistochemistry , Adult , Aged, 80 and over
6.
Biochem Biophys Res Commun ; 709: 149834, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38547608

ABSTRACT

BACKGROUND: Cadmium exposure induces dermatotoxicity and epidermal barrier disruption and leads to the development of various pathologies. HaCaT cells are immortalized human keratinocytes that are widely used as alternatives to primary human keratinocytes, particularly for evaluating cadmium toxicity. HaCaT cells bear two gain-of-function (GOF) mutations in the TP53 gene, which strongly affect p53 function. Mutant forms of p53 are known to correlate with increased resistance to various stimuli, including exposure to cytotoxic substances. In addition, keratin 17 (KRT17) was recently shown to be highly expressed in HaCaT cells in response to genotoxic stress. Moreover, p53 is a direct transcriptional repressor of KRT17. However, the impact of TP53 mutations in HaCaT cells on the regulation of cell death and keratin 17 expression is unclear. In this study, we aimed to evaluate the impact of p53 on the response to Cd-induced cytotoxicity. METHODS AND RESULTS: Employing the MTT assay and Annexin V/propidium iodide staining, we demonstrated that knockout of TP53 leads to a decrease in the sensitivity of HaCaT cells to the cytotoxic effects of cadmium. Specifically, HaCaT cells with TP53 knockout (TP53 KO HaCaT) exhibited cell death at a cadmium concentration of 10 µM or higher, whereas wild-type cells displayed cell death at a concentration of 30 µM. Furthermore, apoptotic cells were consistently detected in TP53 KO HaCaT cells upon exposure to low concentrations of cadmium (10 and 20 µM) but not in wild-type cells. Our findings also indicate that cadmium cytotoxicity is mediated by reactive oxygen species (ROS), which were significantly increased only in TP53 knockout cells treated with 30 µM cadmium. An examination of proteomic data revealed that TP53 knockout in HaCaT cells resulted in the upregulation of proteins involved in the regulation of apoptosis, redox systems, and DNA repair. Moreover, RT‒qPCR and immunoblotting showed that cadmium toxicity leads to dose-dependent induction of keratin 17 in p53-deficient cells but not in wild-type cells. CONCLUSIONS: The connection between mutant p53 in HaCaT keratinocytes and increased resistance to cadmium toxicity was demonstrated for the first time. Proteomic profiling revealed that TP53 knockout in HaCaT cells led to the activation of apoptosis regulatory circuits, redox systems, and DNA repair. In addition, our data support the involvement of keratin 17 in the regulation of DNA repair and cell death. Apparently, the induction of keratin 17 is p53-independent but may be inhibited by mutant p53.


Subject(s)
Genes, p53 , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cadmium/metabolism , Keratin-17/genetics , Keratin-17/metabolism , Proteomics , Cell Line , Cell Death , Keratinocytes/metabolism , Apoptosis/genetics
7.
Genes Genomics ; 45(10): 1329-1338, 2023 10.
Article in English | MEDLINE | ID: mdl-37634232

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with the highest degree of malignancy and is easily resistant to drugs due to the lack of hormone receptors. Research on the resistance mechanisms in TNBC is particularly important. Keratin 17 (KRT17) is highly expressed in TNBC. Anthracycline doxorubicin (Dox) is a commonly used chemotherapeutic drug for early stage triple-negative breast cancer. OBJECTIVE: This study investigated the role of KRT17 in TNBC-Dox resistance. METHODS: Immuno-histochemical staining, qPCR, western blotting (WB), and immunofluorescence were used to detect the expression of KRT17 in TNBC-Dox-resistant patients and in TNBC-Dox-resistant MDA-MB-468 and MDA-MB-231. the effect of KRT17 on the proliferation and migration in KRT17 knockdown of TNBC-Dox-resistant cells was determined by the CCK8, clone formation, transwell invasion and wound healing assays were used to determine. RESULTS: KRT17 was highly expressed in the TNBC-Dox-resistant cells. Knockdown of KRT17 significantly reduced the IC50s of TNBC-Dox-resistant and parental strains and also reduced the proliferation and invasion abilities of TNBC-Dox-resistant cell lines. KRT17 regulated the Wnt/ß-catenin signaling pathway. The inhibitory effect of KRT17 knockdown on the proliferation and migration of TNBC-Dox-resistant cells was reversed by an activator of the Wnt signaling pathway. CONCLUSION: KRT17 can inhibit the Wnt/ß-catenin signaling pathway, thereby reducing the proliferation and invasion ability of TNBC-Dox-resistant cells.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Anthracyclines , Doxorubicin/pharmacology , Keratin-17/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Wnt Signaling Pathway
8.
Int J Biol Sci ; 19(11): 3395-3411, 2023.
Article in English | MEDLINE | ID: mdl-37497003

ABSTRACT

Dysregulated glucose metabolism is an important characteristic of psoriasis. Cytoskeletal protein keratin 17 (K17) is highly expressed in the psoriatic epidermis and contributes to psoriasis pathogenesis. However, whether K17 is involved in the dysregulated glucose metabolism of keratinocytes (KCs) in psoriasis remains unclear. In the present study, loss- and gain-of-function studies showed that elevated K17 expression was critically involved in glycolytic pathway activation in psoriatic KCs. The level of α-enolase (ENO1), a novel potent interaction partner of K17, was also elevated in psoriatic KCs. Knockdown of ENO1 by siRNA or inhibition of ENO1 activity by the inhibitor ENOBlock remarkably suppressed KCs glycolysis and proliferation. Moreover, ENO1 directly interacted with K17 and maintained K17-Ser44 phosphorylation to promote the nuclear translocation of K17, which promoted the transcription of the key glycolysis enzyme lactic dehydrogenase A (LDHA) and resulted in enhanced KCs glycolysis and proliferation in vitro. Finally, either inhibiting the expression and activation of ENO1 or repressing K17-Ser44 phosphorylation significantly alleviated the IMQ-induced psoriasis-like phenotype in vivo. These findings provide new insights into the metabolic profile of psoriatic KCs and suggest that modulation of the ENO1-K17-LDHA axis is a potentially innovative therapeutic approach to psoriasis.


Subject(s)
Keratin-17 , Psoriasis , Humans , Cell Proliferation/genetics , Glucose/metabolism , Keratin-17/genetics , Keratin-17/metabolism , Keratinocytes/metabolism , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism
9.
Biomolecules ; 12(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-36139022

ABSTRACT

Breast cancer (BC) is one of the most common types of malignancies in women and greatly threatens female health. KRT17 is a member of the keratin (KRT) protein family that is abundant in the outer layer of the skin, where it protects epithelial cells from damage. Although KRT17 has been studied in many types of cancer, the expression of KRT17 in specific subtypes of BC remains to be determined. In our study, we explored the expression and prognostic implications of KRT17 in BC patients using mRNA transcriptome data and clinical BC data from The Cancer Genome Atlas (TCGA). Receiver operating characteristic (ROC) curves and the chi-square test were used to assess the diagnostic value of KRT17 expression. Quantitative real-time PCR (qRT-PCR) analysis of BC cells and tissues and immunohistochemistry (IHC) analysis of clinical tissues were used for external validation. Furthermore, the relationship between KRT17 and immune function was studied by using the CIBERSORT algorithm to predict the proportions of tumor-infiltrating immune cells (TIICs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the potential mechanisms by which KRT17 expression influences patient survival. We found that KRT17 expression was significantly lower in BC tissues than in normal tissues, especially in the luminal-A, luminal-B and human epidermal growth factor receptor-2 (HER2)+ subtypes of BC. ROC analysis revealed that KRT17 expression had moderate diagnostic value. Interestingly, decreased expression of KRT17 was significantly correlated with poor prognosis in BC patients, especially in HER2high and ERhigh patients. This trend was also verified by tissue microarray (TMA) analysis. KRT17 was found to be involved in some antitumor immune pathways, especially the IL-17 signaling pathway, and associated with multiple immune cells, such as natural killer (NK) and CD4+ T cells. In conclusion, high expression of KRT17 predicted favorable prognosis in BC patients with higher HER2 expression. This result may indicate that KRT17 plays a different role depending on the level of HER2 expression and could serve as a promising and sensitive biomarker for the diagnosis and prognostication of HER2high BC.


Subject(s)
Breast Neoplasms , Keratin-17 , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Humans , Interleukin-17/genetics , Keratin-17/genetics , RNA, Messenger
11.
Br J Dermatol ; 187(5): 773-777, 2022 11.
Article in English | MEDLINE | ID: mdl-35822506

ABSTRACT

The phenotypic spectrum of genodermatoses is continuously expanding. Three siblings were referred because of a highly unusual phenotype comprising alopecia, dystrophic nails, palmoplantar keratoderma and trauma-induced skin blistering. Whole-exome sequencing analysis identified a heterozygous large genomic alteration of around 116 0000 bp resulting in the deletion of the KRT9, KRT14, KRT15, KRT16 and KRT19 genes, as well as part of KRT17. This genomic change leads to the generation of a truncated keratin 17 (KRT17) protein encoded by the first three exons of the gene and part of intron 3. The three patients were found to carry the heterozygous genomic deletion while their healthy parents did not, indicative of germline mosaicism. The genomic alteration was found to result in reduced KRT17 expression in patient skin. More importantly, the abnormal truncated KRT17 was found to exert a deleterious effect on keratinocyte cytoskeleton formation, leading to keratin aggregation. Coexpression of wildtype and truncated KRT17 proteins also caused keratin aggregation, demonstrating that the deletion exerts a dominant negative effect. In conclusion, we are reporting on a novel clinical phenotype that was found to result from germline mosaicism for a large genomic deletion spanning six keratin genes, thus expanding the spectrum of clinical manifestations associated with keratin disorders. What is already known about this topic? Various conditions known as keratinopathies have been shown over recent years to be associated with dominant or recessive variants in several individual keratin genes. What does this study add? We report three patients presenting with a unique clinical phenotype that was found to result from germline mosaicism for a large genomic deletion spanning six keratin genes. The genomic variant is predicted to result in a truncated form of keratin 17, which was found in an in vitro assay to disrupt keratinocyte cell cytoskeleton formation.


Subject(s)
Keratin-17 , Keratins , Keratin-17/genetics , Heterozygote , Phenotype , Cytoskeleton , Mutation , Keratin-6/genetics , Keratin-14/genetics , Keratin-16
12.
J Biomed Sci ; 29(1): 42, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35706019

ABSTRACT

BACKGROUND: The development of drug resistance in oral squamous cell carcinoma (OSCC) that frequently leads to recurrence and metastasis after initial treatment remains an unresolved challenge. Presence of cancer stem cells (CSCs) has been increasingly reported to be a critical contributing factor in drug resistance, tumor recurrence and metastasis. Thus, unveiling of mechanisms regulating CSCs and potential targets for developing their inhibitors will be instrumental for improving OSCC therapy. METHODS: siRNA, shRNA and miRNA that specifically target keratin 17 (KRT17) were used for modulation of gene expression and functional analyses. Sphere-formation and invasion/migration assays were utilized to assess cancer cell stemness and epithelial mesenchymal transition (EMT) properties, respectively. Duolink proximity ligation assay (PLA) was used to examine molecular proximity between KRT17 and plectin, which is a large protein that binds cytoskeleton components. Cell proliferation assay was employed to evaluate growth rates and viability of oral cancer cells treated with cisplatin, carboplatin or dasatinib. Xenograft mouse tumor model was used to evaluate the effect of KRT17- knockdown in OSCC cells on tumor growth and drug sensitization. RESULTS: Significantly elevated expression of KRT17 in highly invasive OSCC cell lines and advanced tumor specimens were observed and high KRT17 expression was correlated with poor overall survival. KRT17 gene silencing in OSCC cells attenuated their stemness properties including markedly reduced sphere forming ability and expression of stemness and EMT markers. We identified a novel signaling cascade orchestrated by KRT17 where its association with plectin resulted in activation of integrin ß4/α6, increased phosphorylation of FAK, Src and ERK, as well as stabilization and nuclear translocation of ß-catenin. The activation of this signaling cascade was correlated with enhanced OSCC cancer stemness and elevated expression of CD44 and epidermal growth factor receptor (EGFR). We identified and demonstrated KRT17 to be a direct target of miRNA-485-5p. Ectopic expression of miRNA-485-5p inhibited OSCC sphere formation and caused sensitization of cancer cells towards cisplatin and carboplatin, which could be significantly rescued by KRT17 overexpression. Dasatinib treatment that inhibited KRT17-mediated Src activation also resulted in OSCC drug sensitization. In OSCC xenograft mouse model, KRT17 knockdown significantly inhibited tumor growth, and combinatorial treatment with cisplatin elicited a greater tumor inhibitory effect. Consistently, markedly reduced levels of integrin ß4, active ß-catenin, CD44 and EGFR were observed in the tumors induced by KRT17 knockdown OSCC cells. CONCLUSIONS: A novel miRNA-485-5p/KRT17/integrin/FAK/Src/ERK/ß-catenin signaling pathway is unveiled to modulate OSCC cancer stemness and drug resistance to the common first-line chemotherapeutics. This provides a potential new therapeutic strategy to inhibit OSCC stem cells and counter chemoresistance.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Keratin-17/metabolism , MicroRNAs , Mouth Neoplasms , Animals , Carboplatin/pharmacology , Carboplatin/therapeutic use , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cisplatin/pharmacology , Cisplatin/therapeutic use , Dasatinib/pharmacology , Dasatinib/therapeutic use , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Humans , Integrin beta4/genetics , Integrin beta4/metabolism , Integrins/genetics , Integrins/metabolism , Integrins/therapeutic use , Keratin-17/genetics , Keratin-17/pharmacology , Mice , MicroRNAs/pharmacology , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Plectin/genetics , Plectin/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , beta Catenin/genetics
13.
Eur J Hum Genet ; 30(11): 1292-1296, 2022 11.
Article in English | MEDLINE | ID: mdl-35676340

ABSTRACT

We present the first pachyonychia congenita (PC) to involve all ectodermal derivatives and the first recessive KRT17-related PC in total seven members of two consanguineous Pakistani families. This atypical PC is characterized by an unusual combination of pachyonychia, plantar keratoderma, folliculitis, alopecia, sparse eyebrows, dental anomalies and variable acanthosis nigricans of neck, dry skin, palmoplantar hyperhidrosis, recurrent blisters on soles and/or arms, rough sparse hair on scalp and keratosis pilaris. By exome sequencing we detected homozygous KRT17 c.281G>A (p.(Arg94His)) in affected individuals, and linkage mapping indicated a single locus. Heterozygous variants in KRT17 cause PC2 (PC-K17) with main characteristics of pachyonychia, subungual keratosis, palmoplantar keratoderma, hyperhidrosis, oral leukokeratosis and epidermal cysts, or steatocystoma multiplex, both with dominant inheritance. The causative variant has been reported in heterozygous state in a family afflicted with severe steatocystoma multiplex and in a sporadic PC2 case, and thus we also define a third phenotype related to the variant. Both exome sequencing and linkage mapping demonstrated recessive inheritance whereas Sanger sequencing indicated heterozygosity for the causal variant, reiterating caution for simple targeted sequencing for genetic testing. Testing parents for variants found in sibs could uncover recessive inheritance also in other KRT genes.


Subject(s)
Hyperhidrosis , Nails, Malformed , Pachyonychia Congenita , Steatocystoma Multiplex , Tooth Abnormalities , Humans , Eyebrows , Keratin-17/genetics , Mutation , Nails, Malformed/genetics , Pachyonychia Congenita/genetics , Pedigree
14.
Br J Dermatol ; 187(3): 392-400, 2022 09.
Article in English | MEDLINE | ID: mdl-35606927

ABSTRACT

BACKGROUND: The coexistence of pachyonychia congenita (PC) and hidradenitis suppurativa (HS) has been described in case reports. However, the pathomechanism underlying this association and its true prevalence are unknown. OBJECTIVES: To determine the genetic defect underlying the coexistence of PC and HS in a large kindred, to delineate a pathophysiological signalling defect jointly leading to both phenotypes, and to estimate the prevalence of HS in PC. METHODS: We used direct sequencing and a NOTCH luciferase reporter assay to characterize the pathophysiological basis of the familial coexistence of HS and PC. A questionnaire was distributed to patients with PC registered with the International Pachyonychia Congenita Research Registry (IPCRR) to assess the prevalence of HS among patients with PC. RESULTS: Direct sequencing of DNA samples obtained from family members displaying both PC and HS demonstrated a missense variant (c.275A>G) in KRT17, encoding keratin 17. Abnormal NOTCH signalling has been suggested to contribute to HS pathogenesis. Accordingly, the KRT17 c.275A>G variant resulted in a significant decrease in NOTCH activity. To ascertain the clinical importance of the association of HS with PC, we distributed a questionnaire to all patients with PC registered with the IPCRR. Seventy-two of 278 responders reported HS-associated clinical features (25·9%). Disease-causing mutations in KRT17 were most prevalent among patients with a dual phenotype of PC and HS (43%). CONCLUSIONS: The coexistence of HS and KRT17-associated PC is more common than previously thought. Impaired NOTCH signalling as a result of KRT17 mutations may predispose patients with PC to HS. What is already known about this topic? The coexistence of pachyonychia congenita (PC) and hidradenitis suppurativa (HS) has been described in case reports. However, the pathomechanism underlying this association and its true prevalence are unknown. What does this study add? A dual phenotype consisting of PC and HS was found to be associated with a pathogenic variant in KRT17. This variant was found to affect NOTCH signalling, which has been previously implicated in HS pathogenesis. HS was found to be associated with PC in a large cohort of patients with PC, especially in patients carrying KRT17 variants, suggesting that KRT17 variants causing PC may also predispose to HS. What is the translational message? These findings suggest that patients with PC have a higher prevalence of HS than previously thought, and hence physicians should have a higher level of suspicion of HS diagnosis in patients with PC.


Subject(s)
Hidradenitis Suppurativa , Pachyonychia Congenita , Hidradenitis Suppurativa/complications , Hidradenitis Suppurativa/genetics , Humans , Keratin-17/genetics , Mutation/genetics , Pachyonychia Congenita/complications , Pachyonychia Congenita/diagnosis , Pachyonychia Congenita/genetics , Phenotype
15.
Cancer Res ; 82(7): 1159-1166, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34921015

ABSTRACT

There is an unmet need to identify and validate tumor-specific therapeutic targets to enable more effective treatments for cancer. Heterogeneity in patient clinical characteristics as well as biological and genetic features of tumors present major challenges for the optimization of therapeutic interventions, including the development of novel and more effective precision medicine. The expression of keratin 17 (K17) is a hallmark of the most aggressive forms of cancer across a wide range of anatomical sites and histological types. K17 correlates with shorter patient survival, predicts resistance to specific chemotherapeutic agents, and harbors functional domains that suggest it could be therapeutically targeted. Here, we explore the role of K17 in the hallmarks of cancer and summarize evidence to date for K17-mediated mechanisms involved in each hallmark, elucidating functional roles that warrant further investigation to guide the development of novel therapeutic strategies.


Subject(s)
Keratin-17 , Neoplasms , Antineoplastic Agents/pharmacology , Carcinogenesis/genetics , Humans , Keratin-17/genetics , Keratin-17/metabolism
16.
J Orofac Orthop ; 83(Suppl 1): 65-74, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33725141

ABSTRACT

PURPOSE: The goal of this study was to assess genes known to be associated with tooth agenesis with next-generation sequencing (NGS) and analyze the relationship between these mutations and tooth agenesis phenotypes. METHODS: The study included 49 individuals aged between 6 and 13 years. A total of 14 genes related to nonsyndromic tooth agenesis were selected for targeted NGS. Mutations in Msh homeobox 1 (MSX1), Wnt family member 10A (WNT10A), axis inhibition protein 2 (AXIN2), keratin 17 (KRT17), lipoprotein receptor 6 (LRP6), and secreted protein, acidic and rich in cysteine (SPARC)-related modular calcium-binding protein 2 (SMOC2) genes were investigated. RESULTS: Mutations in six genes were detected in 12 of 49 subjects. Fifteen variants were identified, including the unknown variants c.657G > C in MSX1, c.2029C > T in AXIN2, and c.1603A > T in LRP6. Second premolar tooth agenesis was observed in 43.3% of all tooth agenesis cases with mutations, and it was the predominant phenotype observed for each mutated gene, followed by tooth agenesis of the lateral incisors (20%). CONCLUSIONS: Variations in MSX1, WNT10A, AXIN2, KRT17, LRP6, and SMOC2 may be a risk factor for hypodontia or oligodontia in the Turkish population.


Subject(s)
Anodontia , Receptors, Lipoprotein , Humans , Anodontia/diagnosis , Anodontia/epidemiology , Anodontia/genetics , Calcium-Binding Proteins/genetics , Cysteine/genetics , High-Throughput Nucleotide Sequencing , Keratin-17/genetics , Mutation/genetics , Receptors, Lipoprotein/genetics , Turkey
17.
Semin Cell Dev Biol ; 128: 112-119, 2022 08.
Article in English | MEDLINE | ID: mdl-34229948

ABSTRACT

Keratin 17 (K17) is a multifaceted cytoskeletal protein that is not commonly expressed in the epidermis under normal physiological conditions. However, in psoriasis, K17 is overexpressed in the suprabasal layer of the epidermis and plays an important role in the pathogenesis of the disease. In this review, we have summarized our findings and those reported in other studies concerning the pathogenic functions of K17, as well as the mechanisms underlying the increase in K17 expression in psoriasis. K17 exerts both pro-proliferative and pro-inflammatory effects on keratinocytes. Moreover, K17 peptides trigger autoreactive T cells and promote psoriasis-related cytokine production. In turn, these cytokines modulate the expression, stability, and protein-protein interactions of K17 through transcriptional and translational regulation and post-translational modification of K17 in keratinocytes. Thus, a K17/T-cell/cytokine autoimmune loop is implicated in the pathogenesis of psoriasis, which is supported by the fact that therapies targeting K17 have achieved good outcomes in psoriasis-like mouse models. Future perspectives of K17 in psoriasis have also been discussed to provide potential directions for further studies.


Subject(s)
Keratin-17 , Psoriasis , Animals , Cytokines/metabolism , Epidermis/metabolism , Humans , Keratin-17/genetics , Keratin-17/metabolism , Keratinocytes/pathology , Mice , Psoriasis/genetics , Psoriasis/metabolism , Psoriasis/pathology
18.
Bioengineered ; 12(2): 12598-12611, 2021 12.
Article in English | MEDLINE | ID: mdl-34935584

ABSTRACT

Colon adenocarcinoma (COAD), having high malignancy and poor prognosis, is the main pathological type of colon cancer. Previous studies show that Keratin 17 (KRT17) plays an important role in the development of many malignant tumors. However, its role and the molecular mechanism underlying COAD remain unclear. Using TCGA and ONCOMINE databases, as well as immunohistochemistry, we found that the expression of KRT17 was higher in COAD tissues as compared to that in the adjacent normal tissues. Cell- and animal-based experiments showed that overexpression of KRT17 promoted the invasion and metastasis of colon cancer cells while knocking down KRT17 reversed these processes both in vitro and in vivo. In addition, we also showed that KRT17 promoted the formation of new blood vessels. Mechanistically, KRT17 could regulate the WNT/ß-catenin signaling pathway, and APC may be involved in this process by interacting with KRT17. In summary, these findings suggested that high expression of KRT17 could promote cell metastasis and angiogenesis of colon cancer cells by regulating the WNT/ß-catenin signaling pathway. Thus, KRT17 could be a potential therapeutic target for COAD treatment.


Subject(s)
Colonic Neoplasms/blood supply , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Keratin-17/genetics , Neovascularization, Pathologic/genetics , Up-Regulation , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Cell Line, Tumor , Chickens , Colonic Neoplasms/genetics , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Keratin-17/metabolism , Male , Mice, Inbred C57BL , Mice, Nude , Middle Aged , Neoplasm Invasiveness , Neoplasm Metastasis , Up-Regulation/genetics , Wnt Signaling Pathway/genetics
20.
J Invest Dermatol ; 141(12): 2876-2884.e4, 2021 12.
Article in English | MEDLINE | ID: mdl-34116063

ABSTRACT

Pachyonychia congenita (PC) is a genetic disorder of keratin that presents with nail dystrophy, painful palmoplantar keratoderma, and other clinical manifestations. We investigated the genotype‒structurotype‒phenotype correlations seen with mutations in keratin genes (keratin [K]6A, K6B, K6C, K16, K17) and utilized protein structure modeling of high-frequency mutations to examine the functional importance of keratin structural domains in PC pathogenesis. Participants of the International PC Research Registry underwent genetic testing and completed a standardized survey on their symptoms. Our results support previous reports associating oral leukokeratosis with K6A mutations and cutaneous cysts, follicular hyperkeratosis, and natal teeth with K17 mutations. Painful keratoderma was prominent with K6A and K16 mutations. Nail involvement was most common in patients with K6A mutation and least common in those with K6C mutation. Across keratin subtypes, patients with coil 2B mutations had the greatest impairment in ambulation, and patients with coil 1A mutations reported more emotional issues. Molecular modeling demonstrated that hotspot missense mutations in PC largely disrupted hydrophobic interactions or surface charge. The former may destabilize keratin dimers/tetramers, whereas the latter likely interferes with higher-order keratin filament formation. Understanding the pathologic alterations in keratin structure improves our knowledge of how PC genotype correlates with clinical phenotype, advancing insight into disease pathogenesis and therapeutic development.


Subject(s)
Genetic Association Studies , Keratins/genetics , Mutation , Pachyonychia Congenita/genetics , Humans , Keratin-16/genetics , Keratin-17/genetics , Keratin-6/genetics , Models, Molecular , Pachyonychia Congenita/psychology
SELECTION OF CITATIONS
SEARCH DETAIL