Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 13.934
1.
Ren Fail ; 46(2): 2359638, 2024 Dec.
Article En | MEDLINE | ID: mdl-38832484

Emerging data have revealed that damage to tubular epithelial cell is a driving force in the progression of diabetic kidney disease (DKD). However, the specific mechanisms by which lipotoxicity contributes to the injury of these cells, thereby influencing the development of DKD, are yet to be fully understood. Here, we analyzed the GSE 30529 microarray datasets of human tubulointerstitial tissue samples from the Gene Expression Omnibus database (GEO). Concurrently, we conducted RNA-sequencing on palmitic acid (PA)-treated human renal proximal tubule epithelial cells (HK2 cells). After normalization, the differentially expressed genes (DEGs) were screened by R software and gene ontology (GO) enrichment analysis was conducted, and lysosomal-associated protein transmembrane 5 (LAPTM5) was finally selected. Our findings indicate that the expression of LAPTM5 was obviously increased in DKD patients, and the correlation between LAPTM5, and other clinical parameters of DKD was analyzed using the Spearman correlation analysis. The potential of LAPTM5 as a prognostic biomarker for DKD was further consolidated through receiver operating characteristic (ROC) analysis. To further verify the function of LAPTM5, we established mouse or in vitro systems mimicking DKD. The results showed that a consistent upregulation of LAPTM5, which was also found to be linked with inflammatory mediators within the context of DKD. Additionally, LAPTM5 silencing significantly downregulated mRNA expression of inflammatory factors in PA-treated HK2 cells. These results indicate that LAPTM5 is a potential biomarker and therapeutic treatment target for DKD. This discovery paves the way for future research and development of targeted interventions aimed at mitigating the progression of this prevalent condition.


Computational Biology , Diabetic Nephropathies , Membrane Proteins , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Humans , Animals , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Cell Line , Palmitic Acid/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Male , Mice, Inbred C57BL , Up-Regulation , Biomarkers/metabolism
2.
Ren Fail ; 46(1): 2347462, 2024 Dec.
Article En | MEDLINE | ID: mdl-38832497

Diabetic nephropathy (DN) is one of the most serious and frequent complications among diabetes patients and presently constitutes vast the cases of end-stage renal disease worldwide. Tubulointerstitial fibrosis is a crucial factor related to the occurrence and progression of DN. Oridonin (Ori) is a diterpenoid derived from rubescens that has diverse pharmacological properties. Our previous study showed that Ori can protect against DN by decreasing the inflammatory response. However, whether Ori can alleviate renal fibrosis in DN remains unknown. Here, we investigated the mechanism through which Ori affects the Wnt/ß-catenin signaling pathway in diabetic rats and human proximal tubular epithelial cells (HK-2) exposed to high glucose (HG) levels. Our results revealed that Ori treatment markedly decreased urinary protein excretion levels, improved renal function and alleviated renal fibrosis in diabetic rats. In vitro, HG treatment increased the migration of HK-2 cells while reducing their viability and proliferation rate, and treatment with Ori reversed these changes. Additionally, the knockdown of ß-catenin arrested cell migration and reduced the expression levels of Wnt/ß-catenin signaling-related molecules (Wnt4, p-GSK3ß and ß-catenin) and fibrosis-related molecules (α-smooth muscle actin, collagen I and fibronectin), and Ori treatment exerted an effect similar to that observed after the knockdown of ß-catenin. Furthermore, the combination of Ori treatment and ß-catenin downregulation exerted more pronounced biological effects than treatment alone. These findings may provide the first line of evidence showing that Ori alleviates fibrosis in DN by inhibiting the Wnt/ß-catenin signaling pathway and thereby reveal a novel therapeutic avenue for treating tubulointerstitial fibrosis.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Diterpenes, Kaurane , Fibrosis , Rats, Sprague-Dawley , Wnt Signaling Pathway , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Wnt Signaling Pathway/drug effects , Animals , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/therapeutic use , Rats , Fibrosis/drug therapy , Humans , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Cell Line , beta Catenin/metabolism , Cell Movement/drug effects , Kidney/pathology , Kidney/drug effects , Cell Proliferation/drug effects , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/metabolism
3.
Cell Mol Life Sci ; 81(1): 244, 2024 May 30.
Article En | MEDLINE | ID: mdl-38814462

Four-and-a-half LIM domains protein 2 (FHL2) is an adaptor protein that may interact with hypoxia inducible factor 1α (HIF-1α) or ß-catenin, two pivotal protective signaling in acute kidney injury (AKI). However, little is known about the regulation and function of FHL2 during AKI. We found that FHL2 was induced in renal tubular cells in patients with acute tubular necrosis and mice model of ischemia-reperfusion injury (IRI). In cultured renal proximal tubular cells (PTCs), hypoxia induced FHL2 expression and promoted the binding of HIF-1 to FHL2 promoter. Compared with control littermates, mice with PTC-specific deletion of FHL2 gene displayed worse renal function, more severe morphologic lesion, more tubular cell death and less cell proliferation, accompanying by downregulation of AQP1 and Na, K-ATPase after IRI. Consistently, loss of FHL2 in PTCs restricted activation of HIF-1 and ß-catenin signaling simultaneously, leading to attenuation of glycolysis, upregulation of apoptosis-related proteins and downregulation of proliferation-related proteins during IRI. In vitro, knockdown of FHL2 suppressed hypoxia-induced activation of HIF-1α and ß-catenin signaling pathways. Overexpression of FHL2 induced physical interactions between FHL2 and HIF-1α, ß-catenin, GSK-3ß or p300, and the combination of these interactions favored the stabilization and nuclear translocation of HIF-1α and ß-catenin, enhancing their mediated gene transcription. Collectively, these findings identify FHL2 as a direct downstream target gene of HIF-1 signaling and demonstrate that FHL2 could play a critical role in protecting against ischemic AKI by promoting the activation of HIF-1 and ß-catenin signaling through the interactions with its multiple protein partners.


Acute Kidney Injury , Kidney Tubules, Proximal , LIM-Homeodomain Proteins , Muscle Proteins , Reperfusion Injury , Transcription Factors , beta Catenin , Animals , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Humans , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Mice , beta Catenin/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Male , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Signal Transduction , Mice, Inbred C57BL , Mice, Knockout , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Cell Proliferation , Apoptosis
4.
Biosci Rep ; 44(6)2024 Jun 26.
Article En | MEDLINE | ID: mdl-38747277

Endothelin (ET) receptor antagonists are being investigated in combination with sodium-glucose co-transporter-2 inhibitors (SGLT-2i). These drugs primarily inhibit the SGLT-2 transporter that, in humans, is thought to be mainly restricted to the renal proximal convoluted tubule, resulting in increased glucose excretion favouring improved glycaemic control and diuresis. This action reduces fluid retention with ET receptor antagonists. Studies have suggested SGLT-2 may also be expressed in cardiomyocytes of human heart. To understand the potential of combining the two classes of drugs, our aim was to compare the distribution of ET receptor sub-types in human kidney, with SGLT-2. Secondly, using the same experimental conditions, we determined if SGLT-2 expression could be detected in human heart and whether the transporter co-localised with ET receptors. METHODS: Immunocytochemistry localised SGLT-2, ETA and ETB receptors in sections of histologically normal kidney, left ventricle from patients undergoing heart transplantation or controls. Primary antisera were visualised using fluorescent microscopy. Image analysis was used to measure intensity compared with background in adjacent control sections. RESULTS: As expected, SGLT-2 localised to epithelial cells of the proximal convoluted tubules, and co-localised with both ET receptor sub-types. Similarly, ETA receptors predominated in cardiomyocytes; low (compared with kidney but above background) positive staining was also detected for SGLT-2. DISCUSSION: Whether low levels of SGLT-2 have a (patho)physiological role in cardiomyocytes is not known but results suggest the effect of direct blockade of sodium (and glucose) influx via SGLT-2 inhibition in cardiomyocytes should be explored, with potential for additive effects with ETA antagonists.


Receptor, Endothelin A , Receptor, Endothelin B , Sodium-Glucose Transporter 2 , Humans , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/genetics , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Kidney/metabolism , Male , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/drug effects , Female , Myocardium/metabolism , Middle Aged
5.
Proc Natl Acad Sci U S A ; 121(23): e2403131121, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38805267

The renal elimination pathway is increasingly harnessed to reduce nonspecific accumulation of engineered nanoparticles within the body and expedite their clinical applications. While the size of nanoparticles is recognized as crucial for their passive filtration through the glomerulus due to its limited pore size, the influence of nanoparticle charge on their transport and interactions within the kidneys remains largely elusive. Herein, we report that the proximal tubule and peritubular capillary, rather than the glomerulus, serve as primary charge barriers to the transport of charged nanoparticles within the kidney. Employing a series of ultrasmall, renal-clearable gold nanoparticles (AuNPs) with precisely engineered surface charge characteristics as multimodal imaging agents, we have tracked their distribution and retention across various kidney components following intravenous administration. Our results reveal that retention in the proximal tubules is governed not by the nanoparticle's zeta-potential, but by direct Coulombic interactions between the positively charged surface ligands of the AuNPs and the negatively charged microvilli of proximal tubules. However, further enhancing these interactions leads to increased binding of the positively charged AuNPs to the peritubular capillaries during the initial phase of elimination, subsequently facilitating their slow passage through the glomeruli and interaction with tubular components in a charge-selective manner. By identifying these two critical charge-dependent barriers in the renal transport of nanoparticles, our findings offer a fundamental insight for the design of renal nanomedicines tailored for selective targeting within the kidney, laying down a foundation for developing targeting renal nanomedicines for future kidney disease management in the clinics.


Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Mice , Kidney Tubules, Proximal/metabolism , Renal Elimination , Kidney/metabolism , Male
6.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731829

Kidney ischemia and reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI), characterized by tubular injury and kidney dysfunction. Salvador family WW domain containing protein 1 (SAV1) is a key component of the Hippo pathway and plays a crucial role in the regulation of organ size and tissue regeneration. However, whether SAV1 plays a role in kidney IRI is not investigated. In this study, we investigated the role of SAV1 in kidney injury and regeneration following IRI. A proximal tubule-specific knockout of SAV1 in kidneys (SAV1ptKO) was generated, and wild-type and SAV1ptKO mice underwent kidney IRI or sham operation. Plasma creatinine and blood urea nitrogen were measured to assess kidney function. Histological studies, including periodic acid-Schiff staining and immunohistochemistry, were conducted to assess tubular injury, SAV1 expression, and cell proliferation. Western blot analysis was employed to assess the Hippo pathway-related and proliferation-related proteins. SAV1 exhibited faint expression in the proximal tubules and was predominantly expressed in the connecting tubule to the collecting duct. At 48 h after IRI, SAV1ptKO mice continued to exhibit severe kidney dysfunction, compared to attenuated kidney dysfunction in wild-type mice. Consistent with the functional data, severe tubular damage induced by kidney IRI in the cortex was significantly decreased in wild-type mice at 48 h after IRI but not in SAV1ptKO mice. Furthermore, 48 h after IRI, the number of Ki67-positive cells in the cortex was significantly higher in wild-type mice than SAV1ptKO mice. After IRI, activation and expression of Hippo pathway-related proteins were enhanced, with no significant differences observed between wild-type and SAV1ptKO mice. Notably, at 48 h after IRI, protein kinase B activation (AKT) was significantly enhanced in SAV1ptKO mice compared to wild-type mice. This study demonstrates that SAV1 deficiency in the kidney proximal tubule worsens the injury and delays kidney regeneration after IRI, potentially through the overactivation of AKT.


Acute Kidney Injury , Cell Cycle Proteins , Kidney Tubules, Proximal , Mice, Knockout , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Acute Kidney Injury/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Male , Cell Proliferation , Signal Transduction , Hippo Signaling Pathway , Mice, Inbred C57BL , Disease Models, Animal
7.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731904

To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.


Phosphates , Humans , Phosphates/metabolism , Animals , Renal Reabsorption , Kidney/metabolism , Kidney Tubules, Proximal/metabolism
8.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732005

In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects.


Calcium Oxalate , Hypercalciuria , Kidney Calculi , Mice, Knockout , Animals , Hypercalciuria/metabolism , Hypercalciuria/genetics , Hydrogen-Ion Concentration , Mice , Calcium Oxalate/metabolism , Kidney Calculi/metabolism , Kidney Calculi/etiology , Kidney Calculi/pathology , Calcium Phosphates/metabolism , Nephrolithiasis/metabolism , Nephrolithiasis/genetics , Nephrolithiasis/pathology , Calcium/metabolism , TRPC Cation Channels/metabolism , TRPC Cation Channels/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , Disease Models, Animal , Mice, Inbred C57BL , Acetazolamide/pharmacology
9.
FASEB J ; 38(10): e23688, 2024 May 31.
Article En | MEDLINE | ID: mdl-38780519

Diabetic nephropathy (DN) is a major cause of chronic kidney disease. Microalbuminuria is currently the most common non-invasive biomarker for the early diagnosis of DN. However, renal structural damage may have advanced when albuminuria is detected. In this study, we sought biomarkers for early DN diagnosis through proteomic analysis of urinary extracellular vesicles (uEVs) from type 2 diabetic model rats and normal controls. Isocitrate dehydrogenase 1 (IDH1) was significantly increased in uEVs from diabetic model rats at the early stage despite minimal differences in albuminuria between the groups. Calorie restriction significantly suppressed the increase in IDH1 in uEVs and 24-hour urinary albumin excretion, suggesting that the increase in IDH1 in uEVs was associated with the progression of DN. Additionally, we investigated the origin of IDH1-containing uEVs based on their surface sugar chains. Lectin affinity enrichment and immunohistochemical staining showed that IDH1-containing uEVs were derived from proximal tubules. These findings suggest that the increase in IDH1 in uEVs reflects pathophysiological alterations in the proximal tubules and that IDH1 in uEVs may serve as a potential biomarker of DN in the proximal tubules.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Extracellular Vesicles , Isocitrate Dehydrogenase , Kidney Tubules, Proximal , Up-Regulation , Animals , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/genetics , Extracellular Vesicles/metabolism , Rats , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Diabetes Mellitus, Type 2/urine , Diabetes Mellitus, Type 2/metabolism , Male , Diabetic Nephropathies/urine , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/urine , Rats, Sprague-Dawley , Biomarkers/urine , Biomarkers/metabolism
10.
Mol Biol Rep ; 51(1): 620, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709349

BACKGROUND: Recent years of evidence suggest the crucial role of renal tubular cells in developing diabetic kidney disease. Scopoletin (SCOP) is a plant-based coumarin with numerous biological activities. This study aimed to determine the effect of SCOP on renal tubular cells in developing diabetic kidney disease and to elucidate mechanisms. METHODS AND RESULTS: In this study, SCOP was evaluated in vitro using renal proximal tubular (HK-2) cells under hyperglycemic conditions to understand its mechanism of action. In HK-2 cells, SCOP alleviated the high glucose-generated reactive oxygen species (ROS), restored the levels of reduced glutathione, and decreased lipid peroxidation. High glucose-induced alteration in the mitochondrial membrane potential was markedly restored in the SCOP-treated cells. Moreover, SCOP significantly reduced the high glucose-induced apoptotic cell population in the Annexin V-FITC flow cytometry study. Furthermore, high glucose markedly elevated the mRNA expression of fibrotic and extracellular matrix (ECM) components, namely, transforming growth factor (TGF)-ß, alfa-smooth muscle actin (α-SMA), collagen I, and collagen III, in HK-2 cells compared to the untreated cells. SCOP treatment reduced these mRNA expressions compared to the high glucose-treated cells. Collagen I and TGF-ß protein levels were also significantly reduced in the SCOP-treated cells. Further findings in HK-2 cells revealed that SCOP interfered with the epithelial-mesenchymal transition (EMT) in the high glucose-treated HK-2 cells by normalizing E-cadherin and downregulating the vimentin and α-SMA proteins. CONCLUSIONS: In conclusion, SCOP modulates the high glucose-generated renal tubular cell oxidative damage and accumulation of ECM components and may be a promising molecule against diabetic nephropathy.


Diabetic Nephropathies , Epithelial-Mesenchymal Transition , Glucose , Kidney Tubules, Proximal , Oxidative Stress , Reactive Oxygen Species , Scopoletin , Humans , Epithelial-Mesenchymal Transition/drug effects , Glucose/metabolism , Glucose/pharmacology , Glucose/toxicity , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Oxidative Stress/drug effects , Scopoletin/pharmacology , Cell Line , Reactive Oxygen Species/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Apoptosis/drug effects , Fibrosis , Membrane Potential, Mitochondrial/drug effects , Lipid Peroxidation/drug effects
11.
Sci Rep ; 14(1): 9357, 2024 04 23.
Article En | MEDLINE | ID: mdl-38653823

The advent of micro-physiological systems (MPS) in biomedical research has enabled the introduction of more complex and relevant physiological into in vitro models. The recreation of complex morphological features in three-dimensional environments can recapitulate otherwise absent dynamic interactions in conventional models. In this study we developed an advanced in vitro Renal Cell Carcinoma (RCC) that mimics the interplay between healthy and malignant renal tissue. Based on the TissUse Humimic platform our model combines healthy renal proximal tubule epithelial cells (RPTEC) and RCC. Co-culturing reconstructed RPTEC tubules with RCC spheroids in a closed micro-perfused circuit resulted in significant phenotypical changes to the tubules. Expression of immune factors revealed that interleukin-8 (IL-8) and tumor necrosis factor-alfa (TNF-α) were upregulated in the non-malignant cells while neutrophil gelatinase-associated lipocalin (NGAL) was downregulated in both RCC and RPTEC. Metabolic analysis showed that RCC prompted a shift in the energy production of RPTEC tubules, inducing glycolysis, in a metabolic adaptation that likely supports RCC growth and immunogenicity. In contrast, RCC maintained stable metabolic activity, emphasizing their resilience to external factors. RNA-seq and biological process analysis of primary RTPTEC tubules demonstrated that the 3D tubular architecture and MPS conditions reverted cells to a predominant oxidative phosphorylate state, a departure from the glycolytic metabolism observed in 2D culture. This dynamic RCC co-culture model, approximates the physiology of healthy renal tubules to that of RCC, providing new insights into tumor-host interactions. Our approach can show that an RCC-MPS can expand the complexity and scope of pathophysiology and biomarker studies in kidney cancer research.


Carcinoma, Renal Cell , Coculture Techniques , Epithelial Cells , Kidney Neoplasms , Kidney Tubules, Proximal , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Epithelial Cells/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Cell Line, Tumor , Lipocalin-2/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology
12.
Chem Biol Interact ; 394: 111003, 2024 May 01.
Article En | MEDLINE | ID: mdl-38608998

The use of flavored e-liquids in electronic nicotine delivery systems (ENDS) has become very popular in recent years, but effects of these products have not been well characterized outside the lung. In this study, acute exposure to the popular flavoring vanillin (VAN) was performed on human proximal tubule (HK-2) kidney cells. Cells were exposed to 0-1000 µM VAN for 24 or 48 h and cellular stress responses were determined. Mitochondrial viability using MTT assay showed a significant decrease between the control and 1000 µM group by 48 h. Seahorse XFp analysis showed significantly increased basal respiration, ATP production, and proton leak after 24 h exposure. By 48 h exposure, these parameters remained significantly increased in addition to non-mitochondrial respiration and maximal respiration. Glycolytic activity after 24 h exposure showed significant decreases in glycolysis, glycolytic capacity, glycolytic reserve, and non-glycolytic acidification. The autophagy markers microtubule-associated protein 1A/1B light chain 3 (LC3B-I and LC3B-II) were probed via western blotting. The ratio of LC3B-II/LC3B-I was significantly increased after 24 h exposure to VAN, but by 48 h this ratio significantly decreased. The mitophagy marker PINK1 showed an increasing trend at 24 h, and its downstream target Parkin was significantly increased between the control and 750 µM group only. Finally, the oxidative stress marker 4-HNE was significantly decreased after 48 h exposure to VAN. These results indicate that acute exposure to VAN in the kidney HK-2 model can induce energy and autophagic changes within the cell.


Autophagy , Benzaldehydes , Epithelial Cells , Flavoring Agents , Kidney Tubules, Proximal , Humans , Autophagy/drug effects , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Flavoring Agents/pharmacology , Flavoring Agents/toxicity , Benzaldehydes/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Cell Line , Glycolysis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Energy Metabolism/drug effects , Oxidative Stress/drug effects
13.
Biomed Pharmacother ; 174: 116536, 2024 May.
Article En | MEDLINE | ID: mdl-38569274

Diabetic kidney disease (DKD) is a leading cause of kidney failure. However, the involvement of renal fibroblasts and their communications with renal epithelial cells during DKD remain poorly understood. We investigated the potential role of renal proximal tubular epithelial cells (PTECs) in renal fibroblast activation that might lead to DKD. Additionally, the protective effects of curcumin, a known antioxidant, against renal fibroblast activation induced by high glucose-treated PTECs were investigated. Secretome was collected from HK-2 PTECs under normal glucose, high glucose, high glucose pretreated/cotreated with curcumin, or osmotic control condition for 24 h. Such secretome was then used to treat BHK-21 renal fibroblasts for 24 h. BHK-21 cells treated with high glucose-induced secretome had increased levels of fibroblast activation markers, including spindle index, F-actin, α-smooth muscle actin (α-SMA), fibronectin, collagen I, matrix metalloproteinase-2 (MMP-2) and MMP-9, as compared with normal glucose and osmotic control conditions. However, all these increases were successfully mitigated by curcumin. In addition, high glucose markedly increased intracellular reactive oxygen species (ROS) and transforming growth factor-ß (TGF-ß) secretion, but did not affect the secretion of platelet-derived growth factor A (PDGFA) and interleukin-1ß (IL-1ß), in HK-2 renal cells as compared with normal glucose and osmotic control conditions. Both intracellular ROS and secreted TGF-ß levels were successfully mitigated by curcumin. Therefore, curcumin prevents the high glucose-induced stimulatory effects of renal cell secretome on fibroblast activation, at least in part, via mitigating intracellular ROS and TGF-ß secretion.


Curcumin , Fibroblasts , Glucose , Reactive Oxygen Species , Transforming Growth Factor beta , Curcumin/pharmacology , Glucose/toxicity , Fibroblasts/drug effects , Fibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Humans , Reactive Oxygen Species/metabolism , Cell Line , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Animals , Secretome/drug effects , Secretome/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Diabetic Nephropathies/metabolism , Antioxidants/pharmacology
14.
BMC Nephrol ; 25(1): 139, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649831

BACKGROUND: Renal tubular dysgenesis (RTD) is a severe disorder with poor prognosis significantly impacting the proximal tubules of the kidney while maintaining an anatomically normal gross structure. The genetic origin of RTD, involving variants in the ACE, REN, AGT, and AGTR1 genes, affects various enzymes or receptors within the Renin angiotensin system (RAS). This condition manifests prenatally with oligohydramninos and postnatally with persistent anuria, severe refractory hypotension, and defects in skull ossification. CASE PRESENTATION: In this report, we describe a case of a female patient who, despite receiving multi vasopressor treatment, experienced persistent hypotension, ultimately resulting in early death at five days of age. While there was a history of parental consanguinity, no reported family history of renal disease existed. Blood samples from the parents and the remaining DNA sample of the patient underwent Whole Genome Sequencing (WGS). The genetic analysis revealed a rare homozygous loss of function variant (NM_000685.5; c.415C > T; p.Arg139*) in the Angiotensin II Receptor Type 1 (AGTR1) gene. CONCLUSION: This case highlights the consequence of loss-of-function variants in AGTR1 gene leading to RTD, which is characterized by high mortality rate at birth or during the neonatal period. Furthermore, we provide a comprehensive review of previously reported variants in the AGTR1 gene, which is the least encountered genetic cause of RTD, along with their associated clinical features.


Kidney Tubules, Proximal/abnormalities , Receptor, Angiotensin, Type 1 , Urogenital Abnormalities , Humans , Female , Receptor, Angiotensin, Type 1/genetics , Infant, Newborn , Loss of Function Mutation , Fatal Outcome , Hypotension/genetics
15.
Am J Physiol Renal Physiol ; 326(6): F1041-F1053, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38660713

Beyond glycemic control, SGLT2 inhibitors (SGLT2is) have protective effects on cardiorenal function. Renoprotection has been suggested to involve inhibition of NHE3 leading to reduced ATP-dependent tubular workload and mitochondrial oxygen consumption. NHE3 activity is also important for regulation of endosomal pH, but the effects of SGLT2i on endocytosis are unknown. We used a highly differentiated cell culture model of proximal tubule (PT) cells to determine the direct effects of SGLT2i on Na+-dependent fluid transport and endocytic uptake in this nephron segment. Strikingly, canagliflozin but not empagliflozin reduced fluid transport across cell monolayers and dramatically inhibited endocytic uptake of albumin. These effects were independent of glucose and occurred at clinically relevant concentrations of drug. Canagliflozin acutely inhibited surface NHE3 activity, consistent with a direct effect, but did not affect endosomal pH or NHE3 phosphorylation. In addition, canagliflozin rapidly and selectively inhibited mitochondrial complex I activity. Inhibition of mitochondrial complex I by metformin recapitulated the effects of canagliflozin on endocytosis and fluid transport, whereas modulation of downstream effectors AMPK and mTOR did not. Mice given a single dose of canagliflozin excreted twice as much urine over 24 h compared with empagliflozin-treated mice despite similar water intake. We conclude that canagliflozin selectively suppresses Na+-dependent fluid transport and albumin uptake in PT cells via direct inhibition of NHE3 and of mitochondrial function upstream of the AMPK/mTOR axis. These additional targets of canagliflozin contribute significantly to reduced PT Na+-dependent fluid transport in vivo.NEW & NOTEWORTHY Reduced NHE3-mediated Na+ transport has been suggested to underlie the cardiorenal protection provided by SGLT2 inhibitors. We found that canagliflozin, but not empagliflozin, reduced NHE3-dependent fluid transport and endocytic uptake in cultured proximal tubule cells. These effects were independent of SGLT2 activity and resulted from inhibition of mitochondrial complex I and NHE3. Studies in mice are consistent with greater effects of canagliflozin versus empagliflozin on fluid transport. Our data suggest that these selective effects of canagliflozin contribute to reduced Na+-dependent transport in proximal tubule cells.


Canagliflozin , Kidney Tubules, Proximal , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Hydrogen Exchanger 3 , Animals , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/enzymology , Sodium-Hydrogen Exchanger 3/metabolism , Canagliflozin/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Mice , Male , Sodium-Glucose Transporter 2/metabolism , Endocytosis/drug effects , Mice, Inbred C57BL , Albumins/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Benzhydryl Compounds , Glucosides
16.
Pharmacol Rep ; 76(3): 557-571, 2024 Jun.
Article En | MEDLINE | ID: mdl-38587587

BACKGROUND: The use of amphotericin B (AmB) in the therapy of systemic mycosis is associated with strong side effects, including nephrotoxicity, and hepatotoxicity. Therefore, agents that can reduce the toxic effects of AmB while acting synergistically as antifungal agents are currently being sought. 1,3,4-thiadiazole derivatives are promising compounds that have an antifungal activity and act synergically with AmB. Such combinations might allow the dose of AmB, which is essential for preventing patients from having serious side effects, to be decreased. This might result from the antioxidant properties of 1,3,4-thiadiazoles. Thus, the aim of the study was to investigate redox homeostasis in human renal proximal tubule epithelial cells (RPTEC) after they had been treated with AmB in combination with 1,3,4-thiadiazole derivatives. METHODS: Cellular redox homeostasis was assessed by investigating the total antioxidant capacity (TAC) of cells, the malondialdehyde (MDA) concentration, and the activity of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT). TAC was measured using an ABTS method. The MDA concentration, and the activity of SOD, GPX, and CAT were determined spectrophotometrically using commercially available assays. Additionally, the antioxidant defense system-related gene expression profile was determined using oligonucleotide microarrays (HG-U133A 2.0). Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to confirm the microarray results. RESULTS: Amphotericin B and selected 1,3,4-thiadiazole derivatives had a significant effect on the total antioxidant capacity of the RPTEC cells, and the activity of the antioxidant enzymes. We also revealed that the effect of thiadiazoles on the SOD and CAT activities is dependent on the treatment of RPTEC cells with AmB. At the transcriptional level, the expression of several genes was affected by the studied compounds and their combinations. CONCLUSIONS: The results confirmed that thiadiazoles can stimulate the RPTEC cells to defend against the oxidative stress that is generated by AmB. In addition, together with the previously demonstrated synergistic antifungal activity, and low nephrotoxicity, these compounds have the potential to be used in new therapeutic strategies in the treatment of fungal infections.


Amphotericin B , Antifungal Agents , Antioxidants , Homeostasis , Oxidation-Reduction , Thiadiazoles , Thiadiazoles/pharmacology , Humans , Amphotericin B/pharmacology , Oxidation-Reduction/drug effects , Antioxidants/pharmacology , Homeostasis/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Superoxide Dismutase/metabolism , Catalase/metabolism , Kidney Tubules, Proximal/drug effects , Glutathione Peroxidase/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Oxidative Stress/drug effects , Malondialdehyde/metabolism , Drug Synergism , Cells, Cultured
17.
Sci Total Environ ; 929: 172392, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38608885

Cadmium (Cd) is a widely distributed environmental pollutant, primarily causing nephrotoxicity through renal proximal tubular cell impairment. Pyroptosis is an inflammation-related nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3)-dependent pathway for programmed cell death. We previously reported that inappropriate inflammation caused by Cd is a major contributor to kidney injury. Therefore, research on Cd-induced inflammatory response and pyroptosis may clarify the mechanisms underlying Cd-induced nephrotoxicity. In this study, we observed that Cd-induced nephrotoxicity is associated with NLRP3 inflammasome activation, leading to an increase in proinflammatory cytokine expression and secretion, as well as pyroptosis-related gene upregulation, both in primary rat proximal tubular (rPT) cells and kidney tissue from Cd-treated rats. In vitro, these effects were significantly abrogated through siRNA-based Nlrp3 silencing; thus, Cd may trigger pyroptosis through an NLRP3 inflammasome-dependent pathway. Moreover, Cd exposure considerably elevated reactive oxygen species (ROS) content. N-acetyl-l-cysteine, an ROS scavenger, mitigated Cd-induced NLRP3 inflammasome activation and subsequent pyroptosis. Mechanistically, Cd hindered the expression and deacetylase activity of SIRT1, eventually leading to a decline in SIRT1-p65 interactions, followed by an elevation in acetylated p65 levels. The administration of resveratrol (a SIRT1 agonist) or overexpression of Sirt1 counteracted Cd-induced RELA/p65/NLRP3 pathway activation considerably, leading to pyroptosis. This is the first study to reveal significant contributions of SIRT1-triggered p65 deacetylation to pyroptosis and its protective effects against Cd-induced chronic kidney injury. Our results may aid in developing potential therapeutic strategies for preventing Cd-induced pyroptosis through SIRT1-mediated p65 deacetylation.


Cadmium , Epithelial Cells , Pyroptosis , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Pyroptosis/drug effects , Cadmium/toxicity , Rats , Epithelial Cells/drug effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Kidney Tubules , Transcription Factor RelA/metabolism , Acetylation , Inflammasomes/metabolism , Kidney Tubules, Proximal
18.
Am J Physiol Cell Physiol ; 326(6): C1573-C1589, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38557357

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) reduce blood pressure (BP) in patients with hypertension, yet the precise molecular mechanisms remain elusive. SGLT2i inhibits proximal tubule (PT) NHE3-mediated sodium reabsorption in normotensive rodents, yet no hypotensive effect is observed under this scenario. This study examined the effect of empagliflozin (EMPA) on renal tubular sodium transport in normotensive and spontaneously hypertensive rats (SHRs). It also tested the hypothesis that EMPA-mediated PT NHE3 inhibition in normotensive rats is associated with upregulation of distal nephron apical sodium transporters. EMPA administration for 14 days reduced BP in 12-wk-old SHRs but not in age-matched Wistar rats. PT NHE3 activity was inhibited by EMPA treatment in both Wistar and SHRs. In Wistar rats, EMPA increased NCC activity, mRNA expression, protein abundance, and phosphorylation levels, but not in SHRs. SHRs showed higher NKCC2 activity and an abundance of cleaved ENaC α and γ subunits compared with Wistar rats, none of which were affected by EMPA. Another set of male Wistar rats was treated with EMPA, the NCC inhibitor hydrochlorothiazide (HCTZ), and EMPA combined with HCTZ or vehicle for 14 days. In these rats, BP reduction was observed only with combined EMPA and HCTZ treatment, not with either drug alone. These findings suggest that NCC upregulation counteracts EMPA-mediated inhibition of PT NHE3 in male normotensive rats, maintaining their baseline BP. Moreover, the reduction of NHE3 activity without further upregulation of major apical sodium transporters beyond the PT may contribute to the BP-lowering effect of SGLT2i in experimental models and patients with hypertension.NEW & NOTEWORTHY This study suggests that reduced NHE3-mediated sodium reabsorption in the renal proximal tubule may account, at least in part, for the BP-lowering effect of SGLT2 inhibitors in the setting of hypertension. It also demonstrates that chronic treatment with SGLT2 inhibitors upregulates NCC activity, phosphorylation, and expression in the distal tubule of normotensive but not hypertensive rats. SGLT2 inhibitor-mediated upregulation of NCC seems crucial to counteract proximal tubule natriuresis in subjects with normal BP.


Benzhydryl Compounds , Glucosides , Hypertension , Rats, Inbred SHR , Rats, Wistar , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Hydrogen Exchanger 3 , Up-Regulation , Animals , Male , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Sodium-Hydrogen Exchanger 3/antagonists & inhibitors , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Glucosides/pharmacology , Benzhydryl Compounds/pharmacology , Up-Regulation/drug effects , Rats , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Blood Pressure/drug effects , Solute Carrier Family 12, Member 3/metabolism , Solute Carrier Family 12, Member 3/genetics , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney/metabolism , Kidney/drug effects
19.
Biomed Pharmacother ; 175: 116666, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677246

Flavored e-liquid use has become popular among e-cigarette users recently, but the effects of such products outside the lung are not well characterized. In this work, acute exposure to the popular flavoring cinnamaldehyde (CIN) was performed on human proximal tubule (HK-2) kidney cells. Cells were exposed to 0-100 µM CIN for 24-48 h and cellular stress responses were assessed. Mitochondrial viability via MTT assay was significantly decreased at 20 µM for 24 and 48 h exposure. Seahorse XFp analysis showed significantly decreased mitochondrial energy output at 20 µM by 24 h exposure, in addition to significantly reduced ATP Synthase expression. Seahorse analysis also revealed significantly decreased glycolytic function at 20 µM by 24 h exposure, suggesting inability of glycolytic processes to compensate for reduced mitochondrial energy output. Cleaved caspase-3 expression, a mediator of apoptosis, was significantly increased at the 24 h mark. C/EBP homologous protein (CHOP) expression, a mediator of ER-induced apoptosis, was induced by 48 h and subsequently lost at the highest concentration of 100 µM. This decrease was accompanied by a simultaneous decrease in its downstream target cleaved caspase-3 at the 48 h mark. The autophagy marker microtubule-associated protein 1 A/1B light chain 3 (LC3B-I and LC3B-II) expression was significantly increased at 100 µM by 24 h. Autophagy-related 7 (ATG7) protein and mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and PARKIN expression were significantly reduced at 24 and 48 h exposure. These results indicate acute exposure to CIN in the kidney HK-2 model induces mitochondrial dysfunction and cellular stress responses.


Acrolein , Apoptosis , Flavoring Agents , Kidney Tubules, Proximal , Mitochondria , Humans , Acrolein/pharmacology , Acrolein/analogs & derivatives , Acrolein/toxicity , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Flavoring Agents/toxicity , Flavoring Agents/pharmacology , Cell Line , Mitochondria/drug effects , Mitochondria/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Stress, Physiological/drug effects , Cell Survival/drug effects , Endoplasmic Reticulum Stress/drug effects , Glycolysis/drug effects , Caspase 3/metabolism
20.
Mol Biol Cell ; 35(6): ar80, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38598293

The actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how Whamm inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display structural abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption. In kidney tissue, the loss of WHAMM results in the accumulation of the lipidated autophagosomal membrane protein LC3, indicating an alteration in autophagy. In mouse fibroblasts and human proximal tubule cells, WHAMM and its binding partner the Arp2/3 complex control autophagic membrane closure and cargo receptor recruitment. These results reveal a role for WHAMM-mediated actin assembly in maintaining kidney function and promoting proper autophagosome membrane remodeling.


Actins , Autophagosomes , Autophagy , Kidney , Mice, Knockout , Animals , Mice , Actins/metabolism , Autophagy/physiology , Humans , Autophagosomes/metabolism , Kidney/metabolism , Male , Kidney Tubules, Proximal/metabolism , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Polymerization , Fibroblasts/metabolism
...