Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48.134
Filter
1.
Rinsho Ketsueki ; 65(7): 668-675, 2024.
Article in Japanese | MEDLINE | ID: mdl-39098018

ABSTRACT

Chimeric antigen receptor-transduced autologous T (CAR-T) cell therapy targeting CD19 has revolutionized the treatment of CD19-positive hematological tumors, including acute lymphoblastic leukemia and large B-cell lymphoma. However, despite the high response rate, many problems such as exceedingly high cost, complex logistics, insufficient speed, and manufacturing failures have become apparent. One solution for these problems is to use an allogeneic cell as an effector cell for genetic modification with CAR. Allogeneic, or "off-the-shelf", CAR-expressing immune-effector cells include 1) genome-edited, T-cell receptor (TCR) gene-deleted CAR-T cells generated using healthy adult donor T cells, 2) induced pluripotent stem cell-derived CAR-T cells, and 3) CAR NK cells. NK cells are notorious for their poor ex-vivo expansion and low susceptibility to genetic modification. In this article, I will review the current state and future prospects of allogeneic CAR cell therapies, with special reference to CAR NK cells.


Subject(s)
Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Transplantation, Homologous , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods
2.
Best Pract Res Clin Haematol ; 37(2): 101560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39098806

ABSTRACT

Hematopoietic cell transplantation (HCT) represents a potentially curative therapeutic approach for various hematologic and non-hematologic malignancies. Human leukocyte antigen (HLA) matching is still the central selection criterion for HCT donors. Nevertheless, post-transplant complications, in particular graft-versus-host disease (GvHD), relapse of disease and infectious complications, represent a major challenge and contribute significantly to morbidity and mortality. Recently, non-classical HLA class I molecules, especially HLA-E, have gained increasing attention in the context of allogeneic HCT. This review aims to summarize the latest findings on the immunomodulatory role of HLA-E, which serves as a ligand for receptors of the innate and adaptive immune system. In particular, we aim to elucidate how (i) polymorphisms within HLA-E, (ii) the NKG2A/C axis and (iii) the repertoire of peptides presented by HLA-E jointly influence the functionality of immune effector cells. Understanding this intricate network of interactions is crucial as it significantly affects NK and T cell responses and thus clinical outcomes after HCT.


Subject(s)
HLA-E Antigens , Hematopoietic Stem Cell Transplantation , Histocompatibility Antigens Class I , Killer Cells, Natural , Humans , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily C/genetics , Graft vs Host Disease/immunology , Graft vs Host Disease/genetics , Allografts , T-Lymphocytes/immunology , Polymorphism, Genetic , Transplantation, Homologous
3.
J Clin Invest ; 134(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087476

ABSTRACT

NK cells are cytotoxic innate immune cells involved in antitumor immunity, and they provide a treatment option for patients with acute myeloid leukemia (AML). In this issue of the JCI, Cubitt et al. investigated the role of CD8α, a coreceptor present on approximately 40% of human NK cells. IL-15 stimulation of CD8α- NK cells induced CD8α expression via the RUNX3 transcription factor, driving formation of a unique induced CD8α (iCD8α+) population. iCD8α+ NK cells displayed higher proliferation, metabolic activity, and antitumor cytotoxic function compared with preexisting CD8α+ and CD8α- subsets. Therefore, CD8α expression can be used to define a potential dynamic spectrum of NK cell expansion and function. Because these cells exhibit enhanced tumor control, they may be used to improve in NK cell therapies for patients with AML.


Subject(s)
CD8 Antigens , Core Binding Factor Alpha 3 Subunit , Interleukin-15 , Killer Cells, Natural , Leukemia, Myeloid, Acute , Humans , CD8 Antigens/metabolism , CD8 Antigens/immunology , CD8 Antigens/genetics , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/immunology , Interleukin-15/immunology , Interleukin-15/metabolism , Interleukin-15/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism
4.
Adv Exp Med Biol ; 1448: 9-19, 2024.
Article in English | MEDLINE | ID: mdl-39117804

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a severe cytokine storm syndrome (CSS), which until the turn of the century, was barely known but is now receiving increased attention. The history of HLH dates back to 1939 when it was first described in adults, to be followed in 1952 by the first description of its primary, familial form in children. Secondary forms of HLH are far more frequent and occur with infections, malignancies, metabolic diseases, iatrogenic immune suppression, and autoinflammatory/autoimmune diseases. Identification of the genetic defects leading to the defective function of natural killer (NK) cells and cytotoxic T cells as well as the corresponding mouse models have revolutionized our understanding of HLH and of immune function. Diagnosis relies on clinical and laboratory criteria; functional and genetic tests can help separate primary from secondary forms. Treatment with immunochemotherapy and hematopoietic stem cell transplantation has considerably improved survival in children with primary HLH, a formerly uniformly fatal disease.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Lymphohistiocytosis, Hemophagocytic/therapy , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/immunology , Humans , History, 20th Century , Animals , History, 21st Century , Killer Cells, Natural/immunology , Hematopoietic Stem Cell Transplantation
5.
Adv Exp Med Biol ; 1448: 121-126, 2024.
Article in English | MEDLINE | ID: mdl-39117811

ABSTRACT

Macrophage activation syndrome (MAS) is a life-threatening episode of hyperinflammation driven by excessive activation and expansion of T cells (mainly CD8) and hemophagocytic macrophages producing proinflammatory cytokines. MAS has been reported in association with almost every rheumatic disease, but it is by far most common in systemic juvenile idiopathic arthritis (SJIA). Clinically, MAS is similar to familial or primary hemophagocytic lymphohistiocytosis (pHLH), a group of rare autosomal recessive disorders linked to various genetic defects all affecting the perforin-mediated cytolytic pathway employed by NK cells and cytotoxic CD8 T lymphocytes. Decreased cytolytic activity in pHLH patients leads to prolonged survival of target cells associated with increased production of proinflammatory cytokines that overstimulate macrophages. The resulting cytokine storm is believed to be responsible for the frequently fatal multiorgan system failure seen in MAS. Whole exome sequencing as well as targeted sequencing of pHLH-associated genes in patients with SJIA-associated MAS demonstrated increased "burden" of rare protein-altering variants affecting the cytolytic pathway compared to healthy controls, suggesting that as in pHLH, genetic variability in the cytolytic pathway contributes to MAS predisposition. Functional studies of some of the novel variants have shown that even in a heterozygous state, their presence partially reduces cytolytic activity that may lead to increased cytokine production.


Subject(s)
Arthritis, Juvenile , Macrophage Activation Syndrome , Humans , Macrophage Activation Syndrome/genetics , Macrophage Activation Syndrome/immunology , Arthritis, Juvenile/genetics , Arthritis, Juvenile/immunology , Arthritis, Juvenile/complications , Genetic Predisposition to Disease , Killer Cells, Natural/immunology , Cytokines/genetics , Cytokines/metabolism , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/immunology , Macrophages/immunology , Macrophages/metabolism
6.
Adv Exp Med Biol ; 1448: 75-101, 2024.
Article in English | MEDLINE | ID: mdl-39117809

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.


Subject(s)
Genetic Predisposition to Disease , Lymphohistiocytosis, Hemophagocytic , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/diagnosis , Humans , Mutation , Killer Cells, Natural/immunology
7.
Adv Exp Med Biol ; 1448: 145-159, 2024.
Article in English | MEDLINE | ID: mdl-39117813

ABSTRACT

Natural killer (NK) cells are innate immune lymphocytes that rapidly produce cytokines upon activation and kill target cells. NK cells have been of particular interest in primary hemophagocytic lymphohistiocytosis (pHLH) since all of the genetic defects associated with this disorder cause diminished cytotoxic capacity of NK cells and T lymphocytes, and assays of NK cell killing are used clinically for the diagnosis of HLH. Herein, we review human NK cell biology and the significance of alterations in NK cell function in the diagnosis and pathogenesis of HLH.


Subject(s)
Cytokine Release Syndrome , Killer Cells, Natural , Lymphohistiocytosis, Hemophagocytic , Humans , Killer Cells, Natural/immunology , Cytokine Release Syndrome/immunology , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/diagnosis , Cytokines/immunology , Cytokines/metabolism , Animals , Cytotoxicity, Immunologic
8.
Adv Exp Med Biol ; 1448: 129-144, 2024.
Article in English | MEDLINE | ID: mdl-39117812

ABSTRACT

Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.


Subject(s)
CD8-Positive T-Lymphocytes , Cytokine Release Syndrome , Lymphohistiocytosis, Hemophagocytic , Humans , CD8-Positive T-Lymphocytes/immunology , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/genetics , Animals , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/genetics , Killer Cells, Natural/immunology , Perforin/genetics , Perforin/metabolism , Cytotoxicity, Immunologic/genetics , Interferon-gamma/immunology , Interferon-gamma/genetics , Interferon-gamma/metabolism
9.
Adv Exp Med Biol ; 1448: 481-496, 2024.
Article in English | MEDLINE | ID: mdl-39117835

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disease caused by mutations in effectors and regulators of cytotoxicity in cytotoxic T cells (CTL) and natural killer (NK) cells. The complexity of the immune system means that in vivo models are needed to efficiently study diseases like HLH. Mice with defects in the genes known to cause primary HLH (pHLH) are available. However, these mice only develop the characteristic features of HLH after the induction of an immune response (typically through infection with lymphocytic choriomeningitis virus). Nevertheless, murine models have been invaluable for understanding the mechanisms that lead to HLH. For example, the cytotoxic machinery (e.g., the transport of cytotoxic vesicles and the release of granzymes and perforin after membrane fusion) was first characterized in the mouse. Experiments in murine models of pHLH have emphasized the importance of cytotoxic cells, antigen-presenting cells (APC), and cytokines in hyperinflammatory positive feedback loops (e.g., cytokine storms). This knowledge has facilitated the development of treatments for human HLH, some of which are now being tested in the clinic.


Subject(s)
Cytokine Release Syndrome , Disease Models, Animal , Lymphohistiocytosis, Hemophagocytic , Animals , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/genetics , Mice , Humans , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Cytokines/metabolism , Cytokines/genetics , T-Lymphocytes, Cytotoxic/immunology , Killer Cells, Natural/immunology
10.
Adv Exp Med Biol ; 1448: 441-457, 2024.
Article in English | MEDLINE | ID: mdl-39117832

ABSTRACT

There is extensive overlap of clinical features among familial or primary HLH (pHLH), reactive or secondary hemophagocytic lymphohistiocytosis (sHLH) [including macrophage activation syndrome (MAS) related to rheumatic diseases], and hyperferritinemic sepsis-induced multiple organ dysfunction syndrome (MODS); however, the distinctive pathobiology that causes hyperinflammatory process in each condition requires careful considerations for therapeutic decision-making. pHLH is defined by five or more of eight HLH-2004 criteria [1], where genetic impairment of natural killer (NK) cells or CD8+ cytolytic T cells results in interferon gamma (IFN-γ)-induced hyperinflammation regardless of triggering factors. Cytolytic treatments (e.g., etoposide) or anti-IFN-γ monoclonal antibody (emapalumab) has been effectively used to bridge the affected patients to hematopoietic stem cell transplant. Secondary forms of HLH also have normal NK cell number with decreased cytolytic function of varying degrees depending on the underlying and triggering factors. Although etoposide was uniformly used in sHLH/MAS in the past, the treatment strategy in different types of sHLH/MAS is increasingly streamlined to reflect the triggering/predisposing conditions, severity/progression, and comorbidities. Accordingly, in hyperferritinemic sepsis, the combination of hepatobiliary dysfunction (HBD) and disseminated intravascular coagulation (DIC) reflects reticuloendothelial system dysfunction and defines sepsis-associated MAS. It is demonstrated that as the innate immune response to infectious organism prolongs, it results in reduction in T cells and NK cells with subsequent lymphopenia even though normal cytolytic activity continues (Figs. 30.1, 30.2, 30.3, and 30.4). These changes allow free hemoglobin and pathogens to stimulate inflammasome activation in the absence of interferon-γ (IFN-γ) production that often responds to source control, intravenous immunoglobulin (IVIg), plasma exchange, and interleukin 1 receptor antagonist (IL-1Ra), similar to non-EBV, infection-induced HLH.


Subject(s)
Cytokine Release Syndrome , Lymphohistiocytosis, Hemophagocytic , Multiple Organ Failure , Sepsis , Humans , Multiple Organ Failure/etiology , Multiple Organ Failure/immunology , Sepsis/immunology , Sepsis/complications , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/etiology , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/etiology , Macrophage Activation Syndrome/immunology , Macrophage Activation Syndrome/etiology , Killer Cells, Natural/immunology
11.
Cancer Immunol Immunother ; 73(10): 209, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39112670

ABSTRACT

BACKGROUND: Cancer immunotherapy approaches that elicit immune cell responses, including T and NK cells, have revolutionized the field of oncology. However, immunosuppressive mechanisms restrain immune cell activation within solid tumors so additional strategies to augment activity are required. METHODS: We identified the co-stimulatory receptor NKG2D as a target based on its expression on a large proportion of CD8+ tumor infiltrating lymphocytes (TILs) from breast cancer patient samples. Human and murine surrogate NKG2D co-stimulatory receptor-bispecifics (CRB) that bind NKG2D on NK and CD8+ T cells as well as HER2 on breast cancer cells (HER2-CRB) were developed as a proof of concept for targeting this signaling axis in vitro and in vivo. RESULTS: HER2-CRB enhanced NK cell activation and cytokine production when co-cultured with HER2 expressing breast cancer cell lines. HER2-CRB when combined with a T cell-dependent-bispecific (TDB) antibody that synthetically activates T cells by crosslinking CD3 to HER2 (HER2-TDB), enhanced T cell cytotoxicity, cytokine production and in vivo antitumor activity. A mouse surrogate HER2-CRB (mHER2-CRB) improved in vivo efficacy of HER2-TDB and augmented NK as well as T cell activation, cytokine production and effector CD8+ T cell differentiation. CONCLUSION: We demonstrate that targeting NKG2D with bispecific antibodies (BsAbs) is an effective approach to augment NK and CD8+ T cell antitumor immune responses. Given the large number of ongoing clinical trials leveraging NK and T cells for cancer immunotherapy, NKG2D-bispecifics have broad combinatorial potential.


Subject(s)
Breast Neoplasms , CD8-Positive T-Lymphocytes , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K , Humans , Animals , NK Cell Lectin-Like Receptor Subfamily K/metabolism , NK Cell Lectin-Like Receptor Subfamily K/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , Female , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Receptor, ErbB-2/immunology , Cell Line, Tumor , Immunotherapy/methods , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism
12.
Cell ; 187(16): 4336-4354.e19, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121847

ABSTRACT

Exhausted CD8 T (Tex) cells in chronic viral infection and cancer have sustained co-expression of inhibitory receptors (IRs). Tex cells can be reinvigorated by blocking IRs, such as PD-1, but synergistic reinvigoration and enhanced disease control can be achieved by co-targeting multiple IRs including PD-1 and LAG-3. To dissect the molecular changes intrinsic when these IR pathways are disrupted, we investigated the impact of loss of PD-1 and/or LAG-3 on Tex cells during chronic infection. These analyses revealed distinct roles of PD-1 and LAG-3 in regulating Tex cell proliferation and effector functions, respectively. Moreover, these studies identified an essential role for LAG-3 in sustaining TOX and Tex cell durability as well as a LAG-3-dependent circuit that generated a CD94/NKG2+ subset of Tex cells with enhanced cytotoxicity mediated by recognition of the stress ligand Qa-1b, with similar observations in humans. These analyses disentangle the non-redundant mechanisms of PD-1 and LAG-3 and their synergy in regulating Tex cells.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class I , Lymphocyte Activation Gene 3 Protein , NK Cell Lectin-Like Receptor Subfamily D , Programmed Cell Death 1 Receptor , Animals , Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Programmed Cell Death 1 Receptor/metabolism , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Histocompatibility Antigens Class I/metabolism , Humans , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Mice, Inbred C57BL , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics , Cytotoxicity, Immunologic , Cell Proliferation , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology
13.
Zhonghua Xue Ye Xue Za Zhi ; 45(6): 599-601, 2024 Jun 14.
Article in Chinese | MEDLINE | ID: mdl-39134494

ABSTRACT

Lymphoma-associated hemophagocytic syndrome is aggressive with rapid progression, particularly in NK/T cell lymphoma. The MINE regimen is a salvage treatment for aggressive non-Hodgkin lymphoma. In our center, the modified MINE regimen was applied to treat three patients with hemophagocytic syndrome secondary to aggressive NK cell leukemia and T-cell lymphoma. The modified MINE regimen showed good efficacy against NK/T cell lymphoma, control of the inflammatory state of secondary hemophagocytic syndrome, and good tolerability.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/etiology , Male , Middle Aged , Female , Lymphoma, T-Cell/complications , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Killer Cells, Natural
14.
Sci Data ; 11(1): 871, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127789

ABSTRACT

Although proteomics is extensively used in immune research, there is currently no publicly accessible spectral assay library for the comprehensive proteome of immune cells. This study generated spectral assay libraries for five human immune cell lines and four primary immune cells: CD4 T, CD8 T, natural killer (NK) cells, and B cells. This was achieved by utilizing data-dependent acquisition (DDA) and employing fractionated samples from over 100 µg of proteins, which was applied to acquire the highest-quality MS/MS spectral data. In addition, Data-indedendent acquisition (DIA) was used to obtain sufficient data points for analyzing proteins from 10,000 primary CD4 T, CD8 T, NK, and B cells. The immune cell spectral assay library generated included 10,544 protein groups and 127,106 peptides. The proteomic profiles of 10,000 primary human immune cells obtained from 15 healthy volunteers analyzed using DIA revealed the highest heterogeneity of B cells among other immune cell types and the similarity between CD4 T and CD8 T cells. All data and spectral library are deposited in ProteomeXchange (PXD047742).


Subject(s)
B-Lymphocytes , Killer Cells, Natural , Proteomics , Humans , Killer Cells, Natural/immunology , B-Lymphocytes/immunology , Proteome/analysis , Tandem Mass Spectrometry , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology
15.
Elife ; 132024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133873

ABSTRACT

Group 1 innate lymphoid cells (ILCs) comprise conventional natural killer (cNK) cells and type 1 innate lymphoid cells (ILC1s). The main functions of liver cNK cells and ILC1s not only include directly killing target cells but also regulating local immune microenvironment of the liver through the secretion of cytokines. Uncovering the intricate mechanisms by which transcriptional factors regulate and influence the functions of liver cNK cells and ILC1s, particularly within the context of liver tumors, presents a significant opportunity to amplify the effectiveness of immunotherapies against liver malignancies. Using Ncr1-drived conditional knockout mouse model, our study reveals the regulatory role of Prdm1 in shaping the composition and maturation of cNK cells. Although Prdm1 did not affect the killing function of cNK cells in an in vivo cytotoxicity model, a significant increase in cancer metastasis was observed in Prdm1 knockout mice. Interferon-gamma (IFN-γ), granzyme B, and perforin secretion decreased significantly in Prdm1-deficient cNK cells and liver ILC1s. Single-cell RNA sequencing (scRNA-seq) data also provided evidences that Prdm1 maintains functional subsets of cNK cells and liver ILC1s and facilitates communications between cNK cells, liver ILC1s, and macrophages. The present study unveiled a novel regulatory mechanism of Prdm1 in cNK cells and liver ILC1s, showing promising potential for developing innovative immune therapy strategies against liver cancer.


Subject(s)
Liver Neoplasms , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1 , Animals , Mice , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Killer Cells, Natural/immunology , Interferon-gamma/metabolism , Immunity, Innate , Lymphocytes/immunology , Immunologic Surveillance , Granzymes/metabolism , Granzymes/genetics , Natural Cytotoxicity Triggering Receptor 1/metabolism , Natural Cytotoxicity Triggering Receptor 1/genetics , Perforin/metabolism , Perforin/genetics , Liver/immunology , Liver/metabolism , Mice, Inbred C57BL , Tumor Microenvironment/immunology , Antigens, Ly
16.
Front Immunol ; 15: 1381091, 2024.
Article in English | MEDLINE | ID: mdl-39136010

ABSTRACT

Introduction: SARS-CoV-2 pandemic still poses a significant burden on global health and economy, especially for symptoms persisting beyond the acute disease. COVID-19 manifests with various degrees of severity and the identification of early biomarkers capable of stratifying patient based on risk of progression could allow tailored treatments. Methods: We longitudinally analyzed 67 patients, classified according to a WHO ordinal scale as having Mild, Moderate, or Severe COVID-19. Peripheral blood samples were prospectively collected at hospital admission and during a 6-month follow-up after discharge. Several subsets and markers of the innate and adaptive immunity were monitored as putative factors associated with COVID-19 symptoms. Results: More than 50 immunological parameters were associated with disease severity. A decision tree including the main clinical, laboratory, and biological variables at admission identified low NK-cell precursors and CD14+CD91+ monocytes, and high CD8+ Effector Memory T cell frequencies as the most robust immunological correlates of COVID-19 severity and reduced survival. Moreover, low regulatory B-cell frequency at one month was associated with the susceptibility to develop long COVID at six months, likely due to their immunomodulatory ability. Discussion: These results highlight the profound perturbation of the immune response during COVID-19. The evaluation of specific innate and adaptive immune-cell subsets allows to distinguish between different acute and persistent COVID-19 symptoms.


Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/mortality , Male , Female , Middle Aged , SARS-CoV-2/immunology , Prognosis , Aged , Longitudinal Studies , Adult , Biomarkers/blood , CD8-Positive T-Lymphocytes/immunology , Adaptive Immunity , Killer Cells, Natural/immunology , Immunity, Innate
17.
Cancer Cell ; 42(8): 1333-1335, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137725

ABSTRACT

Glioblastoma is the most common brain cancer, with a 5-year survival rate of less than 10%. This grim prognosis highlights the urgent need for novel therapeutic approaches. In this issue of Cancer Cell, Shanley et al.1 report an innovative engineering strategy to supercharge NK cell immunity against glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , Interleukins , Killer Cells, Natural , Glioblastoma/immunology , Glioblastoma/therapy , Humans , Killer Cells, Natural/immunology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Interleukins/metabolism , Interleukins/immunology
18.
Cancer Cell ; 42(8): 1450-1466.e11, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137729

ABSTRACT

Glioblastoma (GBM) is an aggressive brain cancer with limited therapeutic options. Natural killer (NK) cells are innate immune cells with strong anti-tumor activity and may offer a promising treatment strategy for GBM. We compared the anti-GBM activity of NK cells engineered to express interleukin (IL)-15 or IL-21. Using multiple in vivo models, IL-21 NK cells were superior to IL-15 NK cells both in terms of safety and long-term anti-tumor activity, with locoregionally administered IL-15 NK cells proving toxic and ineffective at tumor control. IL-21 NK cells displayed a unique chromatin accessibility signature, with CCAAT/enhancer-binding proteins (C/EBP), especially CEBPD, serving as key transcription factors regulating their enhanced function. Deletion of CEBPD resulted in loss of IL-21 NK cell potency while its overexpression increased NK cell long-term cytotoxicity and metabolic fitness. These results suggest that IL-21, through C/EBP transcription factors, drives epigenetic reprogramming of NK cells, enhancing their anti-tumor efficacy against GBM.


Subject(s)
Brain Neoplasms , CCAAT-Enhancer-Binding Protein-delta , Glioblastoma , Interleukins , Killer Cells, Natural , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Glioblastoma/immunology , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/therapy , Interleukins/genetics , Interleukins/metabolism , Interleukins/immunology , Humans , Animals , Mice , CCAAT-Enhancer-Binding Protein-delta/metabolism , CCAAT-Enhancer-Binding Protein-delta/genetics , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Cell Line, Tumor , Interleukin-15/genetics , Interleukin-15/metabolism , Interleukin-15/immunology , Xenograft Model Antitumor Assays
19.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126041

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous family of immune cells including granulocytic (CD14neg/CD15+/HLA-DRneg) and monocytic subtypes (CD14+/CD15neg/HLA-DRneg). In the present study, we found a population of monocytes expressing the granulocyte marker CD15 that significantly increased in both peripheral blood (PB) and tumoral tissues of patients with colorectal cancer (CRC). Further phenotypical analysis confirmed the granulocytic-like features of this monocyte subpopulation that is associated with an increase in granulocyte-monocyte precursors (GMPs) in the PB of these patients (pts). Mechanistically, this granulocyte-like monocyte population suppressed NK cell activity by inducing TIGIT and engaging NKp30. Accordingly, an increased frequency of TIGIT+ NK cells with impaired functions was found in both the PB and tumoral tissue of CRC pts. Collectively, we provided new mechanistic explanations for tumor immune escape occurring in CRC by showing the increase in this new kind of MDSC, in both PB and CRC tissue, which is able to significantly impair the effector functions of NK cells, thereby representing a potential therapeutic target for cancer immunotherapy.


Subject(s)
Colonic Neoplasms , Killer Cells, Natural , Monocytes , Receptors, Immunologic , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Receptors, Immunologic/metabolism , Monocytes/immunology , Monocytes/metabolism , Male , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Female , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Aged , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology
20.
Cell Mol Life Sci ; 81(1): 345, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133305

ABSTRACT

BACKGROUND AND AIMS: Hepatitis B virus (HBV)-associated liver cirrhosis (LC), a common condition with high incidence and mortality rates, is often associated with diabetes mellitus (DM). However, the molecular mechanisms underlying impaired glucose regulation during HBV-associated LC remain unclear. METHODS: Data from 63 patients with LC and 62 patients with LC-associated DM were analysed. Co-culture of NK cells and islet ß cell lines were used to study the glucose regulation mechanism. A mouse model of LC was used to verify the effect of S100A8/A9 on the glucose regulation. RESULTS: Higher levels of interferon (IFN)-γ derived from natural killer (NK) cells and lower levels of insulin emerged in the peripheral blood of patients with both LC and DM compared with those from patients with LC only. IFN-γ derived from NK cells facilitated ß cell necroptosis and impaired insulin production. Furthermore, S100A8/A9 elevation in patients with both LC and DM was found to upregulate IFN-γ production in NK cells. Consistently, in the mouse model for LC, mice treated with carbon tetrachloride (CCL4) and S100A8/A9 exhibited increased blood glucose, impaired insulin production, increased IFN-γ, and increased ß cells necroptosis compared with those treated with CCL4. Mechanistically, S100A8/A9 activated the p38 MAPK pathway to increase IFN-γ production in NK cells. These effects were diminished after blocking RAGE. CONCLUSION: Together, the data indicate that IFN-γ produced by NK cells induces ß cell necroptosis via the S100A8/A9-RAGE-p38 MAPK axis in patients with LC and DM. Reduced levels of S100A8/A9, NK cells, and IFN-γ could be valuable for the treatment of LC with DM. Accumulation of S100A8/A9 in patients with LC may indicate the emergence of DM.


Subject(s)
Calgranulin A , Calgranulin B , Hepatitis B virus , Insulin-Secreting Cells , Interferon-gamma , Killer Cells, Natural , Liver Cirrhosis , Necroptosis , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Animals , Interferon-gamma/metabolism , Calgranulin B/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/virology , Liver Cirrhosis/immunology , Mice , Male , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/virology , Calgranulin A/metabolism , Mice, Inbred C57BL , Female , Middle Aged , Hepatitis B/complications , Hepatitis B/pathology , Hepatitis B/metabolism , Disease Models, Animal , Carbon Tetrachloride
SELECTION OF CITATIONS
SEARCH DETAIL