Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 650
1.
Food Res Int ; 187: 114456, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763686

Single starter can hardly elevate the gel property of fermented freshwater fish sausage. In this work, in order to improve the physical properties of tilapia sausage, two newly isolated strains of lactic acid bacteria (LAB), Latilactobacillus sakei and Pediococcus acidilactici were used for cooperative fermentation of tilapia sausage, followed by the revelation of their formation mechanisms during cooperative fermentation and their improvement mechanisms after comparison with natural fermentation. Both strains, especially L. sakei possessed good growth, acidification ability, and salt tolerance. The gel strength, hardness, springiness, chewiness, whiteness, acidification, and total plate count significantly elevated during cooperative fermentation with starters. Pediococcus, Acinetobacter, and Macrococcus were abundant before fermentation, while Latilactobacillus quickly occupied the dominant position after fermentation for 18-45 h with the relative abundance over 51.5 %. The influence of each genus on the physical properties was calculated through the time-dimension and group-dimension correlation networks. The results suggested that the increase of Latilactobacillus due to the good growth and metabolism of L. sakei contributed the most to the formation and improvement of gel strength, texture properties, color, acidification, and food safety of tilapia sausage after cooperative fermentation. This study provides a novel analysis method to quantitatively evaluate the microbial contribution on the changes of various properties. The cooperative fermentation of LAB can be used for tilapia sausage fermentation to improve its physical properties.


Fermentation , Fish Products , Food Microbiology , Tilapia , Animals , Tilapia/microbiology , Fish Products/microbiology , Hydrogen-Ion Concentration , Latilactobacillus sakei/metabolism , Lactobacillales/metabolism , Lactobacillales/isolation & purification , Lactobacillales/growth & development , Pediococcus acidilactici/metabolism , Fermented Foods/microbiology , Meat Products/microbiology
2.
Toxicon ; 243: 107749, 2024 May 28.
Article En | MEDLINE | ID: mdl-38710308

Aspergillus flavus(A. flavus), a common humic fungus known for its ability to infect agricultural products, served as the subject of investigation in this study. The primary objective was to assess the antifungal efficacy and underlying mechanisms of binary combinations of five volatile organic compounds (VOCs) produced by lactic acid bacteria, specifically in their inhibition of A. flavus. This assessment was conducted through a comprehensive analysis, involving biochemical characterization and transcriptomic scrutiny. The results showed that VOCs induce notable morphological abnormalities in A. flavus conidia and hyphae. Furthermore, they disrupt the integrity of the fungal cell membrane and cell wall, resulting in the leakage of intracellular contents and an increase in extracellular electrical conductivity. In terms of cellular components, VOC exposure led to an elevation in malondialdehyde content while concurrently inhibiting the levels of total lipids, ergosterol, soluble proteins, and reducing sugars. Additionally, the impact of VOCs on A. flavus energy metabolism was evident, with significant inhibition observed in the activities of key enzymes, such as Na+/K+-ATPase, malate dehydrogenase, succinate dehydrogenase, and chitinase. And they were able to inhibit aflatoxin B1 synthesis. The transcriptomic analysis offered further insights, highlighting that differentially expressed genes (DEGs) were predominantly associated with membrane functionality and enriched in pathways about carbohydrate and amino acid metabolism. Notably, DEGs linked to cellular components and energy-related mechanisms exhibited down-regulation, thereby corroborating the findings from the biochemical analyses. In summary, these results elucidate the principal antifungal mechanisms of VOCs, which encompass the disruption of cell membrane integrity and interference with carbohydrate and amino acid metabolism in A. flavus.


Antifungal Agents , Aspergillus flavus , Volatile Organic Compounds , Volatile Organic Compounds/pharmacology , Aspergillus flavus/drug effects , Aspergillus flavus/metabolism , Antifungal Agents/pharmacology , Lactobacillales/metabolism
3.
BMC Microbiol ; 24(1): 163, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745280

Spontaneous fermentation of cereals like millet involves a diverse population of microbes from various sources, including raw materials, processing equipment, fermenting receptacles, and the environment. Here, we present data on the predominant microbial species and their succession at each stage of the Hausa koko production process from five regions of Ghana. The isolates were enumerated using selective media, purified, and phenotypically characterised. The LAB isolates were further characterised by 16S rRNA Sanger sequencing, typed using (GTG)5 repetitive-PCR, and whole genome sequencing, while 28S rRNA Sanger sequencing was performed for yeast identification. The pH of the millet grains ranged from mean values of 6.02-6.53 to 3.51-3.99 in the final product, depending on the processors. The mean LAB and yeast counts increased during fermentation then fell to final counts of log 2.77-3.95 CFU/g for LAB and log 2.10-2.98 CFU/g for yeast in Hausa koko samples. At the various processing stages, the counts of LAB and yeast revealed significant variations (p < 0.0001). The species of LAB identified in this study were Limosilactobacillus pontis, Pediococcus acidilactici, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Pediococcus pentosaceus, Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, Schleiferilactobacillus harbinensis, and Weissella confusa. The yeasts were Saccharomyces cf. cerevisiae/paradoxus, Saccharomyces cerevisiae, Pichia kudriavzevii, Clavispora lusitaniae and Candida tropicalis. The identification and sequencing of these novel isolates and how they change during the fermentation process will pave the way for future controlled fermentation, safer starter cultures, and identifying optimal stages for starter culture addition or nutritional interventions. These LAB and yeast species are linked to many indigenous African fermented foods, potentially acting as probiotics in some cases. This result serves as the basis for further studies into the technological and probiotic potential of these Hausa koko microorganisms.


Fermentation , Fermented Foods , Food Microbiology , Millets , Yeasts , Ghana , Yeasts/classification , Yeasts/isolation & purification , Yeasts/genetics , Yeasts/metabolism , Fermented Foods/microbiology , Millets/microbiology , Lactobacillales/classification , Lactobacillales/isolation & purification , Lactobacillales/genetics , Lactobacillales/metabolism , RNA, Ribosomal, 16S/genetics , Phylogeny , Hydrogen-Ion Concentration , Edible Grain/microbiology
4.
PLoS One ; 19(5): e0301477, 2024.
Article En | MEDLINE | ID: mdl-38768108

Food allergy is widely recognized as a significant health issue, having escalated into a global epidemic, subsequently giving rise to the development of numerous additional complications. Currently, the sole efficient method to curb the progression of allergy is through the implementation of an elimination diet. The increasing number of newly identified allergens makes it harder to completely remove or avoid them effectively. The immunoreactivity of proteins of bacterial origin remains an unexplored topic. Despite the substantial consumption of microbial proteins in our diets, the immunologic mechanisms they might induce require thorough validation. This stands as the primary objective of this study. The primary objective of this study was to evaluate the effects of bacterial proteins on the intestinal barrier and immune system parameters during hypersensitivity induction in both developing and mature organisms. The secondary objective was to evaluate the role of lipids in the immunoreactivity programming of these bacterial proteins. Notably, in this complex, comprehensively designed in vitro, in vivo, and ex vivo trial, the immunoreactivity of various bacterial proteins will be examined. In summary, the proposed study intends to address the knowledge gaps regarding the effects of Lactobacillus microbial proteins on inflammation, apoptosis, autophagy, and intestinal barrier integrity in a single study.


Bacterial Proteins , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/immunology , Lipids , Milk/microbiology , Milk/immunology , Mice , Lactobacillales/metabolism , Lactobacillales/immunology , Food Hypersensitivity/immunology , Food Hypersensitivity/microbiology , Female , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology
5.
Food Funct ; 15(10): 5554-5565, 2024 May 20.
Article En | MEDLINE | ID: mdl-38712867

Obesity is one of the most important threats to human health. Besides existing pharmacological or clinical interventions, novel effective and largely available solutions are still necessary. Among diverse natural resources, microalgae are well known for their complexity in the production of novel secondary metabolites. At the same time, lactic acid bacteria (LAB) are known for their capacity to metabolize, through fermentation, different matrices, and consequently to modify or produce new compounds with potential bioactivity. This work aimed to study the production of fermented microalgae and cyanobacteria, and to analyse their extracts in the zebrafish Nile red fat metabolism assay. Three microalgal species (Chlorella vulgaris, Chlorococcum sp. and Arthrospira platensis) were fermented with seven strains of LAB from 4 species (Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, Lactobacillus delbrueckii bulgaricus and Lacticaseibacillus paracasei), derived from the UPCCO - University of Parma Culture Collection, Parma, Italy). All the selected strains were able to ferment the selected species of microalgae, and the most suitable substrate for LAB growth was Arthrospira platensis. Extracts from fermented Chlorella vulgaris and Chlorococcum sp. reduced significantly the neutral lipid reservoirs, which was not observed without fermentations. The strongest lipid reducing effect was obtained with Arthrospira platensis fermented with Lactobacillus delbrueckii bulgaricus 1932. Untargeted metabolomics identified some compound families, which could be related to the observed bioactivity, namely fatty acids, fatty amides, triterpene saponins, chlorophyll derivatives and purine nucleotides. This work opens up the possibility of developing novel functional foods or food supplements based on microalgae, since lactic acid fermentation enhanced the production of bioactive compounds with lipid reducing activities.


Fermentation , Lipid Metabolism , Metabolomics , Microalgae , Zebrafish , Animals , Microalgae/metabolism , Microalgae/chemistry , Lactic Acid/metabolism , Cyanobacteria/metabolism , Lactobacillales/metabolism , Oxazines , Spirulina
6.
Molecules ; 29(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38792098

The olive oil industry recently introduced a novel multi-phase decanter with the "Leopard DMF" series, which gives a by-product called pâté, made up of pulp and olive wastewater with a high content of phenolic substances and without pits. This study aims to create a new culture medium, the Olive Juice Broth (OJB), from DMF pâté, and apply it to select bacteria strains able to survive and degrade the bitter substances normally present in the olive fruit. Thirty-five different bacterial strains of Lactiplantibacillus plantarum from the CREA-IT.PE Collection of Microorganisms were tested. Seven strains characterized by ≥50% growth in OJB (B31, B137, B28, B39, B124, B130, and B51) showed a degradation of the total phenolic content of OJB ≥ 30%. From this set, L. plantarum B51 strain was selected as a starter for table olive production vs. spontaneous fermentation. The selected inoculant effectively reduced the debittering time compared to spontaneous fermentation. Hydroxytyrosol, derived from oleuropein and verbascoside degradation, and tyrosol, derived from ligstroside degradation, were produced faster than during spontaneous fermentation. The OJB medium is confirmed to be useful in selecting bacterial strains resistant to the complex phenolic environment of the olive fruit.


Culture Media , Fermentation , Olea , Phenols , Olea/microbiology , Olea/metabolism , Olea/chemistry , Phenols/metabolism , Phenols/chemistry , Culture Media/chemistry , Lactobacillales/metabolism , Olive Oil/chemistry , Olive Oil/metabolism , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/analogs & derivatives , Iridoid Glucosides/metabolism , Glucosides/metabolism , Glucosides/chemistry , Lactobacillus plantarum/metabolism , Polyphenols
7.
J Appl Microbiol ; 135(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38794887

AIMS: To develop antifungal lactic acid bacteria (LAB) and investigate their antifungal mechanisms against Aspergillus flavus in aflatoxin (AF) production. METHODS AND RESULTS: We isolated 179 LABs from cereal-based fermentation starters and investigated their antifungal mechanism against A. flavus through liquid chromatography-mass spectrometry and co-culture analysis techniques. Of the 179 isolates, antifungal activity was identified in Pediococcus pentosaceus, Lactobacillus crustorum, and Weissella paramesenteroides. These LABs reduced AF concentration by (i) inhibiting mycelial growth, (ii) binding AF to the cell wall, and (iii) producing antifungal compounds. Species-specific activities were also observed, with P. pentosaceus inhibiting AF production and W. paramesenteroides showing AF B1 binding activity. In addition, crucial extracellular metabolites for selecting antifungal LAB were involved in the 2',3'-cAMP-adenosine and nucleoside pathways. CONCLUSIONS: This study demonstrates that P. pentosaceus, L. crustorum, and W. paramesenteroides are key LAB strains with distinct antifungal mechanisms against A. flavus, suggesting their potential as biological agents to reduce AF in food materials.


Antifungal Agents , Aspergillus flavus , Coculture Techniques , Lactobacillales , Metabolomics , Aspergillus flavus/metabolism , Aspergillus flavus/growth & development , Aspergillus flavus/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Lactobacillales/metabolism , Lactobacillales/growth & development , Fermentation , Aflatoxins/biosynthesis , Edible Grain/microbiology , Pediococcus pentosaceus/metabolism , Antibiosis , Food Microbiology
8.
Colloids Surf B Biointerfaces ; 238: 113929, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677155

In recent years, with increasing emphasis on healthy, green, and sustainable consumption concepts, plant-based foods have gained popularity among consumers. As widely sourced plant-based raw materials, legume proteins are considered sustainable and renewable alternatives to animal proteins. However, legume proteins have limited functional properties, which hinder their application in food products. LAB fermentation is a relatively natural processing method that is safer than chemical/physical modification methods and can enrich the functional properties of legume proteins through biodegradation and modification. Therefore, changes in legume protein composition, structure, and functional properties and their related mechanisms during LAB fermentation are described. In addition, the specific enzymatic hydrolysis mechanisms of different LAB proteolytic systems on legume proteins are also focused in this review. The unique proteolytic systems of different LAB induce specific enzymatic hydrolysis of legume proteins, resulting in the production of hydrolysates with diverse functional properties, including solubility, emulsibility, gelability, and foamability, which are determined by the composition (peptide/amino acid) and structure (secondary/tertiary) of legume proteins after LAB fermentation. The correlation between LAB-specific enzymatic hydrolysis, protein composition and structure, and protein functional properties will assist in selecting legume protein raw materials and LAB strains for legume plant-based food products and expand the application of legume proteins in the food industry.


Fabaceae , Fermentation , Plant Proteins , Hydrolysis , Fabaceae/chemistry , Fabaceae/metabolism , Plant Proteins/metabolism , Plant Proteins/chemistry , Lactobacillales/metabolism
9.
Int J Food Microbiol ; 417: 110689, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38621325

This study delved into the evolution of fungal population during the fermentation of Spanish-style green table olives (Manzanilla cultivar), determining the influence of different factors such as fermentation matrix (brine or fruit) or the use of a lactic acid bacteria inoculum, on its distribution. The samples (n = 24) were directly obtained from industrial fermentation vessels with approximately 10.000 kg of fruits and 6.000 L of brines. Our findings showcased a synchronized uptick in lactic acid bacteria counts alongside fungi proliferation. Metataxonomic analysis of the Internal Transcribed Spacer (ITS) region unearthed noteworthy disparities across different fermentation time points (0, 24, and 83 days). Statistical analysis pinpointed two Amplicon Sequence Variants (ASV), Candida and Aureobasidium, as accountable for the observed variances among the different fermentation time samples. Notably, Candida exhibited a marked increase during 83 days of fermentation, opposite to Aureobasidium, which demonstrated a decline. Fungal biodiversity was slightly higher in brines than in fruits, whilst no effect of inoculation was noticed. At the onset of fermentation, prominently detected genera were also Mycosphaerella (19.82 %) and Apohysomyces (16.31 %), hitherto unreported in the context of table olive processing. However, their prevalence dwindled to nearly negligible levels from 24th day fermentation onwards (<2 %). On the contrary, they were replaced by the fermentative yeasts Saccharomyces and Isstachenkia. Results obtained in this work will be useful for designing new strategies for better control of table olive fermentations.


Biodiversity , Fermentation , Food Microbiology , Fungi , Lactobacillales , Olea , Salts , Olea/microbiology , Lactobacillales/genetics , Lactobacillales/classification , Lactobacillales/metabolism , Lactobacillales/isolation & purification , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Fungi/metabolism , Spain , Fruit/microbiology
10.
Int J Food Microbiol ; 417: 110695, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38636163

This study isolated and identified autochthonous lactic acid bacteria (LAB) from mandacaru fruit and evaluated their potential probiotic and technological aptitudes in vitro, as well as the protective effects of freeze-dried mandacaru fruit on the most promising LAB isolate during lyophilization and refrigeration storage. Initially, 212 colonies were isolated from mandacaru fruit, and 34 were preliminarily identified as LAB. Thirteen isolates identified by 16S-rRNA sequencing as Pediococcus pentosaceus were negative for DNase, gelatinase, hemolytic, and biogenic amine production. The selected isolates showed proteolytic activity, diacetyl and exopolysaccharide production, and good tolerance to different NaCl concentrations while having low cellular hydrophobicity and antagonistic activity against pathogens. The survival of isolates sharply decreased after 3 h of exposure to pH 2 and had a good tolerance to 1 % bile salt. A principal component analysis selected P. pentosaceus 57 as the most promising isolate based on the examined technological and probiotic-related physiological properties. This isolate was lyophilized with mandacaru fruit and stored under refrigeration for 90 days. P. pentosaceus 57 lyophilized with mandacaru fruit had high viable cell counts (9.69 ± 0.03 log CFU/mL) and >50 % of physiologically active cells at 90 days of refrigeration storage. The results indicate that mandacaru fruit is a source of P. pentosaceus with aptitudes to be explored as potential probiotic and technological characteristics of interest for the food industry, besides being a good candidate for use in lyophilization processes and refrigeration storage of LAB due to its cryoprotective effects.


Freeze Drying , Fruit , Pediococcus pentosaceus , Probiotics , Refrigeration , Pediococcus pentosaceus/metabolism , Fruit/microbiology , Lactobacillales/metabolism , Lactobacillales/genetics , Lactobacillales/physiology , Food Storage , Food Microbiology , Food Preservation/methods
11.
ISME J ; 18(1)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38618721

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Gastrointestinal Microbiome , Insecticide Resistance , Pyrethrins , Reactive Oxygen Species , Tephritidae , Animals , Reactive Oxygen Species/metabolism , Pyrethrins/pharmacology , Pyrethrins/metabolism , Insecticide Resistance/genetics , Tephritidae/microbiology , Tephritidae/genetics , Insecticides/pharmacology , Insecticides/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactobacillales/genetics , Lactobacillales/metabolism , Lactobacillales/drug effects , Lactobacillales/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Enterococcus/genetics , Enterococcus/metabolism , Enterococcus/drug effects , Glutathione Transferase/genetics , Glutathione Transferase/metabolism
12.
Food Chem ; 450: 139354, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38636385

The interaction between gut microbiota and muscles through the gut-muscle axis has received increasing attention. This study attempted to address existing research gaps by investigating the effects of gut microbiota on meat flavor. Specifically, lactic acid bacteria were administered to ducks, and the results of e-nose and e-tongue showed significantly enhanced meat flavor in the treatment group. Further analyses using GC-MS revealed an increase in 6 characteristic volatile flavor compounds, including pentanal, hexanal, heptanal, 1-octen-3-ol, 2,3-octanedione, and 2-pentylfuran. Linoleic acid was identified as the key fatty acid that influences meat flavor. Metagenomic and transcriptomic results further confirmed that cecal microbiota affects the duck meat flavor by regulating the metabolic pathways of fatty acids and amino acids, especially ACACB was related to fatty acid biosynthesis and ACAT2, ALDH1A1 with fatty acid degradation. This study sheds light on a novel approach to improving the flavor of animal-derived food.


Ducks , Gastrointestinal Microbiome , Lactobacillales , Meat , Taste , Animals , Ducks/microbiology , Meat/analysis , Meat/microbiology , Lactobacillales/metabolism , Lactobacillales/genetics , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Fatty Acids/metabolism , Flavoring Agents/metabolism , Flavoring Agents/chemistry
13.
Microb Cell Fact ; 23(1): 118, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38659044

BACKGROUND: Excessive alcohol consumption has been consistently linked to serious adverse health effects, particularly affecting the liver. One natural defense against the detrimental impacts of alcohol is provided by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), which detoxify harmful alcohol metabolites. Recent studies have shown that certain probiotic strains, notably Lactobacillus spp., possess alcohol resistance and can produce these critical enzymes. Incorporating these probiotics into alcoholic beverages represents a pioneering approach that can potentially mitigate the negative health effects of alcohol while meeting evolving consumer preferences for functional and health-centric products. RESULTS: Five lactic acid bacteria (LAB) isolates were identified: Lactobacillus paracasei Alc1, Lacticaseibacillus rhamnosus AA, Pediococcus acidilactici Alc3, Lactobacillus paracasei Alc4, and Pediococcus acidilactici Alc5. Assessment of their alcohol tolerance, safety, adhesion ability, and immunomodulatory effects identified L. rhamnosus AA as the most promising alcohol-tolerant probiotic strain. This strain also showed high production of ADH and ALDH. Whole genome sequencing analysis revealed that the L. rhamnosus AA genome contained both the adh (encoding for ADH) and the adhE (encoding for ALDH) genes. CONCLUSIONS: L. rhamnosus AA, a novel probiotic candidate, showed notable alcohol resistance and the capability to produce enzymes essential for alcohol metabolism. This strain is a highly promising candidate for integration into commercial alcoholic beverages upon completion of comprehensive safety and functionality evaluations.


Alcohol Dehydrogenase , Ethanol , Probiotics , Humans , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Ethanol/metabolism , Lactobacillus/metabolism , Lactobacillus/genetics , Lactobacillales/genetics , Lactobacillales/metabolism , Lacticaseibacillus rhamnosus/genetics , Lacticaseibacillus rhamnosus/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Pediococcus acidilactici/metabolism
14.
Carbohydr Polym ; 332: 121905, 2024 May 15.
Article En | MEDLINE | ID: mdl-38431412

Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.


Gastrointestinal Microbiome , Lactobacillales , Humans , Glycosaminoglycans/metabolism , Bacteroides/metabolism , Lactobacillales/metabolism , Heparin , Heparitin Sulfate
15.
Nutrients ; 16(5)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38474811

Lactic-acid-bacteria-derived bacteriocins are used as food biological preservatives widely. Little information is available on the impact of bacteriocin intake with food on gut microbiota in vivo. In this study, the effects of fermented milk supplemented with nisin (FM-nisin) or plantaricin Q7 (FM-Q7) from Lactiplantibacillus plantarum Q7 on inflammatory factors and the gut microbiota of mice were investigated. The results showed that FM-nisin or FM-Q7 up-regulated IFN-γ and down-regulated IL-17 and IL-12 in serum significantly. FM-nisin down-regulated TNF-α and IL-10 while FM-Q7 up-regulated them. The results of 16S rRNA gene sequence analysis suggested that the gut microbiome in mice was changed by FM-nisin or FM-Q7. The Firmicutes/Bacteroides ratio was reduced significantly in both groups. It was observed that the volume of Akkermansia_Muciniphila was significantly reduced whereas those of Lachnospiraceae and Ruminococcaceae were increased. The total number of short-chain fatty acids (SCFAs) in the mouse feces of the FM-nisin group and FM-Q7 group was increased. The content of acetic acid was increased while the butyric acid content was decreased significantly. These findings indicated that FM-nisin or FM-Q7 could stimulate the inflammation response and alter gut microbiota and metabolic components in mice. Further in-depth study is needed to determine the impact of FM-nisin or FM-Q7 on the host's health.


Gastrointestinal Microbiome , Lactobacillales , Nisin , Mice , Animals , Nisin/metabolism , Nisin/pharmacology , Milk/metabolism , RNA, Ribosomal, 16S/genetics , Lactobacillales/metabolism , Butyric Acid
16.
Arch Microbiol ; 206(4): 184, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38503937

The pit mud in the Baijiu fermentation cellar is an abundant microbial resource that is closely related to the quality of baijiu. However, many naturally existing species might be in a viable but nonculturable (VBNC) state, posing challenges to the isolation and application of functional species. Herein, a previously isolated strain from baijiu mash, Umezawaea beigongshangensis, was found to contain the rpf gene that encodes resuscitation promotion factor (Rpf). Therefore, the gene was cloned and heterologously expressed, and the recombinant protein (Ub-Rpf 2) was purified. Ub-Rpf 2 was found to significantly promote the growth of resuscitated VBNC state Corynebacterium beijingensis and Sphingomonas beigongshangensis. To determine the resuscitation effect of Ub-Rpf 2 on real ecological samples, the protein was supplemented in pit mud for enrichment culture. Results revealed that specific families and genera were enriched in abundance upon Ub-Rpf 2 incubation, including a new family of Symbiobacteraceae and culturable Symbiobacterium genus. Furthermore, 14 species belonging to 12 genera were obtained in Ub-Rpf 2 treated samples, including a suspected novel species. This study lays a foundation for applying Rpf from U. beigongshangensis to exploit microbial resources in baijiu pit mud.


Actinomycetales , Lactobacillales , Bacteria/genetics , Actinomycetales/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fermentation , Lactobacillales/metabolism
17.
Food Chem ; 448: 138959, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38552464

This study aimed to investigate the interaction between L.casei and L.bulgaricus with Polygonatum sibiricum saponins (PSS) and to explore the co-microencapsulation to reduce their loss rate during storage and consumption. 1% PSS was added to the culture broth, and it was found that the growth and metabolism of the strains were accelerated, especially in the compound probiotic group, indicating that PSS has potential for prebiotics. LC-MS observed significant differences in the composition and content of saponins in PSS. The metabolomics results suggest that the addition of PSS resulted in significant changes in the metabolites of probiotics. In addition, it was found that the combination of probiotics and PSS may have stronger hypoglycemic ability (ɑ-glucosidase, HepG2). Finally, a co-microencapsulated delivery system was constructed using zein and isomaltooligosaccharide. This system can achieve more excellent resistance of probiotics and PSS in gastrointestinal fluids, effectively transporting both to the small intestine.


Drug Compounding , Polygonatum , Probiotics , Saponins , Saponins/chemistry , Saponins/metabolism , Saponins/pharmacology , Humans , Probiotics/metabolism , Probiotics/chemistry , Polygonatum/chemistry , Polygonatum/metabolism , Prebiotics/analysis , Lactobacillus/metabolism , Lactobacillus/chemistry , Lactobacillus/growth & development , Lactobacillales/metabolism , Lactobacillales/growth & development , Lactobacillales/chemistry
18.
Food Res Int ; 182: 114179, 2024 Apr.
Article En | MEDLINE | ID: mdl-38519191

Co-culture fermentation with yeast and lactic acid bacteria (LAB) exhibits advantages in improving the bioactivity and flavor of wheat bran compared to single-culture fermentation, showing application potentials in bran-containing Chinese steamed bread (CSB). To explore the effects of combination of yeast and different LAB on the bioactivity and flavor of fermented wheat bran, this study analyzed the physicochemical properties, phytate degradation capacity, antioxidant activities, and aroma profile of wheat bran treated with co-culture fermentation by Saccharomycopsis fibuligera and eight different species of LAB. Further, the phenolic acid composition, antioxidant activities, texture properties, aroma profile, and sensory quality of CSB containing fermented wheat bran were evaluated. The results revealed that co-culture fermentation brought about three types of volatile characteristics for wheat bran, including ester-feature, alcohol and acid-feature, and phenol-feature, and the representative strain combinations for these characteristics were S. fibuligera with Limosilactobacillus fermentum, Pediococcus pentosaceus, and Latilactobacillus curvatus, respectively. Co-culture fermentation by S. fibuligera and L. fermentum for 36 h promoted acidification with a phytate degradation rate reaching 51.70 %, and improved the production of volatile ethyl esters with a relative content of 58.47 % in wheat bran. Wheat bran treated with co-culture fermentation by S. fibuligera and L. curvatus for 36 h had high relative content of 4-ethylguaiacol at 52.81 %, and exhibited strong antioxidant activities, with ABTS•+ and DPPH• scavenging rates at 65.87 % and 69.41 %, respectively, and ferric reducing antioxidant power (FRAP) at 37.91 µmol/g. In addition, CSB containing wheat bran treated with co-culture fermentation by S. fibuligera and L. fermentum showed a large specific volume, soft texture, and pleasant aroma, and received high sensory scores. CSB containing wheat bran treated with co-culture fermentation by S. fibuligera and L. curvatus, with high contents of 4-ethylguaiacol, 4-vinylguaiacol, ferulic acid, vanillin, syringaldehyde, and protocatechualdehyde, demonstrated strong antioxidant activities. This study is beneficial to the comprehensive utilization of wheat bran resources and provides novel insights into the enhancement of functions and quality for CSB.


Guaiacol/analogs & derivatives , Lactobacillales , Saccharomycopsis , Lactobacillales/metabolism , Bread/analysis , Dietary Fiber/analysis , Odorants , Antioxidants/metabolism , Saccharomyces cerevisiae/metabolism , Phytic Acid , Coculture Techniques , Fermentation , China
19.
Meat Sci ; 212: 109472, 2024 Jun.
Article En | MEDLINE | ID: mdl-38422590

The aim of this study was to assess whether ultrasound treatment (sonification time: 5, 15, and 30 min; constants: ∼40 kHz, ∼2.5 W cm2) can be applied prior to hydrolysis to enhance the anti-radical and angiotensin converting enzyme inhibiting (anti-ACE) effect of the hydrolysates from fermented pork loins. Enzymatic hydrolysis was performed using pepsin, followed by pancreatin. The influence of meat matrix on the course of hydrolysis, shaped using a lactic acid bacteria (LAB)-based starter culture, was also analyzed. It was found that proteases caused a systematic increase in the content of peptides, while pancreatin limited the peptide content in the protein hydrolysate from the loins subjected to spontaneous fermentation. Moreover, for these tests, sonication time had a negligible effect on the peptides content of the hydrolysates. On the other hand, for the sample of LAB-fermented products, both sonication time and stage of hydrolysis promoted the biological activity of the hydrolysates. Samples from the LAB-fermented meat had more peptides at the stage of digestion with pepsin and pancreatin, exhibiting much faster antiradical and anti-ACE activity compared to the control sample. The obtained results suggest that the use of LAB promotes the release of antiradical peptides during the two-step enzymatic hydrolysis, the duration of which can be shortened to achieve satisfactory biofunctionalities. Additional application of sonication pretreatment allows controlling the course of the hydrolysis, as the pro-health, biological effect of some protein-derived sequences is associated with the content of peptides.


Lactobacillales , Pork Meat , Red Meat , Animals , Swine , Peptidyl-Dipeptidase A/metabolism , Protein Hydrolysates/chemistry , Pepsin A , Pancreatin/metabolism , Sonication , Peptides/chemistry , Hydrolysis , Lactobacillales/metabolism
20.
Toxins (Basel) ; 16(2)2024 02 03.
Article En | MEDLINE | ID: mdl-38393159

Toxin-antitoxin systems are preserved by nearly every prokaryote. The type II toxin MazF acts as a sequence-specific endoribonuclease, cleaving ribonucleotides at specific sequences that vary from three to seven bases, as has been reported in different host organisms to date. The present study characterized the MazEF module (MazEF-sth) conserved in the Symbiobacterium thermophilum IAM14863 strain, a Gram-negative syntrophic bacterium that can be supported by co-culture with multiple bacteria, including Bacillus subtilis. Based on a method combining massive parallel sequencing and the fluorometric assay, MazF-sth was determined to cleave ribonucleotides at the UACAUA motif, which is markedly similar to the motifs recognized by MazF from B. subtilis (MazF-bs), and by several MazFs from Gram-positive bacteria. MazF-sth, with mutations at conserved amino acid residues Arg29 and Thr52, lost most ribonuclease activity, indicating that these residues that are crucial for MazF-bs also play significant roles in MazF-sth catalysis. Further, cross-neutralization between MazF-sth and the non-cognate MazE-bs was discovered, and herein, the neutralization mechanism is discussed based on a protein-structure simulation via AlphaFold2 and multiple sequence alignment. The conflict between the high homology shared by these MazF amino acid sequences and the few genetic correlations among their host organisms may provide evidence of horizontal gene transfer.


Bacterial Toxins , Clostridiales , Escherichia coli Proteins , Lactobacillales , Escherichia coli Proteins/genetics , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Escherichia coli/genetics , Lactobacillales/metabolism , Endoribonucleases/metabolism , Ribonucleotides , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA-Binding Proteins/genetics
...