Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.873
Filter
1.
Braz J Biol ; 84: e284961, 2024.
Article in English | MEDLINE | ID: mdl-39109729

ABSTRACT

The work aims to analyze the associations of polymorphic variants of the PRL and BLG genes with resistance and susceptibility to mastitis in Holstein cows. The experimental study consisted of the selection of biomaterial samples from 250 heads of Holstein cows aged 3 years divided into two groups (healthy and with a confirmed diagnosis of mastitis). The determination of animal genotypes was carried out using polymerase chain reaction and restriction fragment length polymorphism. The study of the nature of the association of polymorphic variants of the PRL and BLG gene with resistance/increased risk of mastitis established a significant deviation from the theoretically expected distribution of bBLG-HaeIII genotypes in the group of animals suffering from mastitis (the value of χ2 was 0.24). The bBLG-HaeIIIBB genotype can act as a marker of an increased risk of developing mastitis in Holstein cows; its frequency in the group of sick animals exceeds the frequency in the control group by more than 2 times (44.0 compared to 17.0%, respectively). The bBLG-HaeIIIAB genotype is significantly associated with mastitis resistance in Holstein cows; its frequency is 2 times lower than in the control group (28.0 compared to 54.0%).


Subject(s)
Genetic Predisposition to Disease , Genotype , Lactoglobulins , Mastitis, Bovine , Polymerase Chain Reaction , Polymorphism, Genetic , Prolactin , Animals , Cattle , Female , Mastitis, Bovine/genetics , Prolactin/genetics , Polymerase Chain Reaction/veterinary , Lactoglobulins/genetics , Polymorphism, Restriction Fragment Length , Gene Frequency
2.
Carbohydr Polym ; 342: 122383, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048225

ABSTRACT

The effects of complexing conditions on the formation of amylose-lipid-protein complexes and relationships between structure and digestion of amylose-lipid and amylose-lipid-protein complexes were poorly understood. The objective of this study was to investigate the effects of complexing time (0, 0.5, 2, 4 and 6 h) and temperature (60, 70, 80, 90 and 100 °C) on the structure and in vitro amylolysis of amylose-lauric acid (AM-LA) and amylose-lauric acid-ß-lactoglobulin (AM-LA-ßLG) complexes, and to understand the relationships between structure and in vitro digestiblity of these complexes. Longer complexing time and higher complexing temperature promoted the formation of greater amounts of the more stable type II crystallites than type I crystallites in both AM-LA and AM-LA-ßLG complexes, which in turn decreased the rate and extent of the complexes digestion to a greater extent. Correlation analyses between parameters for structure and digestion kinetics showed that both the quantity of AM-LA and AM-LA-ßLG complexes and the quality of their arrangement into V-type crystallites influenced their rate and extent of digestion. This study demonstrates that AM-LA and AM-LA-ßLG complexes can be prepared with designed structural and functional properties tailored for various applications.


Subject(s)
Amylose , Lactoglobulins , Amylose/chemistry , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Lauric Acids/chemistry , Temperature , Kinetics , Digestion , Hydrolysis
3.
J Food Sci ; 89(7): 4109-4122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957103

ABSTRACT

The elucidation of the interaction mechanism between phospholipids and milk proteins within emulsions is pivotal for comprehending the properties of infant formula fat globules. In this study, multispectral methods and molecular docking were employed to explore the relationship between phosphatidylcholine (PC) and whey protein isolate (WPI). Observations indicate that the binding constant, alongside thermodynamic parameters, diminishes as temperature ascends, hinting at a predominantly static quenching mechanism. Predominantly, van der Waals forces and hydrogen bonds constitute the core interactions between WPI and PC. This assertion is further substantiated by Fourier transform infrared spectroscopy, which verifies PC's influence on WPI's secondary structure. A detailed assessment of thermodynamic parameters coupled with molecular docking reveals that PC predominantly adheres to specific sites within α-lactalbumin, ß-lactoglobulin, and bovine serum albumin, propelled by a synergy of hydrophobic interactions, hydrogen bonding, and van der Waals forces, with binding energies noted at -5.59, -6.71, and -7.85 kcal/mol, respectively. An increment in PC concentration is observed to amplify the emulsification properties of WPI whilst concurrently diminishing the zeta potential. This study establishes a theoretical foundation for applying the PC-WPI interaction mechanism in food.


Subject(s)
Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Phosphatidylcholines , Thermodynamics , Whey Proteins , Whey Proteins/chemistry , Phosphatidylcholines/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Emulsions/chemistry , Lactalbumin/chemistry , Lactalbumin/metabolism , Serum Albumin, Bovine/chemistry , Infant Formula/chemistry
4.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000318

ABSTRACT

This study is focused on fractionation of insulin-like growth factor I (IGF-I) and transforming growth factor-ß2 (TGF-ß2) using a new electro-based membrane process calledelectrodialysis with filtration membranes (EDFM). Before EDFM, different pretreatments were tested, and four pH conditions (4.25, 3.85, 3.45, and 3.05) were used during EDFM. It was demonstrated that a 1:1 dilution of defatted colostrum with deionized water to decrease mineral content followed by the preconcentration of GFs by UF is necessary and allow for these compounds to migrate to the recovery compartment during EDFM. MS analyses confirmed the migration, in low quantity, of only α-lactalbumin (α-la) and ß-lactoglobulin (ß-lg) from serocolostrum to the recovery compartment during EDFM. Consequently, the ratio of GFs to total protein in recovery compartment compared to that of feed serocolostrum solution was 60× higher at pH value 3.05, the optimal pH favoring the migration of IGF-I and TGF-ß2. Finally, these optimal conditions were tested on acid whey to also demonstrate the feasibility of the proposed process on one of the main by-products of the cheese industry; the ratio of GFs to total protein was 2.7× higher in recovery compartment than in feed acid whey solution, and only α-la migrated. The technology of GF enrichment for different dairy solutions by combining ultrafiltration and electrodialysis technologies was proposed for the first time.


Subject(s)
Dialysis , Filtration , Dialysis/methods , Filtration/methods , Insulin-Like Growth Factor I/analysis , Hydrogen-Ion Concentration , Membranes, Artificial , Dairy Products/analysis , Animals , Colostrum/chemistry , Cattle , Whey/chemistry , Lactoglobulins/chemistry , Lactoglobulins/analysis , Lactalbumin/chemistry , Lactalbumin/analysis
5.
Langmuir ; 40(31): 16132-16144, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39037867

ABSTRACT

SBA-15 mesoporous materials were synthesized with different pore sizes (5 and 10 nm) and thiol-functionalized groups and then characterized to describe their ability to differentially adsorb ß-lactoglobulin (BLG), a globular protein with an ellipsoid shape measuring 6.9 nm in length and 3.6 nm in width. All adsorption experiments showed that the adsorption capacities of mesoporous materials for BLG were dependent on the duration of contact between the two materials (mesoporous material and BLG) and the initial BLG concentration. It was also shown that the pore sizes and thiol groups of SBA-15-based adsorbents are important factors for the BLG adsorption capacities. Among the tested adsorbents, thiol-functionalized SBA-15 with a 10 nm pore size (SBA-15-SH-10) showed the highest adsorption capacity (0.560 g·g-1) under optimal experimental conditions. Kinetics studies demonstrated that the adsorption occurs predominantly inside the pores, with interactions occurring on heterogeneous surfaces. In addition, the thermodynamic parameters indicate a spontaneous and exothermic behavior of the BLG adsorption process onto the thiol-functionalized SBA-15 mesoporous adsorbent. Finally, the characterization of the SBA-15-SH-10 adsorbent at 308 K showed the occurrence of an oxidation reaction of the thiol groups to sulfonate groups during the adsorption process as confirmed by Raman spectroscopy. The spectra recorded after adsorption of the protein showed that this adsorption did not affect the secondary structure of the protein.


Subject(s)
Lactoglobulins , Silicon Dioxide , Sulfhydryl Compounds , Lactoglobulins/chemistry , Silicon Dioxide/chemistry , Adsorption , Sulfhydryl Compounds/chemistry , Porosity , Thermodynamics , Surface Properties , Kinetics
6.
J Agric Food Chem ; 72(31): 17549-17558, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39054671

ABSTRACT

ß-Lactoglobulin (ßLG) is a major allergen in bovine milk protein. This study was designed to investigate changes in ßLG structure, digestibility, and allergenicity induced by covalent binding modification with different contents of (-)-epigallocatechin 3-gallate (EGCG). The reaction of EGCG conjugation with ßLG reached saturation at a molar ratio of 1:60 ßLG:EGCG. Conjugation with EGCG altered the ßLG structure, decreased IgE-binding capacity, and increased digestibility in a dose-dependent manner. In vivo studies showed that covalent conjugation with EGCG can reduce ßLG-induced allergic symptoms with reducing levels of IgE, histamine, and mast cell protease-1 (mMCP-1) and the percentage of sensitized mast cells. Allergenicity was reduced more effectively in saturated ßLG-EGCG conjugates compared to semisaturated conjugates. Observed changes in IFN-γ, IL-4, IL-5, IL-10, and TGF-ß levels suggested that ßLG-EGCG conjugates were able to promote Th1/Th2 immune balance. These findings further our understanding of the relationship between the degree of polyphenol conjugation and the allergenicity of food allergens.


Subject(s)
Allergens , Catechin , Immunoglobulin E , Lactoglobulins , Lactoglobulins/chemistry , Lactoglobulins/immunology , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/immunology , Animals , Allergens/immunology , Allergens/chemistry , Cattle , Immunoglobulin E/immunology , Humans , Mice , Milk Hypersensitivity/immunology , Milk Hypersensitivity/prevention & control , Mice, Inbred BALB C , Female , Interferon-gamma/immunology , Interferon-gamma/metabolism , Chymases/chemistry , Chymases/immunology , Chymases/metabolism , Th2 Cells/immunology , Th2 Cells/drug effects , Interleukin-5/immunology , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukin-4/immunology , Interleukin-4/metabolism , Mast Cells/immunology , Mast Cells/drug effects
7.
Eur J Pharm Biopharm ; 202: 114396, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971201

ABSTRACT

Proteins have recently caught attention as potential excipients for amorphous solid dispersions (ASDs) to improve oral bioavailability of poorly water-soluble drugs. Notably, the studies have highlighted whey protein isolates, particularly ß-lactoglobulin (BLG), as promising candidates in amorphous stabilization, dissolution and solubility enhancement, achieving drug loadings of 50 wt% and higher. Consequently, investigations into the mechanisms underlying the solid-state stabilization of amorphous drugs and the enhancement of drug solubility in solution have been conducted. This graphical review provides a comprehensive overview of recent findings concerning BLG-based ASDs. Firstly, the dissolution performance of BLG-based ASDs is compared to more traditional polymer-based ASDs. Secondly, the drug loading onto BLG and the resulting amorphous stabilization mechanisms is summarized. Thirdly, interactions between BLG and drug molecules in solution are described as the mechanisms governing the improvement of drug solubility. Lastly, we outline the impact of the spray drying process on the secondary structure of BLG, and the resulting differences in amorphous stabilization and drug dissolution performance between α-helix-rich and ß-sheet-rich BLG-based ASDs.


Subject(s)
Excipients , Lactoglobulins , Solubility , Lactoglobulins/chemistry , Excipients/chemistry , Biological Availability , Drug Compounding/methods , Chemistry, Pharmaceutical/methods , Drug Liberation , Drug Stability , Polymers/chemistry , Spray Drying
8.
J Agric Food Chem ; 72(30): 17041-17050, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39024493

ABSTRACT

Plasmin-induced protein hydrolysis significantly compromises the stability of ultrahigh-temperature (UHT) milk. ß-Lactoglobulin (ß-Lg) was observed to inhibit plasmin activity, suggesting that there were active sites as plasmin inhibitors in ß-Lg. Herein, plasmin inhibitory peptides were explored from ß-Lg using experimental and computational techniques. The results revealed that increased denaturation of ß-Lg enhanced its affinity for plasmin, leading to a stronger inhibition of plasmin activity. Molecular dynamics simulations indicated that electrostatic and van der Waals forces were the primary binding forces in the ß-Lg/plasmin complex. Denatured ß-Lg increased hydrogen bonding and reduced the binding energy with plasmin. The sites of plasmin bound to ß-Lg were His624, Asp667, and Ser762. Four plasmin inhibitory peptides, QTMKGLDI, EKTKIPAV, TDYKKYLL, and CLVRTPEV, were identified from ß-Lg based on binding sites. These peptides effectively inhibited plasmin activity and enhanced the UHT milk stability. This study provided new insights into the development of novel plasmin inhibitors to improve the stability of UHT milk.


Subject(s)
Fibrinolysin , Lactoglobulins , Milk , Lactoglobulins/chemistry , Animals , Milk/chemistry , Fibrinolysin/chemistry , Fibrinolysin/metabolism , Fibrinolysin/antagonists & inhibitors , Cattle , Hot Temperature , Food Storage , Molecular Dynamics Simulation , Antifibrinolytic Agents/chemistry , Peptides/chemistry , Peptides/pharmacology
9.
Protein Expr Purif ; 223: 106555, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39004261

ABSTRACT

Whey, a valuable byproduct of dairy processing, contains essential proteins like ß-lactoglobulin (ßLG) and α-lactalbumin (αLA), making it a focus of research for its nutritional benefits. Various techniques, including chromatography and membrane filtration, are employed for protein extraction, often requiring multiple purification steps. One approach that has gained prominence for the purification and concentration of proteins, including those present in whey, is the use of polyethylene glycol (PEG) in aqueous two-phase systems. Our study simplifies this process by using PEG alone for whey protein purification. This approach yielded impressive results, achieving 92 % purity for ßLG and 90 % for αLA. These findings underscore the effectiveness of PEG-based purification in isolating whey proteins with high purity.


Subject(s)
Lactalbumin , Lactoglobulins , Milk , Polyethylene Glycols , Animals , Lactalbumin/isolation & purification , Lactalbumin/chemistry , Lactoglobulins/isolation & purification , Lactoglobulins/chemistry , Milk/chemistry , Cattle , Polyethylene Glycols/chemistry , Whey Proteins/chemistry , Whey Proteins/isolation & purification
10.
Food Res Int ; 188: 114485, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823871

ABSTRACT

Whey protein isolate (WPI) is mainly composed of ß-lactoglobulin (ß-LG), α-lactalbumin (α-LA) and bovine serum albumin (BSA). The aim of this study was to compare and analyze the influence of WPI and its three main constituent proteins, as well as proportionally reconstituted WPI (R-WPI) on resveratrol. It was found that the storage stability of resveratrol was protected by WPI, not affected by R-WPI, but reduced by individual whey proteins at 45°C for 30 days. The rank of accelerated degradation of resveratrol by individual whey proteins was BSA > α-LA > ß-LG. The antioxidant activity, localization of resveratrol and oxidation of carrier proteins were determined by ABTS, H2O2 assay, synchronous fluorescence, carbonyl and circular dichroism. The non-covalent interactions and disulfide bonds between constituent proteins improved the antioxidant activity of the R-WPI-resveratrol complex, the oxidation stability of the carrier and the solvent shielding effect on resveratrol, which synergistically inhibited the degradation of resveratrol in R-WPI system. The results gave insight into elucidating the interaction mechanism of resveratrol with protein carriers.


Subject(s)
Antioxidants , Lactalbumin , Lactoglobulins , Oxidation-Reduction , Resveratrol , Serum Albumin, Bovine , Whey Proteins , Resveratrol/chemistry , Resveratrol/pharmacology , Whey Proteins/chemistry , Lactalbumin/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Lactoglobulins/chemistry , Serum Albumin, Bovine/chemistry , Circular Dichroism
11.
Food Res Int ; 190: 114604, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945616

ABSTRACT

Sheep's milk (SM) is known to differ from cow's milk (CM) in nutritional composition and physicochemical properties, which may lead to different digestion behaviours. This work aimed to investigate the impact of the species (cow vs sheep) and the structure (milk vs yogurt) on the digestion of dairy products. Using an in vitro static gastrointestinal digestion model, CM, SM, cow's milk yogurt (CY) and sheep's milk yogurt (SY) were compared on particle size evolution, microscopic observations, degree of lipolysis, degree of proteolysis, specific protein degradation and calcium bioaccessibility. Species and structure affected particle size evolution during the gastric phase resulting in smaller particles for yogurts compared to milks as well as for CM products compared to SM products. Species impacted lipid composition and lipolysis, with SM products presenting higher short/medium-chain fatty acids content and higher intestinal degree of lipolysis. Proteolysis was influenced by structure, with milks showing higher intestinal degree of proteolysis compared to yogurts. Caseins were digested faster in CM, ⍺-lactalbumin was digested faster in SM despite its higher concentration, and during gastric digestion ß-lactoglobulin was more degraded in CM products compared to SM products and more in yogurts compared to milks. Lastly, SM products released more bioaccessible calcium than CM products. In conclusion, species (cow vs sheep) impacted more the digestion compared to the structure (milk vs yogurt). In fact, SM was different from CM mainly due to a denser protein network that might slow down the accessibility of the enzyme to its substrate which induce a delay of gastric disaggregation and thus lead to slower the digestion of the nutrients.


Subject(s)
Digestion , Lipolysis , Milk , Particle Size , Proteolysis , Yogurt , Animals , Digestion/physiology , Cattle , Yogurt/analysis , Sheep , Milk/chemistry , Lactoglobulins/metabolism , Gastrointestinal Tract/metabolism , Dairy Products/analysis , Lactalbumin/metabolism , Caseins/metabolism , Caseins/analysis , Species Specificity , Milk Proteins/analysis , Milk Proteins/metabolism
12.
Int J Biol Macromol ; 272(Pt 1): 132856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834118

ABSTRACT

Economically and efficiently removing organic pollutants from water is still a challenge in wastewater treatment. Utilizing environmentally friendly and readily available protein-based natural polymers to develop aerogels with effective removal performance and sustainable regeneration capability is a promising strategy for adsorbent design. Here, a robust and cost-effective method using inexpensive ß-lactoglobulin (BLG) as raw material was proposed to fabricate BLG-based aerogels. Firstly, photocurable BLG-based polymers were synthesized by grafting glycidyl methacrylate. Then, a cross-linking reaction, including photo-crosslinking and salting-out treatment, was applied to prepared BLG-based hydrogels. Finally, the BLG-based aerogels with high porosity and ultralight weight were obtained after freeze-drying. The outcomes revealed that the biocompatible BLG-based aerogels exhibited effective removal performance for a variety of organic pollutants under perfectly quiescent conditions, and could be regenerated and reused many times via a simple and rapid process of acid washing and centrifugation. Overall, this work not only demonstrates that BLG-based aerogels are promising adsorbents for water purification but also provides a potential way for the sustainable utilization of BLG.


Subject(s)
Gels , Lactoglobulins , Water Pollutants, Chemical , Water Purification , Lactoglobulins/chemistry , Lactoglobulins/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Water Purification/methods , Gels/chemistry , Adsorption , Porosity , Hydrogels/chemistry , Water/chemistry , Epoxy Compounds , Methacrylates
13.
J Agric Food Chem ; 72(27): 15198-15212, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38941263

ABSTRACT

Numerous studies have highlighted the potential of Lactic acid bacteria (LAB) fermentation of whey proteins for alleviating allergies. Nonetheless, the impact of LAB-derived metabolites on whey proteins antigenicity during fermentation remains uncertain. Our objective was to elucidate the impact of small molecular metabolites on the antigenicity of α-lactalbumin (α-LA) and ß-lactoglobulin (ß-LG). Through metabolomic analysis, we picked 13 bioactive small molecule metabolites from Lactobacillus delbrueckii subsp. bulgaricus DLPU F-36 for coincubation with α-LA and ß-LG, respectively. The outcomes revealed that valine, arginine, benzoic acid, 2-keto butyric acid, and glutaric acid significantly diminished the sensitization potential of α-LA and ß-LG, respectively. Moreover, chromatographic analyses unveiled the varying influence of small molecular metabolites on the structure of α-LA and ß-LG, respectively. Notably, molecular docking underscored that the primary active sites of α-LA and ß-LG involved in protein binding to IgE antibodies aligned with the interaction sites of small molecular metabolites. In essence, LAB-produced metabolites wield a substantial influence on the antigenic properties of whey proteins.


Subject(s)
Lactobacillus delbrueckii , Molecular Docking Simulation , Whey Proteins , Lactobacillus delbrueckii/metabolism , Lactobacillus delbrueckii/chemistry , Lactobacillus delbrueckii/immunology , Whey Proteins/chemistry , Whey Proteins/metabolism , Fermentation , Lactoglobulins/chemistry , Lactoglobulins/immunology , Lactoglobulins/metabolism , Lactalbumin/chemistry , Lactalbumin/immunology , Lactalbumin/metabolism , Animals , Cattle , Antigens/immunology , Antigens/chemistry
14.
Anal Chem ; 96(26): 10524-10533, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38907695

ABSTRACT

The elucidation of protein-membrane interactions is pivotal for comprehending the mechanisms underlying diverse biological phenomena and membrane-related diseases. In this investigation, vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy, utilizing synchrotron radiation (SR), was employed to dynamically observe membrane interaction processes involving water-soluble proteins at the secondary-structure level. The study utilized a time-resolved (TR) T-shaped microfluidic cell, facilitating the rapid and efficient mixing of protein and membrane solutions. This system was instrumental in acquiring measurements of the time-resolved circular dichroism (TRCD) spectra of ß-lactoglobulin (bLG) during its interaction with lysoDMPG micelles. The results indicate that bLG undergoes a ß-α conformation change, leading to the formation of the membrane-interacting state (M-state), with structural alterations occurring in more than two steps. Global fitting analysis, employing biexponential functions with all of the TRCD spectral data sets, yielded two distinct rate constants (0.18 ± 0.01 and 0.06 ± 0.003/s) and revealed a unique spectrum corresponding to an intermediate state (I-state). Secondary-structure analysis of bLG in its native (N-, I-, and M-states) highlighted that structural changes from the N- to I-states predominantly occurred in the N- and C-terminal regions, which were prominently exposed to the membrane. Meanwhile, transitions from the I- to M-states extended into the inner barrel regions of bLG. Further examination of the physical properties of α-helical segments, such as effective charge and hydrophobicity, revealed that the N- to I- and I- to M-state transitions, which are ascribed to first- and second-rate constants, respectively, are primarily driven by electrostatic and hydrophobic interactions, respectively. These findings underscore the capability of the TR-VUVCD system as a robust tool for characterizing protein-membrane interactions at the molecular level.


Subject(s)
Circular Dichroism , Lactoglobulins , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Vacuum , Micelles , Protein Structure, Secondary , Animals , Time Factors , Cattle
15.
Vet Microbiol ; 295: 110153, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889618

ABSTRACT

Bovine leukemia virus (BLV) is a widespread virus that decreases milk production and quality in dairy cows. As crucial components of BLV, BLV-encoded microRNAs (BLV-miRNAs) affect BLV replication and may impact the synthesis of Lactoferrin (LTF), Lactoperoxidase (LPO), Alpha-lactalbumin (alpha-LA), and Beta-lactoglobulin (beta-LG). In this study, we investigated the targeting relationship between BLV-miRNAs and LTF, LPO, alpha-LA, and beta-LG in cow's milk. Additionally, we investigated the possible mechanisms by which BLV reduces milk quality. The results showed that cow's milk had significantly lower levels of LTF, LPO, and alpha-LA proteins in BLV-positive cows than in BLV-negative cows. BLV-△miRNAs (miRNA-deleted BLV) enhanced the reduction of LPO, alpha-LA, and beta-LG protein levels caused by BLV infection. Multiple BLV-miRNAs have binding sites with LTF and LPO mRNA; however, only BLV-miR-B1-5 P has a targeting relationship with LPO mRNA. The results revealed that BLV-miR-B1-5 P inhibits LPO protein expression by targeting LPO mRNA. However, BLV does not directly regulate the expression of LTF, alpha-LA, or beta-LG proteins through BLV-miRNAs.


Subject(s)
Lactalbumin , Lactoferrin , Lactoglobulins , Lactoperoxidase , Leukemia Virus, Bovine , MicroRNAs , Milk , Animals , Lactoferrin/genetics , Lactoferrin/metabolism , Lactoperoxidase/metabolism , Lactoperoxidase/genetics , Lactalbumin/genetics , Lactalbumin/metabolism , Cattle , Lactoglobulins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Leukemia Virus, Bovine/genetics , Female , Enzootic Bovine Leukosis/virology , Enzootic Bovine Leukosis/genetics
16.
Food Chem ; 457: 140096, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38905830

ABSTRACT

The research explored the role of γ-oryzanol (γs) on stabilization behavior of Pickering emulsion gels (PEGs) loaded by α-lactalbumin (α-LA) or ß-lactoglobulin (ß-LG), being analyzed by experimental and computer methods (molecular dynamic simulation, MD). Primarily, the average particle size of ß-LG-γS was expressed 100.07% decrease over that of α-LA-γS. In addition, γs decreased the dynamic interfacial tension of two proteins with the order of ß-LG < α-LA. Meanwhile, quartz crystal microbalance with dissipation proved that ß-LG-γS exhibited higher adsorption mass and denser rigid interface layer than α-LA-γS. Moreover, the hydrophobic group of γS had electrostatic repulsion with polar water molecules in the aqueous phase, which spread to the oil phase. ß-LG-γS had lower RMSD/Rg value and narrower fluctuation compared with α-LA-γS. This work strength the exploration of interfacial stabilization mechanism of whey protein-based PEGs, which enriched its theoretical research for industrial-scale production as the replacement of trans fat and cholesterol.


Subject(s)
Emulsions , Gels , Lactalbumin , Lactoglobulins , Phenylpropionates , Lactalbumin/chemistry , Lactoglobulins/chemistry , Emulsions/chemistry , Phenylpropionates/chemistry , Gels/chemistry , Molecular Dynamics Simulation , Particle Size , Hydrophobic and Hydrophilic Interactions
17.
J Colloid Interface Sci ; 672: 244-255, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838632

ABSTRACT

HYPOTHESIS: Nonionic surfactants can counter the deleterious effect that anionic surfactants have on proteins, where the folded states are retrieved from a previously unfolded state. However, further studies are required to refine our understanding of the underlying mechanism of the refolding process. While interactions between nonionic surfactants and tightly folded proteins are not anticipated, we hypothesized that intermediate stages of surfactant-induced unfolding could define new interaction mechanisms by which nonionic surfactants can further alter protein conformation. EXPERIMENTS: In this work, the behavior of three model proteins (human growth hormone, bovine serum albumin, and ß-lactoglobulin) was investigated in the presence of the anionic surfactant sodium dodecylsulfate, the nonionic surfactant ß-dodecylmaltoside, and mixtures of both surfactants. The transitions occurring to the proteins were determined using intrinsic fluorescence spectroscopy and far-UV circular dichroism. Based on these results, we developed a detailed interaction model for human growth hormone. Using nuclear magnetic resonance and contrast-variation small-angle neutron scattering, we studied the amino acid environment and the conformational state of the protein. FINDINGS: The results demonstrate the key role of surfactant cooperation in defining the conformational state of the proteins, which can shift away or toward the folded state depending on the nonionic-to-ionic surfactant ratio. Dodecylmaltoside, initially a non-interacting surfactant, can unexpectedly associate with sodium dodecylsulfate-unfolded proteins to further impact their conformation at low nonionic-to-ionic surfactant ratio. When this ratio increases, the protein begins to retrieve the folded state. However, the native conformation cannot be fully recovered due to remnant surfactant molecules still adsorbed to the protein. This study demonstrates that the conformational landscape of the protein depends on a delicate interplay between the surfactants, ultimately controlled by the ratio between them, resulting in unpredictable changes in the protein conformation.


Subject(s)
Lactoglobulins , Protein Unfolding , Serum Albumin, Bovine , Sodium Dodecyl Sulfate , Surface-Active Agents , Surface-Active Agents/chemistry , Humans , Lactoglobulins/chemistry , Protein Unfolding/drug effects , Sodium Dodecyl Sulfate/chemistry , Cattle , Serum Albumin, Bovine/chemistry , Animals , Human Growth Hormone/chemistry , Anions/chemistry , Protein Refolding/drug effects , Protein Conformation , Glucosides
18.
Sci Rep ; 14(1): 14822, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937564

ABSTRACT

Milk is a good source of nutrition but is also a source of allergenic proteins such as α-lactalbumin, ß-lactoglobulin (BLG), casein, and immunoglobulins. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas technology has the potential to edit any gene, including milk allergens. Previously, CRISPR/Cas has been successfully employed in dairy cows and goats, but buffaloes remain unexplored for any milk trait. In this study, we utilized the CRISPR/Cas9 system to edit the major milk allergen BLG gene in buffaloes. First, the editing efficiency of designed sgRNAs was tested in fibroblast cells using the T7E assay and Sanger sequencing. The most effective sgRNA was selected to generate clonal lines of BLG-edited cells. Analysis of 15 single-cell clones, through TA cloning and Sanger sequencing, revealed that 7 clones exhibited bi-allelic (-/-) heterozygous, bi-allelic (-/-) homozygous, and mono-allelic (-/+) disruptions in BLG. Bioinformatics prediction analysis confirmed that non-multiple-of-3 edited nucleotide cell clones have frame shifts and early truncation of BLG protein, while multiple-of-3 edited nucleotides resulted in slightly disoriented protein structures. Somatic cell nuclear transfer (SCNT) method was used to produce blastocyst-stage embryos that have similar developmental rates and quality with wild-type embryos. This study demonstrated the successful bi-allelic editing (-/-) of BLG in buffalo cells through CRISPR/Cas, followed by the production of BLG-edited blastocyst stage embryos using SCNT. With CRISPR and SCNT methods described herein, our long-term goal is to generate gene-edited buffaloes with BLG-free milk.


Subject(s)
Buffaloes , CRISPR-Cas Systems , Gene Editing , Lactoglobulins , Animals , Lactoglobulins/genetics , Buffaloes/genetics , Gene Editing/methods , RNA, Guide, CRISPR-Cas Systems/genetics , Milk/metabolism , Fibroblasts/metabolism
19.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731878

ABSTRACT

ß-lactoglobulin (BLG) forms amyloid-like aggregates at high temperatures, low pH, and low ionic strengths. At a pH below 2, BLG undergoes hydrolysis into peptides, with N-terminal peptides 1-33 and 1-52 being prone to fibrillization, forming amyloid-like fibrils. Due to their good mechanical properties, BLG amyloids demonstrate great potential for diverse applications, including biosensors, nanocomposites, and catalysts. Consequently, further studies are essential to comprehensively understand the factors governing the formation of BLG amyloid-like morphologies. In this study, all-atom molecular dynamics simulations were employed to explore the aggregation of N-terminal 1-33 and 1-52 BLG peptides under conditions of pH 2 and at 10 mM NaCl concentration. The simulations revealed that the peptides spontaneously assembled into aggregates of varying sizes. The aggregation process was enabled by the low charge of peptides and the presence of hydrophobic residues within them. As the peptides associated into aggregates, there was a concurrent increase in ß-sheet structures and the establishment of hydrogen bonds, enhancing the stability of the aggregates. Notably, on average, 1-33 peptides formed larger aggregates compared to their 1-52 counterparts, while the latter exhibited a slightly higher content of ß-sheets and higher cluster orderliness. The applied approach facilitated insights into the early stages of amyloid-like aggregation and molecular-level insight into the formation of ß-sheets, which serve as nucleation points for further fibril growth.


Subject(s)
Lactoglobulins , Molecular Dynamics Simulation , Protein Aggregates , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Hydrophobic and Hydrophilic Interactions , Hydrogen Bonding , Amyloid/chemistry , Peptides/chemistry , Hydrogen-Ion Concentration , Peptide Fragments/chemistry , Peptide Fragments/metabolism
20.
J Agric Food Chem ; 72(20): 11746-11758, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718253

ABSTRACT

A novel strategy combining ferulic acid and glucose was proposed to reduce ß-lactoglobulin (BLG) allergenicity and investigate whether the reduction in allergenicity was associated with gut microbiome and serum metabolism. As a result, the multistructure of BLG changed, and the modified BLG decreased significantly the contents of IgE, IgG, IgG1, and mMCP-1 in serum, improved the diversity and structural composition of gut microbiota, and increased the content of short-chain fatty acids (SCFAs) in allergic mice. Meanwhile, allergic mice induced by BLG affected arachidonic acid, tryptophan, and other metabolic pathways in serum, the modified BLG inhibited the production of metabolites in arachidonic acid metabolism pathway and significantly increased tryptophan metabolites, and this contribution helps in reducing BLG allergenicity. Overall, reduced allergenicity of BLG after ferulic acid was combined with glucose modification by regulating gut microbiota, the metabolic pathways of arachidonic acid and tryptophan. The results may offer new thoughts alleviating the allergy risk of allergenic proteins.


Subject(s)
Allergens , Coumaric Acids , Gastrointestinal Microbiome , Glucose , Lactoglobulins , Coumaric Acids/metabolism , Coumaric Acids/chemistry , Animals , Lactoglobulins/immunology , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Mice , Humans , Allergens/immunology , Allergens/chemistry , Allergens/metabolism , Glucose/metabolism , Female , Bacteria/immunology , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Mice, Inbred BALB C , Immunoglobulin E/immunology , Immunoglobulin E/blood , Fatty Acids, Volatile/metabolism , Cattle , Immunoglobulin G/immunology , Immunoglobulin G/blood , Milk Hypersensitivity/immunology
SELECTION OF CITATIONS
SEARCH DETAIL