Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.915
Filter
1.
BMC Cancer ; 24(1): 731, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877482

ABSTRACT

BACKGROUND: This study sought to investigate the prognostic value of basement membrane (BM)-associated gene expressions in oral cancer. METHODS: We harvested and integrated data on BM-associated genes (BMGs), the oral cancer transcriptome, and clinical information from public repositories. After identifying differentially expressed BMGs, we used Cox and Lasso regression analyses to create a BMG-based risk score for overall survival at various intervals. We then validated this score using the GSE42743 cohort as a validation set. The prognostic potential of the risk scores and their relations to clinical features were assessed. Further, we conducted functional pathway enrichment, immune cell infiltration, and immune checkpoint analyses to elucidate the immunological implications and therapeutic potential of the BMG-based risk score and constituent genes. To confirm the expression levels of the BMG LAMA3 in clinical samples of oral cancer tissue, we performed quantitative real-time PCR (qRT-PCR) and immunohistochemical staining. RESULTS: The BMGs LAMA3, MMP14, and GPC2 demonstrated notable prognostic significance, facilitating the construction of a BMG-based risk score. A higher risk score derived from BMGs correlated with a poorer survival prognosis for oral cancer patients. Moreover, the risk-associated BMGs exhibited a significant relationship with immune function variability (P < 0.05), discrepancies in infiltrating immune cell fractions, and immune checkpoint expressions (P < 0.05). The upregulated expression levels of LAMA3 in oral cancer tissues were substantiated through qRT-PCR and immunohistochemical staining. CONCLUSION: The BMG-based risk score emerged as a reliable prognostic tool for oral cancer, meriting further research for validation and potential clinical application.


Subject(s)
Basement Membrane , Biomarkers, Tumor , Mouth Neoplasms , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/mortality , Mouth Neoplasms/pathology , Prognosis , Basement Membrane/metabolism , Basement Membrane/pathology , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Transcriptome , Female , Gene Expression Profiling , Male , Laminin/genetics
2.
Sci Rep ; 14(1): 14757, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926599

ABSTRACT

Muscular dystrophy is a group of genetic disorders that lead to muscle wasting and loss of muscle function. Identifying genetic modifiers that alleviate symptoms or enhance the severity of a primary disease helps to understand mechanisms behind disease pathology and facilitates discovery of molecular targets for therapy. Several muscular dystrophies are caused by genetic defects in the components of the dystrophin-glycoprotein adhesion complex (DGC). Thrombospondin-4 overexpression has been shown to mitigate dystrophic disease in mouse models for Duchenne muscular dystrophy (dystrophin deficiency) and limb-girdle muscular dystrophy type 2F (LGMD2F, δ-sarcoglycan deficiency), while deletion of the thrombospondin-4 gene exacerbated the diseases. Hence, thrombospondin-4 has been considered a candidate molecule for therapy of muscular dystrophies involving the DGC. We have investigated whether thrombospondin-4 could act as a genetic modifier for other DGC-associated diseases: limb-girdle muscular dystrophy type 2E (LGMD2E, ß-sarcoglycan deficiency) and laminin α2 chain-deficient muscular dystrophy (LAMA2-RD). Deletion of the thrombospondin-4 gene in mouse models for LGMD2E and LAMA2-RD, respectively, did not result in worsening of the dystrophic phenotype. Loss of thrombospondin-4 did not enhance sarcolemma damage and did not impair trafficking of transmembrane receptors integrin α7ß1 and dystroglycan in double knockout muscles. Our results suggest that thrombospondin-4 might not be a relevant therapeutic target for all muscular dystrophies involving the DGC. This data also demonstrates that molecular pathology between very similar diseases like LGMD2E and 2F can differ significantly.


Subject(s)
Laminin , Mice, Knockout , Sarcoglycans , Thrombospondins , Animals , Laminin/metabolism , Laminin/genetics , Laminin/deficiency , Sarcoglycans/genetics , Sarcoglycans/deficiency , Sarcoglycans/metabolism , Mice , Thrombospondins/genetics , Thrombospondins/metabolism , Thrombospondins/deficiency , Disease Models, Animal , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Gene Deletion , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology
3.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38940292

ABSTRACT

During heart development, the embryonic ventricle becomes enveloped by the epicardium, which adheres to the outer apical surface of the heart. This is concomitant with onset of ventricular trabeculation, where a subset of cardiomyocytes lose apicobasal polarity and delaminate basally from the ventricular wall. Llgl1 regulates the formation of apical cell junctions and apicobasal polarity, and we investigated its role in ventricular wall maturation. We found that llgl1 mutant zebrafish embryos exhibit aberrant apical extrusion of ventricular cardiomyocytes. While investigating apical cardiomyocyte extrusion, we identified a basal-to-apical shift in laminin deposition from the internal to the external ventricular wall. We find that epicardial cells express several laminin subunits as they adhere to the ventricle, and that the epicardium is required for laminin deposition on the ventricular surface. In llgl1 mutants, timely establishment of the epicardial layer is disrupted due to delayed emergence of epicardial cells, resulting in delayed apical deposition of laminin on the ventricular surface. Together, our analyses reveal an unexpected role for Llgl1 in correct timing of epicardial development, supporting integrity of the ventricular myocardial wall.


Subject(s)
Heart Ventricles , Laminin , Pericardium , Zebrafish Proteins , Zebrafish , Animals , Laminin/metabolism , Laminin/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Pericardium/metabolism , Pericardium/embryology , Pericardium/cytology , Heart Ventricles/metabolism , Heart Ventricles/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Cell Polarity , Mutation/genetics
4.
Neuromuscul Disord ; 39: 19-23, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691940

ABSTRACT

LAMA2-related muscular dystrophy is caused by pathogenic variants of the alpha2 subunit of Laminin. This common form of muscular dystrophy is characterized by elevated CK >1000IU/L, dystrophic changes on muscle biopsy, complete or partial absence of merosin staining, and both central and peripheral nervous system involvement. Advancements in genomic testing using NGS and wider application of RNA sequencing has expanded our knowledge of novel non-coding pathogenic variants in LAMA2. RNA sequencing is an increasingly utilized technique to directly analyze the transcriptome, through creation of a complementary DNA (cDNA) from the transcript within a tissue sample. Here we describe a homozygous deep intronic variant that produces a novel splice junction in LAMA2 identified by RNA sequencing analysis in a patient with a clinical phenotype in keeping with LAMA2-related muscular dystrophy. Furthermore, in this case merosin staining was retained suggestive of a functional deficit.


Subject(s)
Introns , Laminin , Muscular Dystrophies , Sequence Analysis, RNA , Humans , Laminin/genetics , Introns/genetics , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Muscular Dystrophies/diagnosis , Male , Phenotype , Mutation , Female
5.
Neuromuscul Disord ; 39: 30-32, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723581

ABSTRACT

LAMB2 gene disorders present with different phenotypes. Pierson syndrome (PS) is a common phenotype associated with LAMB2 variants. Neuromuscular phenotype has been reported including hypotonia and developmental delay. However, neuromuscular junction abnormalities represented as congenital myasthenic syndrome (CMS) was reported in one adult patient only. Here, in this paper, we present two pediatric cases with a severe presentation of PS and have CMS so expanding the knowledge of LAMB2 related phenotypes. The first patient had hypotonia and global developmental delay. Targeted genetic testing panel demonstrated homozygous pathogenic variant in the LAMB2 gene (c.5182C>T, pGln1728*) which was reported by Maselli et al. 2009. Repetitive nerve stimulation (RNS) showed a decremental response at low frequency of 3 Hz. On the other hand, the second patient had profound weakness since birth. Tri-Whole exome sequencing showed homozygous pathogenic variant in the LAMB2 gene c.2890C>T, pArg964*. A trial of salbutamol did not improve the symptoms. Both patients passed away from sequala of PS. The spectrum of phenotypic changes associated with LAMB2 mutations is still expanding, and further investigation into the various clinical and morphologic presentations associated with these mutations is important to better identify and manage affected individuals.


Subject(s)
Myasthenic Syndromes, Congenital , Humans , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/physiopathology , Myasthenic Syndromes, Congenital/diagnosis , Male , Female , Eye Abnormalities/genetics , Eye Abnormalities/complications , Laminin/genetics , Phenotype , Mutation , Abnormalities, Multiple/genetics , Infant , Neuromuscular Junction Diseases/genetics , Child, Preschool , Nephrotic Syndrome , Pupil Disorders
6.
Mol Med ; 30(1): 61, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760717

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous and aggressive disease characterized by a high risk of mortality and poor prognosis. It has been reported that Laminin γ2 (LAMC2) is highly expressed in a variety of tumors, and its high expression is correlated with cancer development and progression. However, the function and mechanism by which LAMC2 influences TNBC remain unclear. METHODS: Kaplan-Meier survival analysis and Immunohistochemical (IHC) staining were used to examine the expression level of LAMC2 in TNBC. Subsequently, cell viability assay, wound healing and transwell assay were performed to detect the function of LAMC2 in cell proliferation and migration. A xenograft mouse model was used to assess tumorigenic function of LAMC2 in vivo. Luciferase reporter assay and western blot were performed to unravel the underlying mechanism. RESULTS: In this study, we found that higher expression of LAMC2 significantly correlated with poor survival in the TNBC cohort. Functional characterization showed that LAMC2 promoted cell proliferation and migration capacity of TNBC cell lines via up-regulating CD44. Moreover, LAMC2 exerted oncogenic roles in TNBC through modulating the expression of epithelial-mesenchymal transition (EMT) markers. Luciferase reporter assay verified that LAMC2 targeted ZEB1 to promote its transcription. Interestingly, LAMC2 regulated cell migration in TNBC via STAT3 signaling pathway. CONCLUSION: LAMC2 targeted ZEB1 via activating CD44/STAT3 signaling pathway to promote TNBC proliferation and migration, suggesting that LAMC2 could be a potential therapeutic target in TNBC patients.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Neoplastic , Hyaluronan Receptors , Laminin , STAT3 Transcription Factor , Signal Transduction , Triple Negative Breast Neoplasms , Zinc Finger E-box-Binding Homeobox 1 , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Animals , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/mortality , Cell Line, Tumor , Female , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Laminin/metabolism , Laminin/genetics , Mice , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
7.
Am J Dermatopathol ; 46(7): 447-451, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38648026

ABSTRACT

ABSTRACT: Junctional epidermolysis bullosa (JEB) is a rare, incurable, devastating, and mostly fatal congenital genetic disorder characterized by painful blistering of the skin and mucous membranes in response to minor trauma or pressure. JEB is classified roughly into 2 subtypes: JEB-Herlitz is caused by mutations on genes encoding laminin-332. The authors present a patient consulted with a suspicion of primary immunodeficiency due to skin sores that started at the age of 1 month and a history of 3 siblings who died with similar sores, who was diagnosed with JEB-Herlitz after detecting a homozygous LAMC2 gene mutation in WES analysis. Microscopic evaluation of hematoxylin and eosin-stained sections showed vesicle formation with subepidermal separation, which is accompanied by striking neutrophil and eosinophil leukocyte infiltration both in the vesicle and papillary dermis (eosinophil-rich inflammatory infiltrate). Such a histopathological finding has been rarely reported in this condition.


Subject(s)
Eosinophils , Epidermolysis Bullosa, Junctional , Homozygote , Laminin , Mutation , Humans , Epidermolysis Bullosa, Junctional/genetics , Epidermolysis Bullosa, Junctional/pathology , Eosinophils/pathology , Laminin/genetics , Male , Female , Phenotype , Genetic Predisposition to Disease , Infant
8.
J Transl Med ; 22(1): 391, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678297

ABSTRACT

BACKGROUND: Laminin subunit gamma-1 (LAMC1) is a major extracellular matrix molecule involved in the tumor microenvironment. Knowledge of the biological features and clinical relevance of LAMC1 in cancers remains limited. METHODS: We conducted comprehensive bioinformatics analysis of LAMC1 gene expression and clinical relevance in pan-cancer datasets of public databases and validated LAMC1 expression in glioma tissues and cell lines. The association and regulatory mechanism between hypoxia inducible factor-1α (HIF-1α) and LAMC1 expression were explored. RESULTS: LAMC1 expression in most cancers in The Cancer Genome Atlas (TCGA) including glioma was significantly higher than that in normal tissues, which had a poor prognosis and were related to various clinicopathological features. Data from the Chinese Glioma Genome Atlas also showed high expression of LAMC1 in glioma associated with poor prognoses. In clinical glioma tissues, LAMC1 protein was highly expressed and correlated to poor overall survival. LAMC1 knockdown in Hs683 glioma cells attenuated cell proliferation, migration, and invasion, while overexpression of LAMC1 in U251 cells leads to the opposite trend. Most TCGA solid cancers including glioma showed enhancement of HIF-1α expression. High HIF-1α expression leads to adverse prognosis in gliomas, besides, HIF-1α expression was positively related to LAMC1. Mechanistically, HIF-1α directly upregulated LAMC1 promotor activity. Hypoxia (2% O2)-treated Hs683 and U251 cells exhibited upregulated HIF-1α and LAMC1 expression, which was significantly attenuated by HIF-1α inhibitor YC-1 and accompanied by attenuated cell proliferation and invasion. CONCLUSIONS: High expression of LAMC1 in some solid tumors including gliomas suggests a poor prognosis. The hypoxic microenvironment in gliomas activates the HIF-1α/LAMC1 signaling, thereby promoting tumor progression. Targeted intervention on the HIF-1α/LAMC1 signaling attenuates cell growth and invasion, suggesting a new strategy for glioma treatment.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioma , Hypoxia-Inducible Factor 1, alpha Subunit , Laminin , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Prognosis , Laminin/metabolism , Laminin/genetics , Cell Line, Tumor , Cell Proliferation , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Male , Reproducibility of Results , Female , Cell Movement/genetics , Neoplasm Invasiveness , Databases, Genetic , Middle Aged , Promoter Regions, Genetic/genetics
10.
Commun Biol ; 7(1): 418, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582945

ABSTRACT

Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation, but its molecular etiology remains poorly understood. We performed genome-wide association studies (GWAS) of FECD in the Million Veteran Program followed by multi-ancestry meta-analysis with the previous largest FECD GWAS, for a total of 3970 cases and 333,794 controls. We confirm the previous four loci, and identify eight novel loci: SSBP3, THSD7A, LAMB1, PIDD1, RORA, HS3ST3B1, LAMA5, and COL18A1. We further confirm the TCF4 locus in GWAS for admixed African and Hispanic/Latino ancestries and show an enrichment of European-ancestry haplotypes at TCF4 in FECD cases. Among the novel associations are low frequency missense variants in laminin genes LAMA5 and LAMB1 which, together with previously reported LAMC1, form laminin-511 (LM511). AlphaFold 2 protein modeling, validated through homology, suggests that mutations at LAMA5 and LAMB1 may destabilize LM511 by altering inter-domain interactions or extracellular matrix binding. Finally, phenome-wide association scans and colocalization analyses suggest that the TCF4 CTG18.1 trinucleotide repeat expansion leads to dysregulation of ion transport in the corneal endothelium and has pleiotropic effects on renal function.


Subject(s)
Fuchs' Endothelial Dystrophy , Humans , Fuchs' Endothelial Dystrophy/genetics , Fuchs' Endothelial Dystrophy/metabolism , Genome-Wide Association Study , Transcription Factor 4/genetics , Collagen , Laminin/genetics
11.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38551497

ABSTRACT

Phenotypic heterogeneity poses a significant hurdle for cancer treatment but is under-characterized in the context of tumor invasion. Amidst the range of phenotypic heterogeneity across solid tumor types, collectively invading cells and single cells have been extensively characterized as independent modes of invasion, but their intercellular interactions have rarely been explored. Here, we isolated collectively invading cells and single cells from the heterogeneous 4T1 cell line and observed extensive transcriptional and epigenetic diversity across these subpopulations. By integrating these datasets, we identified laminin-332 as a protein complex exclusively secreted by collectively invading cells. Live-cell imaging revealed that laminin-332 derived from collectively invading cells increased the velocity and directionality of single cells. Despite collectively invading and single cells having similar expression of the integrin α6ß4 dimer, single cells demonstrated higher Rac1 activation upon laminin-332 binding to integrin α6ß4. This mechanism suggests a novel commensal relationship between collectively invading and single cells, wherein collectively invading cells promote the invasive potential of single cells through a laminin-332/Rac1 axis.


Subject(s)
Laminin , rac1 GTP-Binding Protein , Humans , Cell Movement , Integrin alpha6beta4/genetics , Kalinin , Laminin/genetics , Laminin/metabolism , Neoplasms/genetics , Symbiosis , Animals , Mice , Cell Line, Tumor , rac1 GTP-Binding Protein/metabolism
12.
Redox Biol ; 71: 103102, 2024 May.
Article in English | MEDLINE | ID: mdl-38430684

ABSTRACT

Peroxidasin (PXDN) is a secreted heme peroxidase that catalyzes the oxidative crosslinking of collagen IV within the extracellular matrix (ECM) via intermediate hypobromous acid (HOBr) synthesis from hydrogen peroxide and bromide, but recent findings have also suggested alternative ECM protein modifications by PXDN, including incorporation of bromide into tyrosine residues. In this work, we sought to identify the major target proteins for tyrosine bromination by HOBr or by PXDN-mediated oxidation in ECM from mouse teratocarcinoma PFHR9 cells. We detected 61 bromotyrosine (BrY)-containing peptides representing 23 proteins in HOBr-modified ECM from PFHR9 cells, among which laminins displayed the most prominent bromotyrosine incorporation. Moreover, we also found that laminin α1, laminin ß1, and tubulointerstitial nephritis antigen-like (TINAGL1) contained BrY in untreated PFHR9 cells, which depended on PXDN. We extended these analyses to lung tissues from both healthy mice and mice with experimental lung fibrosis, and in lung tissues obtained from human subjects. Analysis of ECM-enriched mouse lung tissue extracts showed that 83 ECM proteins were elevated in bleomycin-induced fibrosis, which included various collagens and laminins, and PXDN. Similarly, mRNA and protein expression of PXDN and laminin α/ß1 were enhanced in fibrotic mouse lung tissues, and also in mouse bone-marrow-derived macrophages or human fibroblasts stimulated with transforming growth factor ß1, a profibrotic growth factor. We identified 11 BrY-containing ECM proteins, including collagen IV α2, collagen VI α1, TINAGL1, and various laminins, in both healthy and mouse fibrotic lung tissues, although the relative extent of tyrosine bromination of laminins was not significantly increased during fibrosis. Finally, we also identified 7 BrY-containing ECM proteins in human lung tissues, again including collagen IV α2, collagen VI α1, and TINAGL1. Altogether, this work demonstrates the presence of several bromotyrosine-modified ECM proteins, likely involving PXDN, even in normal lung tissues, suggesting a potential biological function for these modifications.


Subject(s)
Bromates , Extracellular Matrix Proteins , Pulmonary Fibrosis , Humans , Animals , Mice , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Bromides/adverse effects , Bromides/metabolism , Laminin/genetics , Laminin/metabolism , Extracellular Matrix/metabolism , Lung/metabolism , Peroxidasin , Collagen Type IV/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Tyrosine/metabolism
13.
Adv Sci (Weinh) ; 11(21): e2309010, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38526177

ABSTRACT

Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal biliary epithelial cancer in the liver. Here, Laminin subunit gamma-2 (LAMC2) with important oncogenic roles in iCCA is discovered. In a total of 231 cholangiocarcinoma patients (82% of iCCA patients) across four independent cohorts, LAMC2 is significantly more abundant in iCCA tumor tissue compared to normal bile duct and non-tumor liver. Among 26.3% of iCCA patients, LAMC2 gene is amplified, contributing to its over-expression. Functionally, silencing LAMC2 significantly blocks tumor formation in orthotopic iCCA mouse models. Mechanistically, it promotes EGFR protein translation via interacting with nascent unglycosylated EGFR in the endoplasmic reticulum (ER), resulting in activated EGFR signaling. LAMC2-mediated EGFR translation also depends on its interaction with the ER chaperone BiP via their C-terminus. Together LAMC2 and BiP generate a binding "pocket" of nascent EGFR and facilitate EGFR translation. Consistently, LAMC2-high iCCA patients have poor prognosis in two iCCA cohorts. LAMC2-high iCCA cells are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs) treatment both in vitro and in vivo. Together, these data demonstrate LAMC2 as an oncogenic player in iCCA by promoting EGFR translation and an indicator to identify iCCA patients who may benefit from available EGFR-targeted TKIs therapies.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , ErbB Receptors , Laminin , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Humans , ErbB Receptors/metabolism , ErbB Receptors/genetics , Animals , Mice , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Laminin/metabolism , Laminin/genetics , Disease Models, Animal , Male , Female , Cell Line, Tumor
14.
Mol Ther ; 32(5): 1497-1509, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38429928

ABSTRACT

The hallmark of epidermolysis bullosa (EB) is fragile attachment of epithelia due to genetic variants in cell adhesion genes. We describe 16 EB patients treated in the ear, nose, and throat department of a tertiary pediatric hospital linked to the United Kingdom's national EB unit between 1992 and 2023. Patients suffered a high degree of morbidity and mortality from laryngotracheal stenosis. Variants in laminin subunit alpha-3 (LAMA3) were found in 10/15 patients where genotype was available. LAMA3 encodes a subunit of the laminin-332 heterotrimeric extracellular matrix protein complex and is expressed by airway epithelial basal stem cells. We investigated the benefit of restoring wild-type LAMA3 expression in primary EB patient-derived basal cell cultures. EB basal cells demonstrated weak adhesion to cell culture substrates, but could otherwise be expanded similarly to non-EB basal cells. In vitro lentiviral overexpression of LAMA3A in EB basal cells enabled them to differentiate in air-liquid interface cultures, producing cilia with normal ciliary beat frequency. Moreover, transduction restored cell adhesion to levels comparable to a non-EB donor culture. These data provide proof of concept for a combined cell and gene therapy approach to treat airway disease in LAMA3-affected EB.


Subject(s)
Cell Adhesion , Epidermolysis Bullosa , Laminin , Lentivirus , Humans , Laminin/metabolism , Laminin/genetics , Epidermolysis Bullosa/genetics , Epidermolysis Bullosa/metabolism , Epidermolysis Bullosa/therapy , Epidermolysis Bullosa/pathology , Child , Lentivirus/genetics , Male , Female , Child, Preschool , Genetic Therapy/methods , Genetic Vectors/genetics , Epithelial Cells/metabolism , Cells, Cultured , Gene Expression , Adolescent , Infant
15.
Crit Rev Immunol ; 44(2): 49-59, 2024.
Article in English | MEDLINE | ID: mdl-38305336

ABSTRACT

Laminin subunit alpha 3 (LAMA3) is a cancer regulator. However, its effects and regulatory pathways in oral squamous cell carcinoma (OSCC) progression remain unknown. This research aimed to determine the influence of LAMA3 regulation via methyltransferase-like 3 (METTL3) on OSCC progression. Using quantitative real-time polymerase chain reaction and bioinformatics analysis, the expression levels of LAMA3 and METTL3 in OSCC tissues were examined. The functional roles of LAMA3 and METTL3 were analyzed using cell functional experiments. Using methylated RNA immunoprecipitation and mRNA stability assays, LAMA3 and METTL3 regulation was investigated. In OSCC tissues, LAMA3 was upregulated. LAMA3 inhibition hampered OSCC cell proliferation, invasion, and migration while its overexpression facilitated OSCC cell progression. METTL3 serves as a crucial upstream regulator of LAMA3 in OSCC and upregulates LAMA3 expression via an m6A-dependent mechanism. The low METTL3 expression partially restored the enhanced malignant phenotype induced by LAMA3 overexpression. Our findings indicate that METTL3 and LAMA3 act as pro-oncogenic factors in OSCC, with METTL3 promoting OSCC malignancy via m6A modification-dependent stabilization of LAMA3 transcripts, representing a novel regulatory mechanism in OSCC.


Subject(s)
Laminin , Methyltransferases , Mouth Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Adenosine , Carcinogenesis/genetics , Methyltransferases/genetics , Mouth Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Laminin/genetics
16.
Neuromuscul Disord ; 36: 16-22, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306718

ABSTRACT

The European Joint Programme on Rare Diseases (EJPRD) funded the workshop "LAMA2-Muscular Dystrophy: Paving the road to therapy", bringing together 40 health-care professionals, researchers, patient-advocacy groups, Early-Career Scientists and other stakeholders from 14 countries. Progress in natural history, pathophysiology, trial readiness, and treatment strategies was discussed together with efforts to increase patient-awareness and strengthen collaborations. Key outcomes were (a) ongoing natural history studies in 7 countries already covered more than 350 patients. The next steps are to include additional countries, harmonise data collection and define a minimal dataset; (b) therapy development was largely complementary. Approaches included LAMA2-replacement and correction, LAMA1-reactivation, mRNA modulation, linker-protein expression, targeting downstream processes and identifying modifiers, using viral vectors, muscle stem cells, iPSC and mouse models and patient lines; (c) LAMA2-Europe will inform patients (-representatives) worldwide on standards of care and scientific progress, and enable sharing experiences. Follow-up monthly online meetings and research repositories have been established to create sustainable collaborations.


Subject(s)
Muscular Dystrophies , Rare Diseases , Animals , Humans , Mice , Europe , Laminin/genetics , Laminin/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/therapy , Rare Diseases/genetics , Rare Diseases/therapy , Spain
17.
Neurogenetics ; 25(2): 93-102, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38296890

ABSTRACT

Congenital muscular dystrophies (CMDs) are a group of rare muscle disorders characterized by early onset hypotonia and motor developmental delay associated with brain malformations with or without eye anomalies in the most severe cases. In this study, we aimed to uncover the genetic basis of severe CMD in Egypt and to determine the efficacy of whole exome sequencing (WES)-based genetic diagnosis in this population. We recruited twelve individuals from eleven families with a clinical diagnosis of CMD with brain malformations that fell into two groups: seven patients with suspected dystroglycanopathy and five patients with suspected merosin-deficient CMD. WES was analyzed by variant filtering using multiple approaches including splicing and copy number variant (CNV) analysis. We identified likely pathogenic variants in FKRP in two cases and variants in POMT1, POMK, and B3GALNT2 in three individuals. All individuals with merosin-deficient CMD had truncating variants in LAMA2. Further analysis in one of the two unsolved cases showed a homozygous protein-truncating variant in Feline Leukemia Virus subgroup C Receptor 1 (FLVCR1). FLVCR1 loss of function has never been previously reported. Yet, loss of function of its paralog, FLVCR2, causes lethal hydranencephaly-hydrocephaly syndrome (Fowler Syndrome) which should be considered in the differential diagnosis for dystroglycanopathy. Overall, we reached a diagnostic rate of 86% (6/7) for dystroglycanopathies and 100% (5/5) for merosinopathy. In conclusion, our results provide further evidence that WES is an important diagnostic method in CMD in developing countries to improve the diagnostic rate, management plan, and genetic counseling for these disorders.


Subject(s)
Brain , Exome Sequencing , Muscular Dystrophies , N-Acetylglucosaminyltransferases , Humans , Male , Egypt , Female , Muscular Dystrophies/genetics , Muscular Dystrophies/diagnosis , Child, Preschool , Brain/abnormalities , Brain/pathology , Child , Infant , Laminin/genetics , Receptors, Virus/genetics , Mannosyltransferases/genetics , Pedigree , Pentosyltransferases/genetics , DNA Copy Number Variations , Mutation , Adolescent , Nervous System Malformations/genetics
18.
Am J Forensic Med Pathol ; 45(2): 177-181, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38261548

ABSTRACT

ABSTRACT: Sickle cell trait is typically thought to be an asymptomatic carrier state, but it is rarely associated with exertional rhabdomyolysis in cases termed Exercise Collapse Associated with Sickle Cell Trait (ECAST). In a subset of these cases, underlying disease contributes to the development and/or severity of the ensuing medical complications. We describe the first ever case of ECAST reported in a previously asymptomatic, multiply deployed, highly physically active service member with an underlying heterozygous LAMA2 mutation. Moreover, the mutation identified via whole exome sequencing is a novel, likely pathogenic variant that has yet to be described in the literature.


Subject(s)
Laminin , Mutation , Rhabdomyolysis , Sickle Cell Trait , Humans , Sickle Cell Trait/genetics , Sickle Cell Trait/complications , Male , Laminin/genetics , Rhabdomyolysis/genetics , Rhabdomyolysis/etiology , Exercise , Military Personnel , Adult , Heterozygote , Fatal Outcome , Exome Sequencing
19.
Muscle Nerve ; 69(1): 55-63, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37933889

ABSTRACT

INTRODUCTION/AIMS: Merosin is a protein complex located in the basement membrane of skeletal muscles and laminin α2-containing regions of the central and peripheral nervous systems. However, because of the prominence of muscle-related symptoms, peripheral neuropathy associated with merosin-deficient congenital muscular dystrophy type 1A (MDC1A) has received little clinical attention. This study aimed to present pathological changes in intramuscular nerves of three patients with MDC1A and discuss their relationship with electrophysiological findings to provide new evidence of peripheral nerve involvement in MDC1A. METHODS: MDC1A was confirmed by clinical features, muscle biopsy, and genetic testing for variants in LAMA2. To clarify peripheral nerve involvement, we statistically evaluated electrophysiological and muscle pathology findings of intramuscular nerves. These findings were compared with those of age-matched boys with Duchenne muscular dystrophy (DMD) as controls with normal nerves. Nerve conduction studies (NCS) were performed before biopsy. Biopsied intramuscular nerves were examined with electron microscopy using g-ratio, which is the ratio of axon diameter to myelinated fiber diameter. RESULTS: The myelin sheaths were significantly thinner in MDC1A patients than in age-matched DMD patients, with a mean g-ratio of 0.76 ± 0.07 in MDC1A patients and 0.65 ± 0.14 in DMD patients (p < .0001). No neuropathic changes were identified in muscle pathology. Low compound muscle action potential amplitudes, positive sharp waves and fibrillation potentials, and low-amplitude motor unit potentials with increased polyphasia indicated myopathic changes; no neurogenic changes were seen. DISCUSSION: We postulate that the thin myelin associated with MDC1A reflects the role of merosin in myelin maturation.


Subject(s)
Muscular Dystrophy, Duchenne , Peripheral Nervous System Diseases , Male , Humans , Myelin Sheath , Muscle, Skeletal/pathology , Laminin/genetics , Laminin/metabolism , Muscular Dystrophy, Duchenne/pathology , Peripheral Nervous System Diseases/pathology
20.
Am J Pathol ; 194(2): 195-208, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37981221

ABSTRACT

miRNAs are small noncoding RNAs that regulate mRNA targets in a cell-specific manner. miR-29 is expressed in murine and human skin, where it may regulate functions in skin repair. Cutaneous wound healing model in miR-29a/b1 gene knockout mice was used to identify miR-29 targets in the wound matrix, where angiogenesis and maturation of provisional granulation tissue was enhanced in response to genetic deletion of miR-29. Consistently, antisense-mediated inhibition of miR-29 promoted angiogenesis in vitro by autocrine and paracrine mechanisms. These processes are likely mediated by miR-29 target mRNAs released upon removal of miR-29 to improve cell-matrix adhesion. One of these, laminin (Lam)-c2 (also known as laminin γ2), was strongly up-regulated during skin repair in the wound matrix of knockout mice. Unexpectedly, Lamc2 was deposited in the basal membrane of endothelial cells in blood vessels forming in the granulation tissue of knockout mice. New blood vessels showed punctate interactions between Lamc2 and integrin α6 (Itga6) along the length of the proto-vessels, suggesting that greater levels of Lamc2 may contribute to the adhesion of endothelial cells, thus assisting angiogenesis within the wound. These findings may be of translational relevance, as LAMC2 was deposited at the leading edge in human wounds, where it formed a basal membrane for endothelial cells and assisted neovascularization. These results suggest a link between LAMC2, improved angiogenesis, and re-epithelialization.


Subject(s)
Laminin , MicroRNAs , Humans , Animals , Mice , Laminin/genetics , Endothelial Cells , Signal Transduction/physiology , MicroRNAs/genetics , Skin , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...