Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51.941
1.
HLA ; 103(6): e15560, 2024 Jun.
Article En | MEDLINE | ID: mdl-38839559

De novo anti-HLA donor-specific antibodies (DSAs) were rarely reported in stem cell transplantation patients. We present a case of 39-year-old acute myelogenous leukaemia patient who developed de novo DSAs only 16 days after transplantation with the highest mean fluorescence intensity (MFI) of 7406.23, which were associated with poor graft function (PGF). We used plasma exchange (PE) and intravenous immunoglobulin (IVIg) to reduce DSA level. A series of treatment including mesenchymal stem cells and donor cell transfusion were used to help recover graft function. On day 130, the patient achieved a successful engraftment.


HLA Antigens , Hematopoietic Stem Cell Transplantation , Isoantibodies , Leukemia, Myeloid, Acute , Humans , Hematopoietic Stem Cell Transplantation/methods , Adult , HLA Antigens/immunology , Isoantibodies/immunology , Isoantibodies/blood , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Male , Tissue Donors , Transplantation, Haploidentical/methods , Immunoglobulins, Intravenous/therapeutic use , Plasma Exchange/methods , Female , Histocompatibility Testing
2.
Mol Cancer ; 23(1): 120, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38831402

The efficacy of anthracycline-based chemotherapeutics, which include doxorubicin and its structural relatives daunorubicin and idarubicin, remains almost unmatched in oncology, despite a side effect profile including cumulative dose-dependent cardiotoxicity, therapy-related malignancies and infertility. Detoxifying anthracyclines while preserving their anti-neoplastic effects is arguably a major unmet need in modern oncology, as cardiovascular complications that limit anti-cancer treatment are a leading cause of morbidity and mortality among the 17 million cancer survivors in the U.S. In this study, we examined different clinically relevant anthracycline drugs for a series of features including mode of action (chromatin and DNA damage), bio-distribution, anti-tumor efficacy and cardiotoxicity in pre-clinical models and patients. The different anthracycline drugs have surprisingly individual efficacy and toxicity profiles. In particular, aclarubicin stands out in pre-clinical models and clinical studies, as it potently kills cancer cells, lacks cardiotoxicity, and can be safely administered even after the maximum cumulative dose of either doxorubicin or idarubicin has been reached. Retrospective analysis of aclarubicin used as second-line treatment for relapsed/refractory AML patients showed survival effects similar to its use in first line, leading to a notable 23% increase in 5-year overall survival compared to other intensive chemotherapies. Considering individual anthracyclines as distinct entities unveils new treatment options, such as the identification of aclarubicin, which significantly improves the survival outcomes of AML patients while mitigating the treatment-limiting side-effects. Building upon these findings, an international multicenter Phase III prospective study is prepared, to integrate aclarubicin into the treatment of relapsed/refractory AML patients.


Aclarubicin , Anthracyclines , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Aclarubicin/pharmacology , Aclarubicin/therapeutic use , Anthracyclines/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/adverse effects , Animals , Female , Male , Treatment Outcome
4.
Haematologica ; 109(6): 1656-1667, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38832421

Recurrent and/or refractory (R/R) pediatric acute myeloid leukemia (AML) remains a recalcitrant disease with poor outcomes. Cell therapy with genetically modified immune effector cells holds the promise to improve outcomes for R/R AML since it relies on cytotoxic mechanisms that are distinct from chemotherapeutic agents. While T cells expressing chimeric antigen receptors (CAR T cells) showed significant anti-AML activity in preclinical models, early phase clinical studies have demonstrated limited activity, irrespective of the targeted AML antigen. Lack of efficacy is most likely multifactorial, including: (i) a limited array of AML-specific targets and target antigen heterogeneity; (ii) the aggressive nature of R/R AML and heavy pretreatment of patients; (iii) T-cell product manufacturing, and (iv) limited expansion and persistence of the CAR T cells, which is in part driven by the immunosuppressive AML microenvironment. Here we review the results of early phase clinical studies with AML-specific CAR T cells, and avenues investigators are exploring to improve their effector function.


Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Child , Clinical Trials as Topic , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Tumor Microenvironment/immunology , Animals
5.
Mol Cancer ; 23(1): 116, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822351

BACKGROUND: Elevated evidence suggests that the SENPs family plays an important role in tumor progression. However, the role of SENPs in AML remains unclear. METHODS: We evaluated the expression pattern of SENP1 based on RNA sequencing data obtained from OHSU, TCGA, TARGET, and MILE datasets. Clinical samples were used to verify the expression of SENP1 in the AML cells. Lentiviral vectors shRNA and sgRNA were used to intervene in SENP1 expression in AML cells, and the effects of SENP1 on AML proliferation and anti-apoptosis were detected using in vitro and in vivo models. Chip-qPCR, MERIP-qPCR, CO-IP, RNA pulldown, and dual-luciferase reporter gene assays were used to explore the regulatory mechanisms of SNEP1 in AML. RESULTS: SENP1 was significantly upregulated in high-risk AML patients and closely related to poor prognosis. The AKT/mTOR signaling pathway is a key downstream pathway that mediates SENP1's regulation of AML proliferation and anti-apoptosis. Mechanistically, the CO-IP assay revealed binding between SENP1 and HDAC2. SUMO and Chip-qPCR assays suggested that SENP1 can desumoylate HDAC2, which enhances EGFR transcription and activates the AKT pathway. In addition, we found that IGF2BP3 expression was upregulated in high-risk AML patients and was positively correlated with SENP1 expression. MERIP-qPCR and RIP-qPCR showed that IGF2BP3 binds SENP1 3-UTR in an m6A manner, enhances SENP1 expression, and promotes AKT pathway conduction. CONCLUSIONS: Our findings reveal a distinct mechanism of SENP1-mediated HDAC2-AKT activation and establish the critical role of the IGF2BP3/SENP1signaling axis in AML development.


Adenosine , Cell Proliferation , Cysteine Endopeptidases , Histone Deacetylase 2 , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-akt , RNA-Binding Proteins , Sumoylation , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Mice , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Signal Transduction , Disease Progression , Cell Line, Tumor , Apoptosis , Prognosis , Female , Male , Gene Expression Regulation, Leukemic , Xenograft Model Antitumor Assays
6.
Rinsho Ketsueki ; 65(5): 330-334, 2024.
Article Ja | MEDLINE | ID: mdl-38825509

A 53-year-old woman presented with shortness of breath and hyperleukocytosis and was admitted to our hospital. Shortly after, she went into cardiopulmonary arrest and was resuscitated. Her white blood cell count was 566,000/µl, with 94.5% cup-like blasts positive for MPO staining and FLT3-ITD positive, so she was diagnosed with acute myeloid leukemia (AML) M1. She also had disseminated intravascular coagulation and tumor lysis syndrome. Extracorporeal membrane oxygenation (ECMO) was started to manage bilateral pulmonary thromboembolism that had developed due to deep vein thrombosis, and induction therapy was performed under ECMO. On the third day of illness, the patient developed cerebral hemorrhage. Hematological remission was confirmed on the 39th day of illness. After consolidation therapy with chemotherapy and an FLT3 inhibitor, she underwent allogeneic hematopoietic stem cell transplantation, and remains alive. Case reports suggest strong evidence of mortality benefit from ECMO in patients with hematologic malignancies, particularly when ECMO served as a bridge through chemotherapy. Our patient suffered from cardiopulmonary arrest due to hyperleukocytosis and pulmonary thromboembolism, but was saved by induction of remission under ECMO. Improvements in supportive care should lead to reduction in early deaths during induction therapy.


Extracorporeal Membrane Oxygenation , Leukemia, Myeloid, Acute , Humans , Female , Middle Aged , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/complications , Remission Induction , Treatment Outcome , Induction Chemotherapy , Hematopoietic Stem Cell Transplantation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
7.
Rinsho Ketsueki ; 65(5): 343-352, 2024.
Article Ja | MEDLINE | ID: mdl-38825513

The blood cancer field has played a pioneering role in advancing precision medicine, with milestones such as development of ABL1 inhibitors for chronic myeloid leukemia. The significance of gene mutation information in AML treatment has increased, evident in classifications and guidelines from organizations such as WHO and ELN. This article examines the anticipated roles of cancer genome panels (CGPs) in AML treatment from three perspectives: diagnosis, risk stratification, and treatment selection. Use of CGPs enables more accurate diagnosis and risk stratification. In treatment selection, CGPs not only complements but also substitutes existing companion diagnostics, and is expected to be a crucial information source for future drug adoption and investigation of tumor-agnostic therapies. However, various challenges remain to be addressed, including the purpose and timing of CGPs, the time required for the tests, and how to utilize expert panels.


Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Mutation , Genome, Human , Precision Medicine
8.
Rinsho Ketsueki ; 65(5): 353-361, 2024.
Article Ja | MEDLINE | ID: mdl-38825514

For nearly 40 years, combination therapy with cytarabine and anthracycline has been the standard of care for acute myeloid leukemia (AML). The cytogenetics and molecular biology of AML are now understood, and the treatment of AML has undergone dramatic changes in Japan with the launch of drugs such as FLT3 inhibitors, Bcl2 inhibitors, and hypomethylating agents since 2018. However, AML remains very difficult to cure, with a high relapse rate. Here, we review novel agents that have not yet been approved in Japan (CPX-351, IDH inhibitors, menin inhibitors, and oral azacitidine) as potential treatments for AML, as well as therapeutic antibodies (BiTEs, DARTs, immune checkpoint inhibitors) currently under investigation in clinical trials or in development. These novel agents are being investigated not only as monotherapy but also as combination therapy with intensive chemotherapy or azacitidine/venetoclax. The new era of AML treatment is expected to support a variety of goals, including leukemic cell elimination, long-term remission, and improved quality of life.


Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Antineoplastic Agents/therapeutic use , Drug Development , Molecular Targeted Therapy
9.
Nat Commun ; 15(1): 4739, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834613

The overexpression of the ecotropic viral integration site-1 gene (EVI1/MECOM) marks the most lethal acute myeloid leukemia (AML) subgroup carrying chromosome 3q26 abnormalities. By taking advantage of the intersectionality of high-throughput cell-based and gene expression screens selective and pan-histone deacetylase inhibitors (HDACis) emerge as potent repressors of EVI1. To understand the mechanism driving on-target anti-leukemia activity of this compound class, here we dissect the expression dynamics of the bone marrow leukemia cells of patients treated with HDACi and reconstitute the EVI1 chromatin-associated co-transcriptional complex merging on the role of proliferation-associated 2G4 (PA2G4) protein. PA2G4 overexpression rescues AML cells from the inhibitory effects of HDACis, while genetic and small molecule inhibition of PA2G4 abrogates EVI1 in 3q26 AML cells, including in patient-derived leukemia xenografts. This study positions PA2G4 at the crosstalk of the EVI1 leukemogenic signal for developing new therapeutics and urges the use of HDACis-based combination therapies in patients with 3q26 AML.


Chromosomes, Human, Pair 3 , Histone Deacetylase Inhibitors , Leukemia, Myeloid, Acute , MDS1 and EVI1 Complex Locus Protein , Proteogenomics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , MDS1 and EVI1 Complex Locus Protein/metabolism , MDS1 and EVI1 Complex Locus Protein/genetics , Animals , Histone Deacetylase Inhibitors/pharmacology , Mice , Cell Line, Tumor , Chromosomes, Human, Pair 3/genetics , Proteogenomics/methods , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Xenograft Model Antitumor Assays , Gene Expression Regulation, Leukemic/drug effects , Female , Cell Proliferation/drug effects , Cell Proliferation/genetics
10.
Sci Rep ; 14(1): 12868, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834690

Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed in-silico screening of 212,966 compounds, selected 4 hits targeting the IQGAP1-GRD domain, and conducted SAR of the 'fittest hit' to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, resulted in G2/M arrest, and inhibited colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows response to IQGAP1 inhibition, and UR778Br, identified through in-silico studies, selectively targeted AML cells while sparing normal marrow.


Cell Proliferation , Leukemia, Myeloid, Acute , ras GTPase-Activating Proteins , Humans , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Computer Simulation , Antineoplastic Agents/pharmacology , Protein Domains , Animals , Proteomics/methods
11.
J Med Case Rep ; 18(1): 269, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38835078

BACKGROUND: Acute myeloid leukemia (AML) is the second most common type of leukemia in children. Although prognostic and diagnostic tests of AML patients have improved, there is still a great demand for new reliable clinical biomarkers for AML. Read-through fusion transcripts (RTFTs) are complex transcripts of adjacent genes whose molecular mechanisms are poorly understood. This is the first report of the presence of the PPP1R1B::STARD3 fusion transcript in an AML patient. Here, we investigated the presence of PPP1R1B::STARD3 RTFT in a case of AML using paired-end RNA sequencing (RNA-seq). CASE PRESENTATION: A Persian 12-year-old male was admitted to Dr. Sheikh Hospital of Mashhad, Iran, in September 2019 with the following symptoms, including fever, convulsions, hemorrhage, and bone pain. The patient was diagnosed with AML (non-M3-FAB subtype) based on cell morphologies and immunophenotypical features. Chromosomal analysis using the G-banding technique revealed t (9;22) (q34;q13). CONCLUSIONS: Single-cell RNA sequencing (scRNA-seq) analysis suggested that the PPP1R1B promoter may be responsible for the PPP1R1B::STARD3 expression. Alterations in the level of lipid metabolites implicate cancer development, and this fusion can play a crucial role in the cholesterol movement in cancer cells. PPP1R1B::STARD3 may be considered a candidate for targeted therapies of the cholesterol metabolic and the PI3K/AKT signaling pathways involved in cancer development and progression.


Leukemia, Myeloid, Acute , Humans , Male , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Child , Protein Phosphatase 1/genetics , Oncogene Proteins, Fusion/genetics
12.
Blood Cancer J ; 14(1): 91, 2024 May 31.
Article En | MEDLINE | ID: mdl-38821940

Acute myeloid leukemia (AML) with t(9;22) (q34.1; q11.2)/BCR::ABL1, a distinct entity within the group of AML with defining genetic abnormalities, belong to the adverse-risk group of the 2022 ELN classification. However, there is little data on outcome since the era of tyrosine kinase inhibitors. Among 5819 AML cases included in the DATAML registry, 20 patients with de novo BCR::ABL1+AML (0.3%) were identified. Eighteen patients treated with standard induction chemotherapy were analyzed in this study. Imatinib was added to chemotherapy in 16 patients. The female-to-male ratio was 1.25 and median age was 54 years. The t(9;22) translocation was the sole chromosomal abnormality in 12 patients. Main gene mutations detected by NGS were ASXL1, RUNX1 and NPM1. Compared with patients with myeloid blast phase of chronic myeloid leukemia (CML-BP), de novo BCR::ABL1+AML had higher WBC, fewer additional chromosomal abnormalities, lower CD36 or CD7 expression and no ABL1 mutations. Seventeen patients (94.4%) achieved complete remission (CR) or CR with incomplete hematologic recovery. Twelve patients were allografted in first remission. With a median follow-up of 6.3 years, the median OS was not reached and 2-year OS was 77% (95% CI: 50-91). Four out of five patients who were not transplanted did not relapse. Comparison of BCR::ABL1+AML, CML-BP, 2017 ELN intermediate (n = 643) and adverse-risk patients (n = 863) showed that patients with BCR::ABL1+AML had a significant better outcome than intermediate and adverse-risk patients. BCR::ABL1+AML patients treated with imatinib and intensive chemotherapy should not be included in the adverse-risk group of current AML classifications.


Imatinib Mesylate , Leukemia, Myeloid, Acute , Registries , Translocation, Genetic , Humans , Male , Female , Middle Aged , Adult , Imatinib Mesylate/therapeutic use , Imatinib Mesylate/administration & dosage , Aged , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Chromosomes, Human, Pair 22/genetics , Fusion Proteins, bcr-abl/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Chromosomes, Human, Pair 9/genetics , Young Adult , Nucleophosmin
13.
Front Immunol ; 15: 1386517, 2024.
Article En | MEDLINE | ID: mdl-38812504

Acute myeloid leukemia (AML) is an aggressive heterogeneous disease characterized by several alterations of the immune system prompting disease progression and treatment response. The therapies available for AML can affect lymphocyte function, limiting the efficacy of immunotherapy while hindering leukemia-specific immune reactions. Recently, the treatment based on Venetoclax (VEN), a specific B-cell lymphoma 2 (BCL-2) inhibitor, in combination with hypomethylating agents (HMAs) or low-dose cytarabine, has emerged as a promising clinical strategy in AML. To better understand the immunological effect of VEN treatment, we characterized the phenotype and immune checkpoint (IC) receptors' expression on CD4+ and CD8+ T cells from AML patients after the first and second cycle of HMA in combination with VEN. HMA and VEN treatment significantly increased the percentage of naïve CD8+ T cells and TIM-3+ CD4+ and CD8+ T cells and reduced cytokine-secreting non-suppressive T regulatory cells (Tregs). Of note, a comparison between AML patients treated with HMA only and HMA in combination with VEN revealed the specific contribution of VEN in modulating the immune cell repertoire. Indeed, the reduction of cytokine-secreting non-suppressive Tregs, the increased TIM-3 expression on CD8+ T cells, and the reduced co-expression of PD-1 and TIM-3 on both CD4+ and CD8+ T cells are all VEN-specific. Collectively, our study shed light on immune modulation induced by VEN treatment, providing the rationale for a novel therapeutic combination of VEN and IC inhibitors in AML patients.


Bridged Bicyclo Compounds, Heterocyclic , CD8-Positive T-Lymphocytes , Hepatitis A Virus Cellular Receptor 2 , Leukemia, Myeloid, Acute , Programmed Cell Death 1 Receptor , Sulfonamides , T-Lymphocytes, Regulatory , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/drug therapy , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Hepatitis A Virus Cellular Receptor 2/metabolism , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Middle Aged , Aged , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Female , Male , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Adult , Aged, 80 and over
14.
Leukemia ; 38(6): 1246-1255, 2024 Jun.
Article En | MEDLINE | ID: mdl-38724673

T cells are important for the control of acute myeloid leukemia (AML), a common and often deadly malignancy. We observed that some AML patient samples are resistant to killing by human-engineered cytotoxic CD4+ T cells. Single-cell RNA-seq of primary AML samples and CD4+ T cells before and after their interaction uncovered transcriptional programs that correlate with AML sensitivity or resistance to CD4+ T cell killing. Resistance-associated AML programs were enriched in AML patients with poor survival, and killing-resistant AML cells did not engage T cells in vitro. Killing-sensitive AML potently activated T cells before being killed, and upregulated ICAM1, a key component of the immune synapse with T cells. Without ICAM1, killing-sensitive AML became resistant to killing by primary ex vivo-isolated CD8+ T cells in vitro, and engineered CD4+ T cells in vitro and in vivo. While AML heterogeneity implies that multiple factors may determine their sensitivity to T cell killing, these data show that ICAM1 acts as an immune trigger, allowing T cell killing, and could play a role in AML patient survival in vivo.


Intercellular Adhesion Molecule-1 , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Mice , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Prognosis , Cytotoxicity, Immunologic
15.
Cell Rep Med ; 5(5): 101558, 2024 May 21.
Article En | MEDLINE | ID: mdl-38733986

The investigation of the mechanisms behind p53 mutations in acute myeloid leukemia (AML) has been limited by the lack of suitable mouse models, which historically have resulted in lymphoma rather than leukemia. This study introduces two new AML mouse models. One model induces mutant p53 and Mdm2 haploinsufficiency in early development, showing the role of Mdm2 in myeloid-biased hematopoiesis and AML predisposition, independent of p53. The second model mimics clonal hematopoiesis by inducing mutant p53 in adult hematopoietic stem cells, demonstrating that the timing of p53 mutation determines AML vs. lymphoma development. In this context, age-related changes in hematopoietic stem cells (HSCs) collaborate with mutant p53 to predispose toward myeloid transformation rather than lymphoma development. Our study unveils new insights into the cooperative impact of HSC age, Trp53 mutations, and Mdm2 haploinsufficiency on clonal hematopoiesis and the development of myeloid malignancies.


Clonal Hematopoiesis , Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Mutation , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Clonal Hematopoiesis/genetics , Mice , Mutation/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Mice, Inbred C57BL , Haploinsufficiency/genetics , Disease Models, Animal , Hematopoiesis/genetics
19.
Cell Death Dis ; 15(5): 369, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806478

Signal transducer and activator of transcription 3 (STAT3) is frequently overexpressed in patients with acute myeloid leukemia (AML). STAT3 exists in two distinct alternatively spliced isoforms, the full-length isoform STAT3α and the C-terminally truncated isoform STAT3ß. While STAT3α is predominantly described as an oncogenic driver, STAT3ß has been suggested to act as a tumor suppressor. To elucidate the role of STAT3ß in AML, we established a mouse model of STAT3ß-deficient, MLL-AF9-driven AML. STAT3ß deficiency significantly shortened survival of leukemic mice confirming its role as a tumor suppressor. Furthermore, RNA sequencing revealed enhanced STAT1 expression and interferon (IFN) signaling upon loss of STAT3ß. Accordingly, STAT3ß-deficient leukemia cells displayed enhanced sensitivity to blockade of IFN signaling through both an IFNAR1 blocking antibody and the JAK1/2 inhibitor Ruxolitinib. Analysis of human AML patient samples confirmed that elevated expression of IFN-inducible genes correlated with poor overall survival and low STAT3ß expression. Together, our data corroborate the tumor suppressive role of STAT3ß in a mouse model in vivo. Moreover, they provide evidence that its tumor suppressive function is linked to repression of the STAT1-mediated IFN response. These findings suggest that the STAT3ß/α mRNA ratio is a significant prognostic marker in AML and holds crucial information for targeted treatment approaches. Patients displaying a low STAT3ß/α mRNA ratio and unfavorable prognosis could benefit from therapeutic interventions directed at STAT1/IFN signaling.


Leukemia, Myeloid, Acute , STAT3 Transcription Factor , Animals , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Humans , STAT3 Transcription Factor/metabolism , Mice , Signal Transduction , Interferons/metabolism , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , Cell Line, Tumor , Nitriles , Pyrazoles , Pyrimidines
20.
Biochem Biophys Res Commun ; 719: 150117, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38761635

The clinical treatment of human acute myeloid leukemia (AML) is rapidly progressing from chemotherapy to targeted therapies led by the BCL-2 inhibitor venetoclax (VEN). Despite its unprecedented success, VEN still encounters clinical resistance. Thus, uncovering the biological vulnerability of VEN-resistant AML disease and identifying effective therapies to treat them are urgently needed. We have previously demonstrated that iron oxide nanozymes (IONE) are capable of overcoming chemoresistance in AML. The current study reports a new activity of IONE in overcoming VEN resistance. Specifically, we revealed an aberrant redox balance with excessive intracellular reactive oxygen species (ROS) in VEN-resistant monocytic AML. Treatment with IONE potently induced ROS-dependent cell death in monocytic AML in both cell lines and primary AML models. In primary AML with developmental heterogeneity containing primitive and monocytic subpopulations, IONE selectively eradicated the VEN-resistant ROS-high monocytic subpopulation, successfully resolving the challenge of developmental heterogeneity faced by VEN. Overall, our study revealed an aberrant redox balance as a therapeutic target for monocytic AML and identified a candidate IONE that could selectively and potently eradicate VEN-resistant monocytic disease.


Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Drug Resistance, Neoplasm , Reactive Oxygen Species , Sulfonamides , Humans , Sulfonamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Drug Resistance, Neoplasm/drug effects , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Leukemia, Monocytic, Acute/drug therapy , Leukemia, Monocytic, Acute/metabolism , Leukemia, Monocytic, Acute/pathology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Ferric Compounds/pharmacology
...