Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.219
Filter
1.
Reumatol Clin (Engl Ed) ; 20(6): 287-290, 2024.
Article in English | MEDLINE | ID: mdl-38991821

ABSTRACT

INTRODUCTION AND OBJECTIVES: In this study, we aimed to evaluate LIF levels and its possible relationship with disease activity in patients with Takayasu's (TAK) and Giant cell arteritis (GCA) patients. MATERIALS AND METHODS: 23 Takayasu's arteritis, 9 Giant cell arteritis patients and 25 healthy volunteers were included in the study. Serum LIF levels were measured ELISA. RESULTS: The mean age of Giant cell arteritis patients was statistically significantly higher than the other groups (p<0.001). The rate of women was found to be higher in Takayasu's arteritis (p=0.021). When healthy control, patients with GCA and Takayasu arteritis were compared, there was a difference in LIF values (p=0.018). In subgroup analyzes, LIF values were found to be higher in GCA patients compared to healthy controls (p<0.05). There was no statistically significant correlation between LIF and CRP (Rho=-0.038, p=0.778), ESR (Rho=0.114, p=0.399) and ITAS (Rho=-0.357, p=0.094). While CRP was statistically significantly higher in patients with disease activity (p=0.003), there was no statistically significant difference between patients in terms of ESR and LIF values. While there was a statistically significant relationship between CRP (OR=1.19 [1.03-1.37], p=0.018) and disease activity in univariate analyses, no statistically significant variable was found in multivariable analyses. CONCLUSIONS: LIF values were significantly higher in patients with Giant cell arteritis compared to healthy controls.


Subject(s)
Giant Cell Arteritis , Leukemia Inhibitory Factor , Takayasu Arteritis , Humans , Takayasu Arteritis/blood , Female , Giant Cell Arteritis/blood , Cross-Sectional Studies , Male , Adult , Middle Aged , Leukemia Inhibitory Factor/blood , Case-Control Studies , Aged , Young Adult
2.
PLoS One ; 19(5): e0292978, 2024.
Article in English | MEDLINE | ID: mdl-38728307

ABSTRACT

Endosalpingiosis (ES) and endometriosis (EM) refer to the growth of tubal and endometrial epithelium respectively, outside of their site of origin. We hypothesize that uterine secretome factors drive ectopic growth. To test this, we developed a mouse model of ES and EM using tdTomato (tdT) transgenic fluorescent mice as donors. To block implantation factors, progesterone knockout (PKO) tdT mice were created. Fluorescent lesions were present after oviduct implantation with and without WT endometrium. Implantation was increased (p<0.05) when tdt oviductal tissue was implanted with endometrium compared to oviductal tissue alone. Implantation was reduced (p<0.0005) in animals implanted with minced tdT oviductal tissue with PKO tdT endometrium compared to WT endometrium. Finally, oviductal tissues was incubated with and without a known implantation factor, leukemia inhibitory factor (LIF) prior to and during implantation. LIF promoted lesion implantation. In conclusion, endometrial derived implantation factors, such as LIF, are necessary to initiate ectopic tissue growth. We have developed an animal model of ectopic growth of gynecologic tissues in a WT mouse which will potentially allow for development of new prevention and treatment modalities.


Subject(s)
Endometriosis , Endometrium , Uterus , Animals , Female , Mice , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/genetics , Uterus/metabolism , Endometrium/metabolism , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/genetics , Secretome/metabolism , Mice, Transgenic , Disease Models, Animal , Fallopian Tubes/metabolism , Progesterone/metabolism , Mice, Knockout , Embryo Implantation/physiology
3.
Cell Biochem Funct ; 42(4): e4031, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760985

ABSTRACT

Super-enhancers play prominent roles in driving robust pathological gene expression, but they are hidden in human genome at noncoding regions, making them difficult to explore. Leukemia inhibitory factor (LIF) is a multifunctional cytokine crucially involved in acute respiratory distress syndrome (ARDS) and lung cancer progression. However, the mechanisms governing LIF regulation in disease contexts remain largely unexplored. In this study, we observed elevated levels of LIF in the bronchoalveolar lavage fluid (BALF) of patients with sepsis-related ARDS compared to those with nonsepsis-related ARDS. Furthermore, both basal and LPS-induced LIF expression were under the control of super-enhancers. Through analysis of H3K27Ac ChIP-seq data, we pinpointed three potential super-enhancers (LIF-SE1, LIF-SE2, and LIF-SE3) located proximal to the LIF gene in cells. Notably, genetic deletion of any of these three super-enhancers using CRISPR-Cas9 technology led to a significant reduction in LIF expression. Moreover, in cells lacking these super-enhancers, both cell growth and invasion capabilities were substantially impaired. Our findings highlight the critical role of three specific super-enhancers in regulating LIF expression and offer new insights into the transcriptional regulation of LIF in ARDS and lung cancer.


Subject(s)
Leukemia Inhibitory Factor , Lung Neoplasms , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/pathology , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Bronchoalveolar Lavage Fluid/chemistry , Enhancer Elements, Genetic , Cell Proliferation , Male
4.
J Mol Endocrinol ; 73(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38722222

ABSTRACT

In this study, we investigate the effects of miRNA-138-5p and probable G-protein coupled receptor 124 (GPR124)-regulated inflammasome and downstream leukemia inhibitory factor (LIF)-STAT and adhesion molecule signaling in human decidual stromal cells. After informed consent was obtained from women aged 25-38 years undergoing surgical termination of the normal pregnancy and spontaneous miscarriage after 6-9 weeks of gestation, human decidual stromal cells were extracted from the decidual tissue. Extracellular vesicles (EVs) with microRNA (miRNA) between cells have been regarded as critical factors for embryo-maternal interactions on embryo implantation and programming of human pregnancy. MicroRNA-138-5p acts as the transcriptional regulator of GPR124 and the mediator of downstream inflammasome. LIF-regulated STAT activation and expression of integrins might influence embryo implantation. Hence, a better understanding of LIF-STAT and adhesion molecule signaling would elucidate the mechanism of microRNA-138-5p- and GPR124-regulated inflammasome activation on embryo implantation and pregnancy. Our results show that microRNA-138-5p, purified from the EVs of decidual stromal cells, inhibits the expression of GPR124 and the inflammasome, and activates the expression of LIF-STAT and adhesion molecules in human decidual stromal cells. Additionally, the knockdown of GPR124 and NLRP3 through siRNA increases the expression of LIF-STAT and adhesion molecules. The findings of this study help us gain a better understanding the role of EVs, microRNA-138-5p, GPR124, inflammasomes, LIF-STAT, and adhesion molecules in embryo implantation and programming of human pregnancy.


Subject(s)
Decidua , Embryo Implantation , Leukemia Inhibitory Factor , MicroRNAs , Signal Transduction , Stromal Cells , Humans , Female , Leukemia Inhibitory Factor/metabolism , Pregnancy , Decidua/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Adult , Stromal Cells/metabolism , Inflammasomes/metabolism , STAT Transcription Factors/metabolism , Extracellular Vesicles/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167210, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38704001

ABSTRACT

Oxaliplatin has been included as a basal drug in various chemotherapy regimens for colorectal cancer (CRC), a global health concern. However, acquired resistance to oxaliplatin affects the prognosis. This study aimed to determine whether the consumption of a KD increases the sensitivity of CRC cells to oxaliplatin via the inhibition of a classical stem cell marker, Krupple-like factor 5 (KLF5). KLF5 functions as a transcription factor for the leukemia inhibitory factor (LIF) and directly binds to its promoter region. LIF upregulation induces dephosphorylation of metal regulatory transcription factor 1 (MTF1), which is recruited to the promoter area of Ferroportin (FPN1), the only cellular iron exporter. FPN1 upregulation reduces the labile iron pool (LIP) and ferroptosis in CRC cells. KLF5 knockdown inhibits the LIF/MTF1/FPN1 axis and induces iron overload, thereby conferring sensitivity to oxaliplatin to CRC cells. KD mimicked KLF5 silencing and sensitized CRC cells to oxaliplatin via a similar mechanism. Thus, potential correlations were observed among ketogenesis, stemness, and iron homeostasis. This finding can be used to formulate a new strategy for overcoming oxaliplatin resistance in patients with CRC.


Subject(s)
Cation Transport Proteins , Colorectal Neoplasms , Drug Resistance, Neoplasm , Homeostasis , Iron , Kruppel-Like Transcription Factors , Leukemia Inhibitory Factor , Oxaliplatin , Humans , Oxaliplatin/pharmacology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Iron/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Homeostasis/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/genetics , Ferroptosis/drug effects , Ferroptosis/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology , Animals
6.
Mol Hum Reprod ; 30(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38788747

ABSTRACT

Uterine glands are branched, tubular structures whose secretions are essential for pregnancy success. It is known that pre-implantation glandular expression of leukemia inhibitory factor (LIF) is crucial for embryo implantation; however, the contribution of uterine gland structure to gland secretions, such as LIF, is not known. Here, we use mice deficient in estrogen receptor 1 (ESR1) signaling to uncover the role of ESR1 signaling in gland branching and the role of a branched structure in LIF secretion and embryo implantation. We observed that deletion of ESR1 in neonatal uterine epithelium, stroma, and muscle using the progesterone receptor PgrCre causes a block in uterine gland development at the gland bud stage. Embryonic epithelial deletion of ESR1 using a Müllerian duct Cre line, Pax2Cre, displays gland bud elongation but a failure in gland branching. Reduction of ESR1 in adult uterine epithelium using the lactoferrin-Cre (LtfCre) displays normally branched uterine glands. Unbranched glands from Pax2Cre Esr1flox/flox uteri fail to express glandular pre-implantation Lif, preventing implantation chamber formation and embryo alignment along the uterine mesometrial-antimesometrial axis. In contrast, branched glands from LtfCre Esr1flox/flox uteri display reduced expression of ESR1 and glandular Lif resulting in delayed implantation chamber formation and embryo-uterine axes alignment but mice deliver a normal number of pups. Finally, pre-pubertal unbranched glands in control mice express Lif in the luminal epithelium but fail to express Lif in the glandular epithelium, even in the presence of estrogen. These data strongly suggest that branched glands are necessary for pre-implantation glandular Lif expression for implantation success. Our study is the first to identify a relationship between the branched structure and secretory function of uterine glands and provides a framework for understanding how uterine gland structure-function contributes to pregnancy success.


Subject(s)
Embryo Implantation , Estrogen Receptor alpha , Leukemia Inhibitory Factor , Uterus , Animals , Female , Embryo Implantation/physiology , Uterus/metabolism , Mice , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Pregnancy , Mice, Knockout , Signal Transduction
7.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38583153

ABSTRACT

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Subject(s)
Cell Differentiation , Lateral Ventricles , Leukemia Inhibitory Factor , Organoids , Pluripotent Stem Cells , Humans , Organoids/metabolism , Organoids/cytology , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/pharmacology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Lateral Ventricles/cytology , Lateral Ventricles/metabolism , STAT3 Transcription Factor/metabolism , Neuroglia/metabolism , Neuroglia/cytology , Signal Transduction
8.
Tissue Cell ; 88: 102368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583225

ABSTRACT

Air pollution (AP) is one of the main recent concerns in reproductive healthy due to its potential to promote negative outcomes during pregnancy and male and female fertility. Several studies have demonstrated that AP exposure has been linked to increased embryonic implantation failures, alterations in embryonic, fetal and placental development. For a well-succeeded implantation, both competent blastocyst and receptive endometrium are required. Based on the lack of data about the effect of AP in endometrial receptivity, this study aimed to evaluate he particulate matter (PM) exposure impact on uterine receptive markers in mice and associate the alterations to increased implantation failures due to AP. For this study, ten dams per group were exposed for 39 days to either filter (F) or polluted air (CAP). At fourth gestational day (GD4), females were euthanized. Morphological, ultrastructural, immunohistochemical and molecular analysis of uterine and ovarian samples were performed. CAP-exposed females presented a reduced number of corpus luteum; glands and epithelial cells were increased with pinopodes formation impairment. Immunohistochemistry analysis revealed decreased LIF protein levels. These preliminary data suggests that PM exposure may exert negative effects on endometrial receptivity by affecting crucial parameters to embryonic implantation as uterine morphological differentiation, corpus luteum quantity and LIF expression during implantation window.


Subject(s)
Embryo Implantation , Endometrium , Particulate Matter , Animals , Female , Embryo Implantation/drug effects , Endometrium/metabolism , Endometrium/drug effects , Pregnancy , Mice , Biomarkers/metabolism , Male , Leukemia Inhibitory Factor/metabolism
9.
EMBO Rep ; 25(6): 2592-2609, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671295

ABSTRACT

Various cytokines have been implicated in cancer cachexia. One such cytokine is IL-6, deemed as a key cachectic factor in mice inoculated with colon carcinoma 26 (C26) cells, a widely used cancer cachexia model. Here we tested the causal role of IL-6 in cancer cachexia by knocking out the IL-6 gene in C26 cells. We found that the growth of IL-6 KO tumors was dramatically delayed. More strikingly, while IL-6 KO tumors eventually reached the similar size as wild-type tumors, cachexia still took place, despite no elevation in circulating IL-6. In addition, the knockout of leukemia inhibitory factor (LIF), another IL-6 family cytokine proposed as a cachectic factor in the model, also affected tumor growth but not cachexia. We further showed an increase in the infiltration of immune cell population in the IL-6 KO tumors compared with wild-type controls and the defective IL-6 KO tumor growth was rescued in immunodeficient mice while cachexia was not. Thus, IL-6 promotes tumor growth by facilitating immune evasion but is dispensable for cachexia.


Subject(s)
Cachexia , Interleukin-6 , Mice, Knockout , Animals , Mice , Cachexia/pathology , Cachexia/genetics , Cachexia/metabolism , Cachexia/etiology , Cachexia/immunology , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/immunology , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Immune Evasion , Interleukin-6/metabolism , Interleukin-6/genetics , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/genetics
10.
Biochem Pharmacol ; 223: 116134, 2024 May.
Article in English | MEDLINE | ID: mdl-38494064

ABSTRACT

The leukemia inhibitory factor (LIF) is member of interleukin (IL)-6 family of cytokines involved immune regulation, morphogenesis and oncogenesis. In cancer tissues, LIF binds a heterodimeric receptor (LIFR), formed by a LIFRß subunit and glycoprotein(gp)130, promoting epithelial mesenchymal transition and cell growth. Bile acids are cholesterol metabolites generated at the interface of host metabolism and the intestinal microbiota. Here we demonstrated that bile acids serve as endogenous antagonist to LIFR in oncogenesis. The tissue characterization of bile acids content in non-cancer and cancer biopsy pairs from gastric adenocarcinomas (GC) demonstrated that bile acids accumulate within cancer tissues, with glyco-deoxycholic acid (GDCA) functioning as negative regulator of LIFR expression. In patient-derived organoids (hPDOs) from GC patients, GDCA reverses LIF-induced stemness and proliferation. In summary, we have identified the secondary bile acids as the first endogenous antagonist to LIFR supporting a development of bile acid-based therapies in LIF-mediated oncogenesis.


Subject(s)
Interleukin-6 , Receptors, Cytokine , Humans , Carcinogenesis , Leukemia Inhibitory Factor/metabolism , Receptors, Cytokine/metabolism , Receptors, OSM-LIF
11.
Endocrinology ; 165(5)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38518755

ABSTRACT

Seminal extracellular vesicles (EVs) contain different subgroups that have diverse effects on sperm function. However, the effect of seminal EVs-especially their subgroups-on endometrial receptivity is largely unknown. Here, we found that seminal EVs could be divided into high-density EVs (EV-H), medium density EVs, and low-density EVs after purification using iodixanol. We demonstrated that EV-H could promote the expression and secretion of leukemia inhibitor factor (LIF) in human endometrial cells. In EV-H-treated endometrial cells, we identified 1274 differentially expressed genes (DEGs). DEGs were enriched in cell adhesion and AKT and STAT3 pathways. Therefore, we illustrated that EV-H enhanced the adhesion of human choriocarcinoma JAr cell spheroids to endometrial cells through the LIF-STAT3 pathway. Collectively, our findings indicated that seminal EV-H could regulate endometrial receptivity through the LIF pathway, which could provide novel insights into male fertility.


Subject(s)
Embryo Implantation , Extracellular Vesicles , Female , Humans , Male , Pregnancy , Cell Adhesion/physiology , Embryo Implantation/physiology , Endometrium/metabolism , Extracellular Vesicles/metabolism , Leukemia Inhibitory Factor/metabolism , Semen/metabolism
12.
Cell Res ; 34(5): 345-354, 2024 May.
Article in English | MEDLINE | ID: mdl-38467743

ABSTRACT

Neural signals can significantly influence cancer prognosis. However, how cancer cells may proactively modulate the nervous system to benefit their own survival is incompletely understood. In this study, we report an overlapping pattern of brain responses, including that in the paraventricular nucleus of the hypothalamus, in multiple mouse models of peripheral cancers. A multi-omic screening then identifies leukemia inhibitory factor (LIF) and galectin-3 (Gal3) as the key cytokines released by these cancer cell types to trigger brain activation. Importantly, increased plasma levels of these two cytokines are observed in patients with different cancers. We further demonstrate that pharmacologic or genetic blockage of cancer cell-derived LIF or Gal3 signaling abolishes the brain responses and strongly inhibits tumor growth. In addition, ablation of peripheral sympathetic actions can similarly restore antitumor immunity. These results have elucidated a novel, shared mechanism of multiple cancer cell types hijacking the nervous system to promote tumor progression.


Subject(s)
Galectin 3 , Leukemia Inhibitory Factor , Signal Transduction , Animals , Humans , Mice , Brain/metabolism , Brain/pathology , Cell Line, Tumor , Galectin 3/metabolism , Leukemia Inhibitory Factor/metabolism , Mice, Inbred C57BL , Neoplasms/metabolism , Neoplasms/pathology
13.
Am J Pathol ; 194(6): 941-957, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493927

ABSTRACT

Cholestatic injuries are accompanied by ductular reaction, initiated by proliferation and activation of biliary epithelial cells (BECs), leading to fibrosis. Sortilin (encoded by Sort1) facilitates IL-6 secretion and leukemia inhibitory factor (LIF) signaling. This study investigated the interplay between sortilin and IL-6 and LIF in cholestatic injury-induced ductular reaction, morphogenesis of new ducts, and fibrosis. Cholestatic injury was induced by bile duct ligation (BDL) in wild-type and Sort1-/- mice, with or without augmentation of IL-6 or LIF. Mice with BEC sortilin deficiency (hGFAPcre.Sort1fl/fl) and control mice were subjected to BDL and 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet (DDC) induced cholestatic injury. Sort1-/- mice displayed reduced BEC proliferation and expression of BEC-reactive markers. Administration of LIF or IL-6 restored BEC proliferation in Sort1-/- mice, without affecting BEC-reactive or inflammatory markers. Sort1-/- mice also displayed impaired morphogenesis, which was corrected by LIF treatment. Similarly, hGFAPcre.Sort1fl/fl mice exhibited reduced BEC proliferation, but similar reactive and inflammatory marker expression. Serum IL-6 and LIF were comparable, yet liver pSTAT3 was reduced, indicating that sortilin is essential for co-activation of LIF receptor/gp130 signaling in BECs, but not for IL-6 secretion. hGFAPcre.Sortfl/fl mice displayed impaired morphogenesis and diminished fibrosis after BDL and DDC. In conclusion, sortilin-mediated engagement of LIF signaling in BECs promoted ductular reaction and morphogenesis during cholestatic injury. This study indicates that BEC sortilin is pivotal for the development of fibrosis.


Subject(s)
Adaptor Proteins, Vesicular Transport , Bile Ducts , Cholestasis , Epithelial Cells , Fibrosis , Animals , Adaptor Proteins, Vesicular Transport/metabolism , Mice , Epithelial Cells/metabolism , Epithelial Cells/pathology , Cholestasis/pathology , Cholestasis/metabolism , Bile Ducts/pathology , Cell Proliferation , Interleukin-6/metabolism , Mice, Knockout , Mice, Inbred C57BL , Leukemia Inhibitory Factor/metabolism , Signal Transduction
14.
Cell Death Dis ; 15(3): 218, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490994

ABSTRACT

Gastric cancer (GC), notorious for its poor prognosis, often advances to peritoneal dissemination, a crucial determinant of detrimental outcomes. This study intricately explores the role of the TGFß-Smad-LIF axis within the tumor microenvironment in propagating peritoneal metastasis, with a specific emphasis on its molecular mechanism in instigating Neutrophil Extracellular Traps (NETs) formation and encouraging GC cellular functions. Through a blend of bioinformatics analyses, utilizing TCGA and GEO databases, and meticulous in vivo and in vitro experiments, LIF was identified as pivotally associated with GC metastasis, notably, enhancing the NETs formation through neutrophil stimulation. Mechanistically, TGF-ß was substantiated to elevate LIF expression via the activation of the Smad2/3 complex, culminating in NETs formation and consequently, propelling peritoneal metastasis of GC. This revelation uncovers a novel potential therapeutic target, promising a new avenue in managing GC and mitigating its metastatic propensities.


Subject(s)
Extracellular Traps , Peritoneal Neoplasms , Stomach Neoplasms , Transforming Growth Factor beta , Humans , Extracellular Traps/metabolism , Neutrophils/metabolism , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/pathology , Stomach Neoplasms/pathology , Transforming Growth Factor beta/metabolism , Tumor Microenvironment , Leukemia Inhibitory Factor/metabolism , Signal Transduction
15.
Sci Rep ; 14(1): 7081, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528099

ABSTRACT

In this article, we focused on the impact of precisely chemically modified FLI maturation medium enriched with fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), insulin-like growth factor 1 (IGF1), and polyvinyl alcohol (PVA) and its potential to improve the efficiency of in vitro production of porcine embryos. We hypothesized that enhancing the composition of the maturation medium could result in an elevated production of embryos in vitro and can affect EGA. FLI medium resulted in a significantly higher rate of oocyte blastocyst maturation and formation compared to the control DMEM medium. In addition, immunocytochemical labelling confirmed the detection of UBF in 4-cell FLI parthenogenic embryos, suggesting similarities with natural embryo development. Through RNAseq analysis, upregulated genes present in 4-cell FLI embryos were found to play key roles in important biological processes such as cell proliferation, cell differentiation, and transcriptional regulation. Based on our findings, we demonstrated the positive influence of FLI medium in the evaluation of in vitro embryo production, EGA detection, transcriptomic and proteomic profile, which was confirmed by the positive activation of the embryonal genome in the 4-cell stage of parthenogenetically activated embryos.


Subject(s)
Culture Media , Fibroblast Growth Factor 2 , Insulin-Like Growth Factor I , Leukemia Inhibitory Factor , Animals , Blastocyst/drug effects , Blastocyst/metabolism , Culture Media/chemistry , Culture Media/pharmacology , Fertilization in Vitro , Fibroblast Growth Factor 2/pharmacology , Leukemia Inhibitory Factor/pharmacology , Oocytes , Proteomics , Swine/embryology , Swine/genetics , Insulin-Like Growth Factor I/pharmacology
16.
Mol Oncol ; 18(6): 1665-1686, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38381121

ABSTRACT

Prostate stromal cells play a crucial role in the promotion of tumor growth and immune evasion in the tumor microenvironment (TME) through intricate molecular alterations in their interaction with prostate cancer (PCa) cells. While the impact of these cells on establishing an immunosuppressive response and influencing PCa aggressiveness remains incompletely understood. Our study shows that the activation of the leukemia inhibitory factor (LIF)/LIF receptor (LIFR) pathway in both prostate tumor and stromal cells, following androgen deprivation therapy (ADT), leads to the development of an immunosuppressive TME. Activation of LIF/LIFR signaling in PCa cells induces neuroendocrine differentiation (NED) and upregulates immune checkpoint expression. Inhibition of LIF/LIFR attenuates these effects, underscoring the crucial role of LIF/LIFR in linking NED to immunosuppression. Prostate stromal cells expressing LIFR contribute to NED and immunosuppressive marker abundance in PCa cells, while LIFR knockdown in prostate stromal cells reverses these effects. ADT-driven LIF/LIFR signaling induces brain-derived neurotrophic factor (BDNF) expression, which, in turn, promotes NED, aggressiveness, and immune evasion in PCa cells. Clinical analyses demonstrate elevated BDNF levels in metastatic castration-resistant PCa (CRPC) and a positive correlation with programmed death-ligand 1 (PDL1) and immunosuppressive signatures. This study shows that the crosstalk between PCa cells and prostate stromal cells enhances LIF/LIFR signaling, contributing to an immunosuppressive TME and NED in PCa cells through the upregulation of BDNF.


Subject(s)
Brain-Derived Neurotrophic Factor , Prostatic Neoplasms , Tumor Microenvironment , Male , Humans , Brain-Derived Neurotrophic Factor/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/immunology , Cell Line, Tumor , Tumor Microenvironment/immunology , Signal Transduction/drug effects , Leukemia Inhibitory Factor/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Animals , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/immunology , Cell Differentiation
17.
Nat Commun ; 15(1): 627, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245529

ABSTRACT

Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia.


Subject(s)
Cachexia , Neoplasms , Animals , Mice , Cachexia/genetics , Cachexia/metabolism , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Lipids , Lipogenesis/genetics , Liver/metabolism , Mice, Transgenic , Neoplasms/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism
18.
F S Sci ; 5(1): 92-103, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37972693

ABSTRACT

OBJECTIVE: To study the effect of adenomyosis on the localized expression of the GATA binding proteins 2 and 6 (GATA2 and GATA6) zinc-finger transcription factors that are involved in proliferation of hematopoietic and endocrine cell lineages, cell differentiation, and organogenesis, potentially leading to impaired endometrial implantation. DESIGN: Laboratory based experimental study. SETTING: Academic hospital and laboratory. PATIENTS: Human endometrial stromal cells (HESCs) of reproductive age patients, 18-45 years of age, with adenomyosis were compared with patients with no pathology and leiomyomatous uteri as controls (n = 4 in each group, respectively). Additionally, midsecretory phase endometrial sections were obtained from patients with adenomyosis and control patients with leiomyoma (n = 8 in each group, respectively). INTERVENTIONS: GATA2 and GATA6 immunohistochemistry and H-SCORE were performed on the midsecretory phase endometrial sections from adenomyosis and leiomyoma control patients (n = 8 each, respectively). Control and adenomyosis patient HESC cultures were treated with placebo or 10-8 M estradiol (E2), or decidualization media (EMC) containing 10-8 M E2, 10-7 M medroxyprogesterone acetate, and 5 × 10-5 M cAMP for 6 and 10 days. Additionally, control HESC cultures (n = 4) were transfected with scrambled small interfering RNA (siRNA) (control) or GATA2-specific siRNAs for 6 days while adenomyosis HESC cultures (n = 4) were transfected with human GATA2 expression vectors to silence or induce GATA2 overexpression. MAIN OUTCOME MEASURES: Immunohistochemistry was performed to obtain GATA2 and GATA6 H-SCORES in adenomyosis vs. control patient endometrial tissue. Expression of GATA2, GATA6, insulin-like growth factor-binding protein 1 (IGFBP1), prolactin (PRL), progesterone receptor (PGR), estrogen receptor 1 (ESR1), leukemia inhibitory factor (LIF), and Interleukin receptor 11 (IL11R) messenger RNA (mRNA) levels were analyzed using by qPCR with normalization to ACTB. Silencing and overexpression experiments also had the corresponding mRNA levels of the above factors analyzed. Western blot analysis was performed on isolated proteins from transfection experiments. RESULTS: Immunohistochemistry revealed an overall fourfold lower GATA2 and fourfold higher GATA6 H-SCORE level in the endometrial stromal cells of patients with adenomyosis vs. controls. Decidual induction with EMC resulted in significantly lower GATA2, PGR, PRL and IGFBP1 mRNA levels in HESC cultures from patients with adenomyosis patient vs. controls. Leukemia inhibitory factor and IL11R mRNA levels were also significantly dysregulated in adenomyosis HESCs compared with controls. . Silencing of GATA2 expression in control HESCs induced an adenomyosis-like state with significant reductions in GATA2, increases in GATA6 and accompanying aberrations in PGR, PRL, ESR1 and LIF levels. Conversely, GATA2 overexpression via vector in adenomyosis HESCs caused partial restoration of the defective decidual response with significant increases in GATA2, PGR, PRL and LIF expression. CONCLUSION: In-vivo and in-vitro experiment results demonstrate that there is an overall inverse relationship between endometrial GATA2 and GATA6 levels in patients with adenomyosis who have diminished GATA2 levels and concurrently elevated GATA6 levels. Additionally, lower GATA2 and higher GATA6 levels, together with aberrant levels of important receptors and implantation factors, such as ESR1, PGR, IGFBP1, PRL, LIF, and IL11R mRNA in HESCs from patients with adenomyosis or GATA2-silenced control HESCs, support impaired decidualization. These effects were partially restored with GATA2 overexpression in adenomyosis HESCs, demonstrating a potential therapeutic target.


Subject(s)
Adenomyosis , GATA2 Transcription Factor , GATA6 Transcription Factor , Adolescent , Adult , Female , Humans , Middle Aged , Young Adult , Adenomyosis/genetics , Adenomyosis/metabolism , Adenomyosis/pathology , Decidua/metabolism , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/pharmacology , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/pharmacology , Leiomyoma , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/pharmacology , Prolactin/metabolism , Prolactin/pharmacology , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Transcription Factors
19.
Inflammation ; 47(1): 307-322, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37782452

ABSTRACT

Leukemia inhibitory factor (LIF) has been recognized as a novel inflammatory modulator in inflammation-associated diseases. This study aimed to investigate the modulation of LIF in dental pulp inflammation. Experimental pulpitis was established in wild-type (WT) and Lif-deficient (Lif-/-) mice. Histological and immunostaining analyses were conducted to assess the role of LIF in the progression of pulpitis. Mouse macrophage cell line (RAW264.7) was treated with LPS to simulate an inflammatory environment. Exogenous LIF was added to this system to examine its modulation in macrophage inflammatory response in vitro. Primary bone marrow-derived macrophages (BMDMs) from WT and Lif-/- mice were isolated and stimulated with LPS to confirm the effect of Lif deletion on macrophage inflammatory response. Supernatants from LIF and LPS-treated human dental pulp cells (hDPCs) were collected and added to macrophages. Macrophage chemotaxis was assessed using transwell assays. The results showed an increased expression of LIF and LIFR with the progression of pulpitis, and LIFR was highly expressed in macrophages. Lif deficiency alleviated experimental pulpitis with the reduction of pro-inflammatory cytokines and macrophage infiltration. Exogenous LIF promoted inflammatory response of LPS-induced macrophages through a STAT3/p65-dependent pathway. Consistently, Lif deletion inhibited macrophage inflammatory response in vitro. Supernatants of LIF-treated hDPCs enhanced macrophage migration in LPS-induced inflammatory environment. Our findings demonstrated that LIF aggravates pulpitis by promoting macrophage inflammatory response through a STAT3/p65-dependent pathway. Furthermore, LIF plays a crucial role in driving the recruitment of macrophages to inflamed pulp tissue by promoting chemokine secretion in DPCs.


Subject(s)
Pulpitis , Animals , Humans , Mice , Dental Pulp/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Leukemia Inhibitory Factor/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Pulpitis/metabolism
20.
Cell Oncol (Dordr) ; 47(3): 1065-1070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38150153

ABSTRACT

STAT3 is a pleiotropic transcription factor overactivated in 70% of solid tumours. We have recently reported that inactivating mutations on residues susceptible to post-translational modifications (PTMs) in only one of the monomers (i.e. asymmetric) caused changes in the cellular distribution of STAT3 homodimers. Here, we used more controlled experimental conditions, i.e. without the interference of endogenous STAT3 (STAT3-/- HeLa cells) and in the presence of a defined cytokine stimulus (Leukemia Inhibitory Factor, LIF), to provide further evidence that asymmetric PTMs affect the nuclear translocation of STAT3 homodimers. Time-lapse microscopy for 20 min after LIF stimulation showed that S727 dephosphorylation (S727A) and K685 inactivation (K685R) slightly enhanced the nuclear translocation of STAT3 homodimers, while K49 inactivation (K49R) delayed STAT3 nuclear translocation. Our findings suggest that asymmetrically modified STAT3 homodimers could be a new level of STAT3 regulation and, therefore, a potential target for cancer therapy.


Subject(s)
Cell Nucleus , Leukemia Inhibitory Factor , Protein Multimerization , Protein Processing, Post-Translational , STAT3 Transcription Factor , STAT3 Transcription Factor/metabolism , Humans , Leukemia Inhibitory Factor/metabolism , HeLa Cells , Cell Nucleus/metabolism , Phosphorylation , Active Transport, Cell Nucleus , Protein Transport/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...