Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.458
Filter
1.
Sci Total Environ ; 953: 176030, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39250978

ABSTRACT

Anaerobic digestion (AD) of lignocellulosic wastes (LW) has garnered substantial interest because of its notable energy and nutrient recovery, along with its potential for reducing greenhouse gas emissions. However, the LW is resistant to degradation, and its hydrolysis typically requires harsh conditions, hence the need for a pretreatment. Conducting a life cycle assessment (LCA) to evaluate the pretreatment of LW is an effective way to assess the environmental impacts associated with various pretreatment methods. This work evaluates and compares three scenarios for handling lignified tomato green waste (TGW), generated in the Greater of Agadir in Morocco, in terms of their environmental impacts and energy demand, using the LCA approach, performed with OpenLCA software. To achieve this aim, the impact of these scenarios on 11 indicators is studied. The analyzed management options include a base case scenario S0 where TGW undergoes a direct anaerobic digestion (AD), organosolv pretreatment of TGW followed by AD of the free-lignin fraction (S1), and choline chloride-based deep eutectic solvent (DES) delignification followed by AD of the free-lignin fraction (S2). The data used for the analysis comes from the Tamelast landfill, laboratory tests, literature, CML-IA baseline and Monte Carlo simulation calculations. The results obtained showed that the introduction of pretreatments in S1 and S2 mitigates significantly the environmental impact in different categories compared to S0. Scenario S2, with its enhanced recovery processes, shows the highest positive environmental contributions, despite its reliance on additional external electricity. S1 and S0 both respect energy circularity. Through this study, it has been demonstrated that chemical pretreatment of LW is energy, water and solvent-intensive and requires a large investment. It opens up perspectives for further works on pretreatment using natural DES technology, its development and its applications in the delignification of ligneous biomass on an industrial scale.


Subject(s)
Biomass , Choline , Solanum lycopersicum , Anaerobiosis , Deep Eutectic Solvents , Ethanol , Lignin/chemistry
2.
J Agric Food Chem ; 72(38): 21102-21111, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39269321

ABSTRACT

Five new sorbicillinoid derivatives, including (±)-aspersorbicillin A [(±)-1], a pair of enantiomers at C-9, and aspersorbicillins B-D (2-4), together with two known analogs (5 and 6) were isolated from the endophytic fungus Aspergillus aculeatus TE-65L. Their structures including absolute configurations were determined by detailed spectroscopic analyses and electronic circular dichroism calculations. The herbicidal activity of sorbicillinoids on the germ and radicle elongation of various weed types was reported for the first time. Compound 1 displayed significant herbicidal activity against Eleusine indica germ elongation (IC50 = 28.8 µg/mL), while compound 6 inhibited radicle elongation (IC50 = 25.6 µg/mL). Both were stronger than those of glyphosate (66.2 and 30.9 µg/mL, respectively). Further transcriptomic and LC-MS/MS metabolomic analysis indicated that 6 induced the transcriptional expressions of genes related to the lignin biosynthetic pathway, resulting in lignin accumulation. Transmission electron microscopy confirmed the cell wall thickening of seeds treated with 6, suggesting weed growth inhibition. This study reveals new lead compounds for fabricating natural herbicides and expands the agricultural use of sorbicillinoid analogs.


Subject(s)
Aspergillus , Herbicides , Lignin , Aspergillus/metabolism , Aspergillus/genetics , Aspergillus/drug effects , Aspergillus/chemistry , Herbicides/pharmacology , Herbicides/chemistry , Herbicides/metabolism , Lignin/chemistry , Lignin/metabolism , Lignin/pharmacology , Molecular Structure , Seeds/chemistry , Seeds/metabolism , Seeds/microbiology
3.
J Agric Food Chem ; 72(38): 21208-21220, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39285773

ABSTRACT

Lignosulfonate (LS), kraft lignin (KL), and organosolv lignin (OL) were evaluated as potential modulating agents of the physicochemical properties of Port wine at two different concentrations for 7 and 30 days. KL and LS demonstrated the ability to remove proteins and potentiate the anthocyanin concentration. LS reduced the tannin content and the interaction of salivary acidic proline-rich proteins with wine phenolic compounds. None of the lignin promoted a perceptible color change; however, the yellowish color of KL and OL at 100 g/hL contributed to an increase in the yellow tones of wines. Lignin improved wine aroma by reducing the amount of unwanted volatiles by 30% and increasing the content of ethyl esters associated with fruity aromas by up to 60%. The results suggest that lignin, especially LS, can be employed as a modulating agent, positively impacting wine's physicochemical properties. This valorization of a byproduct opens up new opportunities for the wine industry.


Subject(s)
Lignin , Odorants , Wine , Wine/analysis , Lignin/chemistry , Biopolymers/chemistry , Odorants/analysis , Color , Tannins/chemistry , Vitis/chemistry , Phenols/chemistry , Anthocyanins/chemistry
4.
J Agric Food Chem ; 72(37): 20537-20546, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39231308

ABSTRACT

Understanding and recognizing the structural characteristics of lignin-carbohydrate complexes (LCCs) and lignin in different growth stages and tissue types of bamboo will facilitate industrial processes and practical applications of bamboo biomass. Herein, the LCC and lignin samples were sequentially isolated from fibers and parenchyma cells of bamboo with different growth ages. The diverse yields of sequential fractions not only reflect the different biomass recalcitrance between bamboo fibers and parenchyma cells but also uncover the structural heterogeneity of these tissues at different growth stages. The molecular structures and structural inhomogeneities of the isolated lignin and LCC samples were comprehensively investigated. The results showed that the structural features of lignin and LCC linkages in parenchyma cells were abundant in ß-O-4 linkages but less with carbon-carbon linkages, suggesting that lignin and cross-linked LCC in parenchyma cells are simple in nature and easily to be tamed and tractable in the current biorefinery. Parallelly, the different ball-milled samples were directly characterized by high-resolution (800 M) solution-state 2D-HSQC NMR to analyze the whole lignocellulosic material. Overall, the scheme presented in this study will provide a comprehensive understanding of lignin and LCC linkages in fibers and parenchyma cells of bamboo and enable the utilization of bamboo biomass.


Subject(s)
Carbohydrates , Lignin , Lignin/chemistry , Lignin/metabolism , Carbohydrates/chemistry , Biomass , Sasa/chemistry , Sasa/growth & development , Sasa/metabolism , Magnetic Resonance Spectroscopy , Molecular Structure , Poaceae/chemistry , Poaceae/metabolism
5.
Bioresour Technol ; 412: 131423, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39236906

ABSTRACT

An innovative binary biol-based deep eutectic solvent (DES), specifically ethylamine hydrochloride-ethylene glycol (EaCl-EG), was developed for efficient pretreatment of eucalyptus biomass. This DES exhibited superior performance in achieving high delignification (85.0%) and xylan removal (80.0%), while preserving a significant amount of cellulose (94.5%) compared to choline chloride-based DES. Notably, the pretreated eucalyptus residues showed a remarkable glucose yield of over 92.5%, representing a substantial enhancement of up to 15 times compared to untreated eucalyptus. Furthermore, the pretreated liquor yielded high-purity lignin with a yield of 97.8%, characterized by well-preserved ß-O-4 structure and nanoscale dimensions. These lignin nanoparticles (LNPs) were subsequently self-assembled into lignin nanobottles (LNBs), adding further value to the pretreatment process. The proposed novel binary EaCl-EG DES presented great potential as an efficient pretreatment solvent for future biomass fractionation processes.


Subject(s)
Biomass , Chemical Fractionation , Deep Eutectic Solvents , Eucalyptus , Lignin , Eucalyptus/chemistry , Lignin/chemistry , Deep Eutectic Solvents/chemistry , Chemical Fractionation/methods , Hydrolysis , Cellulase/metabolism , Cellulase/chemistry , Glucose/chemistry , Solvents/chemistry , Nanoparticles/chemistry
6.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273206

ABSTRACT

Lignin is endowed with antioxidant activity due to its diverse chemical structure. It is necessary to explore the relationship between antioxidant activity and the chemical structure of the lignin to develop its high-value utilization. Herein, we employed maleic acid (MA) as a hydrotropic agent to preferably isolate the lignin from distinct herbaceous sources (wheat straw and switchgrass) under atmospheric pressure conditions. The resultant acid hydrotropic lignin (AHL) isolated from wheat straw exhibited high radical scavenging rates, up to 98% toward DPPH and 94% toward ABTS. Further investigations indicated that during the MA hydrotropic fractionation (MAHF) process, lignin was carboxylated by MA at γ-OH of the side-chain, providing additional antioxidant activity from the carboxy group. It was also found that the radical scavenging rate of AHL has a positive correlation with carboxyl, phenolic hydroxyl contents, and the S-G (syringyl-guaiacyl) ratio, which could be realized by increasing the MAHF severity. Overall, this work underlies the enhancement origin of the antioxidant property of lignin, which will facilitate its application in biological fields as an efficient, cheap, and renewable antioxidant additive.


Subject(s)
Antioxidants , Biomass , Chemical Fractionation , Lignin , Maleates , Triticum , Lignin/chemistry , Lignin/isolation & purification , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Triticum/chemistry , Chemical Fractionation/methods , Maleates/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Free Radical Scavengers/isolation & purification , Panicum/chemistry
7.
J Environ Manage ; 369: 122384, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39241590

ABSTRACT

Due to the substantial emissions of global CO2, there has been growing interest in nitrogen-enriched porous carbonaceous materials that possess exceptional CO2 capture capabilities. In this study, a novel N-enriched microporous carbon was synthesized by integrating waste polyamides with lignocellulosic biomass, involving carbonization and physicochemical activation. As-synthesized adsorbents demonstrated significant characteristics including a high specific surface area (1710 m2/g) and a large micropore volume (0.497 cm3/g), as well as abundant N- and O-containing functional groups, achieved through activation at 700 °C. They displayed remarkable CO2 capture capability, achieving uptake levels of up to 6.71 mmol/g at 1 bar and 0 °C, primarily due to the filling effect of narrow micropore along with electrostatic interaction. Furthermore, the adsorbent exhibited a rapid capacity for CO2 capture, achieving 94.9% of its saturation capacity within a mere 5 min at 30 °C. This impressive performance was accurately described by the pseudo second-order dynamic model. Additionally, as-synthesized adsorbents displayed a moderate isosteric heat of CO2 adsorption, as well as superior selectivity over N2. Even after undergoing five consecutive cycles, it maintained ∼100% of its initial capacity. Undoubtedly, such findings hold immense significance in the mitigation of global plastic pollution and greenhouse effect.


Subject(s)
Biomass , Carbon Dioxide , Carbon , Lignin , Nitrogen , Nylons , Nitrogen/chemistry , Carbon Dioxide/chemistry , Lignin/chemistry , Nylons/chemistry , Carbon/chemistry , Adsorption , Porosity
8.
Molecules ; 29(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274909

ABSTRACT

The influence of adding surfactants on the performance of high-solid anaerobic digestion of horticultural waste was extensively investigated in batch systems. Adding Tween series and polyethylene glycol series non-ionic surfactants had positive effects on biogas production, resulting in 370.1 mL/g VS and 256.6 mL/g VS with Tween 60 and polyethylene glycol 300 at a surfactant-to-grass mass ratio of 0.20, while the biogas production of anaerobic digestion without surfactants was 107.54 mL/g VS. The optimal and economically feasible choice was adding Tween 20 at a ratio of 0.08 g/g grass in high-solid anaerobic digestion. A kinetics model reliably represented the relationship between surfactant concentration and biogas production. The mechanism of surfactants working on lignocellulose was investigated. The improvement in high-solid anaerobic digestion by adding surfactants was attributed to the interaction between lignocelluloses and surfactants and the extraction of biodegradable fractions from the porous structure. An economic analysis showed that adding Tween 20 was likely to make a profit and be more feasible than adding Tween 60 and polyethylene glycol 300. This study confirms the enhancement in biogas production from horticultural waste by adding non-ionic surfactants.


Subject(s)
Biofuels , Lignin , Surface-Active Agents , Surface-Active Agents/chemistry , Anaerobiosis , Lignin/chemistry , Polysorbates/chemistry , Polyethylene Glycols/chemistry , Biodegradation, Environmental , Bioreactors , Kinetics
9.
Carbohydr Polym ; 346: 122642, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245505

ABSTRACT

Oral conditions, such as recurrent aphthous stomatitis, are chronic inflammatory disorders that significantly affect the life quality. This study aims to develop a novel buccal mucoadhesive based on methacrylate hydroxypropyl methylcellulose (M-HPMC) and methacrylate lignin (M-SLS) encapsulated with nanostructured lipid carriers (NLCs) for controlled release of alpha-pinene (α-pinene). NLCs with particle sizes of 152 ± 3 nm were prepared by using stearic acid and oleic acid as solid and liquid lipids, respectively. Following the successful synthesis of M-HPMC and M-SLS, various concentrations of α-pinene loaded NLCs (0, 18, 38, and 50 wt%) were encapsulated in M-HPMC/M-SLS hydrogel. It was demonstrated that the physiological and mechanical performances of hydrogels were changed, depending on the NLC content. Remarkably, the incorporation of 18 wt% NLC improved the compressive strength (143 ± 14 kPa) and toughness (17 ± 1 kJ/m3) of M-HPMC/M-SLS hydrogel. This nanocomposite hydrogel considerably decreased dissipated energy from 1.64 kJ/m3 to 0.99 kJ/m3, after a five-cycle compression test. The nanocomposite hydrogel exhibited controlled α-pinene release for up to 96 h which could significantly improve the antioxidant activity of M-HPMC/M-SLS matrix. Moreover, the reinforcing M-HPMC/M-SLS hydrogel with α-pinene-loaded NLCs resulted in increased adhesive strength (113.5 ± 7.5 kPa) to bovine buccal mucosa and cytocompatibility in contact with fibroblasts.


Subject(s)
Bicyclic Monoterpenes , Hydrogels , Hypromellose Derivatives , Lignin , Nanocomposites , Lignin/chemistry , Bicyclic Monoterpenes/chemistry , Bicyclic Monoterpenes/pharmacology , Hydrogels/chemistry , Hydrogels/chemical synthesis , Hydrogels/pharmacology , Nanocomposites/chemistry , Animals , Hypromellose Derivatives/chemistry , Mice , Methacrylates/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/administration & dosage , Fibroblasts/drug effects
10.
Carbohydr Polym ; 346: 122663, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245517

ABSTRACT

Concerns about food safety and environmental impact from chemical surfactants have prompted interest in natural lignocellulosic materials as alternatives. In this study, we combined hydrated deep eutectic solvent (DES) pretreatment with ultrasound treatment to prepare lignocellulosic nanofibrils (LCNF) from bamboo shoot shells with appropriate surface properties for stabilizing Pickering emulsions. The pretreatment intensity effectively modulated the surface characteristics of LCNF, achieving desirable wettability through lignin retention and in-situ esterification. The resulting LCNF/curcumin Pickering emulsion (CPE) demonstrated curcumin protection and pH-responsive color changes, while the ensuing CPE/PVA composite film exhibited ultraviolet shielding, mechanical strength, oxygen barrier, and antioxidant properties. Furthermore, the CPE/PVA film showed promise as a real-time indicator for monitoring shrimp freshness, maintaining sensitivity to spoilage even after six months of storage. These findings advance the advancement of green LCNF technologies, providing eco-friendly solutions for valorizing bamboo shoot shells and enhancing the application of LCNF in Pickering emulsions.


Subject(s)
Curcumin , Emulsions , Lignin , Nanofibers , Curcumin/chemistry , Lignin/chemistry , Emulsions/chemistry , Animals , Nanofibers/chemistry , Antioxidants/chemistry , Deep Eutectic Solvents/chemistry , Plant Shoots/chemistry , Sasa/chemistry , Wettability , Hydrogen-Ion Concentration
11.
Carbohydr Polym ; 346: 122628, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245529

ABSTRACT

The traditional lignocellulose pretreatment by deep eutectic solvent (DES) was usually conducted under higher acidic, alkaline and high temperature conditions, which leads to the severe degradation of xylan, decreasing the subsequent reducing sugar concentration by enzymatic hydrolysis and further ethanol fermentation. It is essential to develop an effective DES that selectively removes lignin while preventing excessive xylan degradation during lignocellulose pretreatment. An effective ethylene glycol-assisted ternary DES was designed to treat corn straw (CS) at 100 °C for 6 h. 65.51 % lignin removal was achieved, over 93.46 % cellulose and 50.22 % xylan were retained in pretreated CS with excellent enzymatic digestibility (glucan conversion of 77.05 % and xylan conversion of 71.72 %), total sugar conversion could reach 75.93 %, implying the unique capacity to selectively remove lignin while preserving carbohydrate components. Furthermore, the universality of the selective removal of lignin and effective retention of xylan by ternary DES has been successfully proven by other polyols. The enzymatic hydrolysate of ternary DES-pretreated CS fermented over our genetically engineered yeast strain SFA1OE gave a high ethanol yield of 0.488 g/g total reducing sugar, demonstrating the effectiveness of the polyol-assisted ternary DES pretreatment in achieving high-efficiency cellulosic ethanol production.


Subject(s)
Deep Eutectic Solvents , Ethanol , Fermentation , Lignin , Xylans , Zea mays , Lignin/chemistry , Ethanol/chemistry , Ethanol/metabolism , Xylans/chemistry , Hydrolysis , Zea mays/chemistry , Deep Eutectic Solvents/chemistry , Polymers/chemistry , Saccharomyces cerevisiae/metabolism , Cellulose/chemistry , Solvents/chemistry
12.
Waste Manag ; 188: 11-38, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39094219

ABSTRACT

Lignocellulosic biomass has a promising role in a circular bioeconomy and may be used to produce valuable molecules for green chemistry. Lignocellulosic biomass, such as food waste, agricultural waste, wood, paper or cardboard, corresponded to 15.7% of all waste produced in Europe in 2020, and has a high potential as a secondary raw material for industrial processes. This review first presents industrial lignocellulosic waste sources, in terms of their composition, quantities and types of lignocellulosic residues. Secondly, the possible high added-value chemicals obtained from transformation of lignocellulosic waste are detailed, as well as their potential for applications in the food industry, biomedical, energy or chemistry sectors, including as sources of polyphenols, enzymes, bioplastic precursors or biofuels. In a third part, various available transformation treatments, such as physical treatments with ultrasound or heat, chemical treatments with acids or bases, and biological treatments with enzymes or microorganisms, are presented. The last part discusses the perspectives of the use of lignocellulosic waste and the fact that decreasing the cost of transformation is one of the major issues for improving the use of lignocellulosic biomass in a circular economy and green chemistry approach, since it is currently often more expensive than petroleum-based counterparts.


Subject(s)
Biomass , Industrial Waste , Lignin , Lignin/chemistry , Industrial Waste/analysis , Waste Management/methods , Biofuels/analysis , Refuse Disposal/methods
13.
Int J Biol Macromol ; 277(Pt 4): 134464, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098701

ABSTRACT

In this study, lignin nanoparticles (LN) and octadecylamine-modified LN (LN-ODA) were utilized as coating materials to enhance the hydrophobic, antioxidant, and ultraviolet radiation-shielding (UV-shielding) properties of a TEMPO-oxidized nanocellulose film (TOCNF). The water contact angle (WCA) of the TOCNF was approximately 53° and remained stable for 1 min, while the modified LN-ODA-coated TOCNF reached over 130° and maintained approximately 85° for an hour. Pure TOCNF exhibited low antioxidant properties (4.7 %), which were significantly enhanced in TOCNF-LN (81.6 %) and modified LN-ODA (10.3 % to 27.5 %). Modified LN-ODA-coated TOCNF exhibited antioxidant properties two to six times higher than those of pure TOCNF. Modified LN-ODA exhibited thermal degradation max (Tmax) at 421 °C, while pure LN showed the main degradation temperature at approximately Tmax 330 °C. The thermal stability of TOCNF-LN-ODA-coated materials remained consistent with that of pure TOCNF, while the crystallinity index of the sample showed a slight decrease due to the amorphous nature of the lignin structure. The tensile strength of TOCNF was approximately 114.1 MPa and decreased to 80.1, 51.3, and 30.3 MPa for LN-ODA coating at 5, 10, and 15 g/m2, respectively.


Subject(s)
Antioxidants , Cyclic N-Oxides , Hydrophobic and Hydrophilic Interactions , Lignin , Nanofibers , Nanoparticles , Ultraviolet Rays , Lignin/chemistry , Antioxidants/chemistry , Cyclic N-Oxides/chemistry , Nanoparticles/chemistry , Nanofibers/chemistry , Oxidation-Reduction , Cellulose, Oxidized/chemistry , Cellulose/chemistry
14.
Int J Biol Macromol ; 277(Pt 4): 134536, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111481

ABSTRACT

In recent years, nanocellulose (NC) has gained significant attention due to its remarkable properties, such as adjustable surface chemistry, extraordinary biological properties, low toxicity and low density. This review summarizes the preparation of NC derived from lignocellulosic biomass (LCB), including cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and lignin-containing cellulose nanofibrils (LCNF). It focuses on examining the impact of non-cellulosic components such as lignin and hemicellulose on the functionality of NC. Additionally, various surface modification strategies of NC were discussed, including esterification, etherification and silylation. The review also emphasizes the progress of NC application in areas such as Pickering emulsions, food packaging materials, food additives, and hydrogels. Finally, the prospects for producing NC from LCB and its application in food-related fields are examined. This work aims to demonstrate the effective benefits of preparing NC from lignocellulosic biomass and its potential application in the food industry.


Subject(s)
Biomass , Cellulose , Lignin , Lignin/chemistry , Cellulose/chemistry , Nanoparticles/chemistry , Food Packaging/methods , Food Additives/chemistry , Nanofibers/chemistry
15.
Food Chem ; 460(Pt 3): 140713, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39116775

ABSTRACT

Chitosan, as a kind of naturally occurring green and degradable material for the preservation of perishable foods, was investigated in this study with the objective of enhancing its preservation performances. Herein, lignin was modified using the solvent fractionation method (modified lignin, ML, including ML1-ML3), while natural clinoptilolite zeolite was modified using the alkali modification method (modified clinoptilolite zeolite, MCZ, including MCZ1-MCZ5). After optimizing the conditions, it was discovered that incorporating both ML3 and MCZ3 into pure chitosan-based membranes might be conducive to fabricate chitosan-based composite membranes for the preservation of perishable foods. As-prepared composite membranes possessed better visible light transmittance, antioxidant activity, and carbon dioxide/oxygen selectivity, resulting in improved preservation effects on the model perishable foods such as bananas, cherry tomatoes, and cheeses. These findings might indicate promising applications for chitosan-based composite membranes with modified lignin and zeolite in the field of eco-friendly degradable materials for the preservation of perishable foods.


Subject(s)
Chitosan , Food Preservation , Lignin , Zeolites , Chitosan/chemistry , Zeolites/chemistry , Lignin/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Green Chemistry Technology , Cheese/analysis , Antioxidants/chemistry , Solanum lycopersicum/chemistry , Food Packaging/instrumentation
16.
Int J Biol Macromol ; 277(Pt 4): 134619, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127272

ABSTRACT

The separation and utilization of cellulose, hemicellulose, and lignin in lignocellulosic biorefineries present significant challenges. This study proposes a pretreatment method for biomass refining by combining acid and kraft pulping. Firstly, the biomass was pretreated by malic acid, resulting in the isolation of xylo-oligosaccharides (XOS) with a yield of 86.26 % with optimized conditions of 180 °C, 1 wt% concentration, 40 min. Secondly, a mixture of 12.98 wt% NaOH and 1.043 wt% Na2S is employed to achieve lignin removal efficiency up to 63.42 %. Physical refinement techniques are then applied to enhance the enzyme digestion efficiency of cellulose, resulting in an increase from 55.03 % to 91.4 % for efficient cellulose conversion. The reacted samples exhibit a lignin composition rich in ß-O-4 ether bonds, facilitating their high-value utilization. The results indicated that the combined pretreatment approach demonstrates high efficiency in separating cellulose, hemicellulose, and lignin while obtaining XOS, highly active lignin, and enzyme-digested substrates.


Subject(s)
Fermentation , Lignin , Malates , Lignin/chemistry , Malates/chemistry , Biomass , Cellulose/chemistry , Sugars/metabolism , Hydrolysis , Oligosaccharides/chemistry , Polysaccharides
17.
Food Chem ; 460(Pt 3): 140626, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39128363

ABSTRACT

Glucose-derived acids for the further production of value-added medicine, food additives, and polymers, will promote lignocellulosic biomass biorefinery industry. In response to the diversity and complexity, a new method was established by employing high performance anion exchange chromatography (HPAEC) coupled with a CarboPac™ PA200 column, for the precise and fast determination of glucose, gluconic acid, glucuronic acid, 2-ketogluconic acid, 5-ketogluconic acid and glucaric acid. Based on the analysis of tiny varieties in retention behavior, a gradient elution mode was designed and optimized for the quantitative and qualitative analysis. The protocol displayed acceptable linearity (R2 ≥ 0.995), commendable average recovery rate (95.28% âˆ¼ 99.89%), satisfactory precision (RSD% ≤ 1.5%), and sufficient resolution (R > 6). Additionally, this method was successfully applied to the high-value biorefining process, which confirmed the practicability and accuracy. The results demonstrated that HPAEC has good detection performance for glucose and its derivative acids, and provide key identification technical support for the high-value utilization of lignocellulose.


Subject(s)
Biomass , Glucose , Chromatography, Ion Exchange/methods , Glucose/analysis , Glucose/chemistry , Chromatography, High Pressure Liquid/methods , Lignin/chemistry , Acids/analysis , Acids/chemistry
18.
Bioresour Technol ; 412: 131365, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39209230

ABSTRACT

Camellia oleifera shell (COS) is a renewable biomass resource abundant in lignin with significant potential for producing phenolic monomers. However, the dearth of research has led to considerable resource wastage and environmental pollution. Herein, reductive catalytic fractionation (RCF) of COS was performed using noble metal catalysts in different solvents. An 11.1 wt% yield of phenolic monomers was achieved with 91% selectivity toward propylene-substituted monomers in H2O/EtOH (3:7, v/v) cosolvent under N2 atmosphere. Notably, the highest phenolic monomer yield of 17.0 wt% was obtained with impressive selectivity (86.9%) toward propanol-substituted monomers in the presence of H2. The GPC analysis and 2D HSQC NMR spectra indicated the effective depolymerization of lignin oligomers with catalysts. Phenolic monomers with ethyl, propyl, or propanol side chain could be produced from lignin-derived oligomers through hydrogenolysis, hydrogenation, and decarboxylation reactions. Overall, this study has paved the way for the valorization of COS lignin through the RCF strategy.


Subject(s)
Camellia , Lignin , Phenols , Polymerization , Solvents , Lignin/chemistry , Catalysis , Solvents/chemistry , Camellia/chemistry , Phenols/chemistry , Atmosphere/chemistry
19.
Int J Biol Macromol ; 278(Pt 2): 134389, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098681

ABSTRACT

In this report, eco-friendly synthesis for the production of copper nanoparticles by employing the sodium lignosulfonate (NaLS) mixed starch composite (NaLS-Starch/Cu NPs). NaLS-Starch mixed hydrogel has notable reducing and stabilizing potential for preparation of Cu nanoparticles. Characterization of NaLS-Starch/Cu NPs bionanocomposite was subjected to analysis of spectroscopic and microscopic techniques, including FE-SEM, TEM, EDS-elemental mapping, particle size distribution, XRD and ICP. TEM images displayed the spherical structured NaLS-Starch/Cu NPs, averaging 5-10 nm size. NaLS-Starch/Cu NPs were applied to cure the induced burn wounds in 60 Wistar rats. A group was considered as control group. The animals were treated with basal, tetracycline 3 % and NaLS-Starch/Cu NPs 3 % for 30 days and the treatment efficacy was determined according to the burn wound area reduction and molecular and histological characteristics. Taken together, these results support therapeutic use of NaLS-Starch/Cu NPs as potent ointment that may be proposed for burn wound healing. NaLS-Starch/Cu NPs ointment increased the levels of platelet-derived growth factors (PDGF) and fibroblast growth factor (bFGF). The mean wound surface, in all groups treated by NaLS-Starch/Cu NPs was larger than control group.


Subject(s)
Burns , Copper , Lignin , Metal Nanoparticles , Nanocomposites , Rats, Wistar , Starch , Wound Healing , Burns/drug therapy , Starch/chemistry , Starch/analogs & derivatives , Animals , Copper/chemistry , Nanocomposites/chemistry , Lignin/chemistry , Lignin/analogs & derivatives , Lignin/pharmacology , Metal Nanoparticles/chemistry , Wound Healing/drug effects , Rats , Male
20.
Int J Biol Macromol ; 278(Pt 1): 134519, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111479

ABSTRACT

Efficiently utilization of plant resources is heavily restricted by the resistance of lignocellulose in plant cells, which is related to the interlinkages of lignocellulose components. Hemicellulose in plant cell wall is bound to cellulose by hydrogen bond and linked with lignin in lignin-carbohydrate complex (LCC). In the xylan chain of hemicellulose, glucuronic acid (GA) is a typical side-group, which provides clues for us to label and locate hemicellulose. The way to label GA on the surface of pulp fibers obtained from pulping process is benefit to explore the deconstruction of lignocellulose. Herein, a new visualization method, fluorescence modified molecularly imprinted polymers (MIP) were applied to recognize and locate GA on the pulp fiber surface. The method combining fluorescence imaging and integrated 3D fiber structure verified the feasibility of the MIP for specific GA recognition. The results showed that xylan (represented by GA) was closely attached to lignin, distributed along the inner wall of pulp fiber cells, and gradually taken off from the inside edge of fiber cells with the deconstruction of lignocellulose. This research provided a basis to develop visualization bioimaging technology to identify biomass components.


Subject(s)
Lignin , Molecularly Imprinted Polymers , Xylans , Xylans/chemistry , Xylans/metabolism , Molecularly Imprinted Polymers/chemistry , Lignin/chemistry , Polysaccharides/chemistry , Polysaccharides/metabolism , Molecular Imprinting/methods
SELECTION OF CITATIONS
SEARCH DETAIL