Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.091
Filter
1.
Biomed Environ Sci ; 37(5): 503-510, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38843923

ABSTRACT

Objective: VATER/VACTERL-like association is associated with adverse pregnancy outcomes. Genetic evidence of this disorder is sporadic. In this study, we aimed to provide genetic insights to improve the diagnosis of VACTERL. Methods: We have described a Chinese family in which four members were affected by renal defects or agenesis, anal atresia, and anovaginal fistula, which is consistent with the diagnosis of a VACTERL-like association. Pedigree and genetic analyses were conducted using genome and exome sequencing. Results: Segregation analysis revealed the presence of a recessive X-linked microdeletion in two living affected individuals, harboring a 196-380 kb microdeletion on Xq27.1, which was identified by familial exome sequencing. Genome sequencing was performed on the affected male, confirming a -196 kb microdeletion in Xq27.1, which included a 28% loss of the CDR-1 gene. Four family members were included in the co-segregation analysis, and only VACTERL-like cases with microdeletions were reported in X27.1. Conclusion: These results suggest that the 196-380 kb microdeletion in Xq27.1 could be a possible cause of the VATER/VACTERL-like association. However, further genetic and functional analyses are required to confirm or rule out genetic background as the definitive cause of the VACTERL association.


Subject(s)
Anal Canal , Chromosomes, Human, X , Pedigree , Adult , Female , Humans , Male , Anal Canal/abnormalities , China , Chromosome Deletion , Chromosomes, Human, X/genetics , East Asian People/genetics , Esophagus/abnormalities , Heart Defects, Congenital , Kidney/abnormalities , Limb Deformities, Congenital/genetics , Spine/abnormalities , Trachea/abnormalities
2.
BMC Pregnancy Childbirth ; 24(1): 420, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858685

ABSTRACT

BACKGROUND: Frontonasal dysplasia (FND) is a rare congenital anomaly resulting from the underdevelopment of the frontonasal process, and it can be syndromic or nonsyndromic. The typical features of FND include a deformed nose and ocular hypertelorism, which are sometimes associated with cleft lip and/or palate. Only approximately 10 cases of prenatally diagnosed nonsyndromic FND have been reported in the past 30 years. CASE PRESENTATION: A 33-year-old woman (G2P1) was referred to our center at 20 gestational weeks for bilateral hydrocephaly. We detected typical features of FND, including severe hypertelorism, median nasal bifidity, a minor cleft lip, and multiple limb anomalies using three-dimensional (3D) ultrasound. A hypoplastic corpus callosum, unilateral microtia, and a ventricular septal defect were also detected. Genetic testing, including karyotype analysis, copy number variation (CNV) analysis, trio-whole exome sequencing (trio-WES), and trio-whole-gene sequencing (trio-WGS), was performed; however, we did not find any de novo gene variants in the fetus as compared to the parents. Postmortem examination confirmed the prenatal diagnosis of FND. CONCLUSION: The present case expands the wide phenotypic spectrum of prenatal FND patients. 3D ultrasound is a useful tool for detecting facial and limb deformities.


Subject(s)
Agenesis of Corpus Callosum , Craniofacial Abnormalities , Face , Hydrocephalus , Imaging, Three-Dimensional , Limb Deformities, Congenital , Ultrasonography, Prenatal , Humans , Female , Adult , Pregnancy , Craniofacial Abnormalities/diagnostic imaging , Agenesis of Corpus Callosum/diagnostic imaging , Agenesis of Corpus Callosum/genetics , Limb Deformities, Congenital/diagnostic imaging , Limb Deformities, Congenital/genetics , Face/abnormalities , Face/diagnostic imaging , Hydrocephalus/diagnostic imaging , Heart Septal Defects, Ventricular/diagnostic imaging , Heart Septal Defects, Ventricular/genetics , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/genetics
3.
Mol Genet Genomic Med ; 12(6): e2477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860479

ABSTRACT

BACKGROUND: The protein kinase domain containing cytoplasmic (PKDCC) gene (OMIM#618821) is associated with bone development. Biallelic variants in the PKDCC gene can cause rhizomelic limb shortening with dysmorphic features. CASE REPORT: A fetus was found to be rhizomelic limb shortening at 16 weeks of gestation and amniocentesis was performed at 19 weeks of gestation. Genomic DNA extracted from the amniotic fluid was subjected to chromosomal microarray analysis (CMA), and Trio-total whole-exome sequencing (Trio-WES). Sanger sequencing was used to verify the candidate pathogenic variants. CMA was normal, while Trio-WES identified two compound heterozygous variants in the PKDCC gene, namely c.417_c.423delCGGCGCG insTCATGGGCTCAGTACAC(p.G140fs*35) and c.345G>A (p.W115*,379). Then the fetus was aborted and the development of its bone cells were compared with that of a normal fetus of similar gestational age by histopathological examination. Clinical findings of the fetus were shortening humerus and femur, synophrys, much hair on the side face, simian line on the right palm, etc. Histopathological examination showed that the affected fetus had increased proliferative chondrocytes, widened proliferative bands, and delayed bone mineralization. CONCLUSIONS: We reported a prenatal case of rhizomelic shortening of limbs caused by compound heterozygous variants in the PKDCC gene, which emphasized the important role of Trio-WES for diagnosis of skeletal dysplasia in fetuses.


Subject(s)
Heterozygote , Humans , Female , Adult , Pregnancy , Mutation , Prenatal Diagnosis , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/diagnosis , Limb Deformities, Congenital/pathology
4.
J Craniofac Surg ; 35(4): e399-e401, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38722317

ABSTRACT

VACTERL association is diagnosed based on the non-random co-occurrence of at least 3 out of 6 congenital malformations. The prevalence is thought to be less than 1 in 10,000 to 1 in 40,000. There is no known link between VACTERL association and metopic synostosis in the literature. There were 122 operated cases of metopic synostosis at our institution from 1999 to 2023, with a 2.3:1 male-to-female ratio. The authors describe the co-occurrence of VACTERL association and metopic synostosis in 3 female patients with no identifiable genetic variants. Given that VACTERL association is a diagnosis of exclusion, other rare syndromes were considered but ultimately excluded. This suggests that the co-occurrence of VACTERL association and metopic synostosis is a potentially rare finding, and underlying pathogenic variants are yet to be identified.


Subject(s)
Anal Canal , Craniosynostoses , Esophagus , Heart Defects, Congenital , Limb Deformities, Congenital , Trachea , Humans , Female , Craniosynostoses/genetics , Craniosynostoses/surgery , Craniosynostoses/complications , Limb Deformities, Congenital/genetics , Trachea/abnormalities , Trachea/surgery , Heart Defects, Congenital/surgery , Anal Canal/abnormalities , Anal Canal/surgery , Infant , Esophagus/abnormalities , Esophagus/surgery , Spine/abnormalities , Male , Kidney/abnormalities
5.
Eur J Hum Genet ; 32(7): 795-803, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778082

ABSTRACT

Pathogenic variants in NOTCH1 are associated with non-syndromic congenital heart disease (CHD) and Adams-Oliver syndrome (AOS). The clinical presentation of individuals with damaging NOTCH1 variants is characterized by variable expressivity and incomplete penetrance; however, data on systematic phenotypic characterization are limited. We report the genotype and phenotype of a cohort of 33 individuals (20 females, 13 males; median age 23.4 years, range 2.5-68.3 years) from 11 families with causative NOTCH1 variants (9 inherited, 2 de novo; 9 novel), ascertained from a proband with CHD. We describe the cardiac and extracardiac anomalies identified in these 33 individuals, only four of whom met criteria for AOS. The most common CHD identified was tetralogy of Fallot, though various left- and right-sided lesions and septal defects were also present. Extracardiac anomalies identified include cutis aplasia (5/33), cutaneous vascular anomalies (7/33), vascular anomalies of the central nervous system (2/10), Poland anomaly (1/33), pulmonary hypertension (2/33), and structural brain anomalies (3/14). Identification of these findings in a cardiac proband cohort supports NOTCH1-associated CHD and NOTCH1-associated AOS lying on a phenotypic continuum. Our findings also support (1) Broad indications for NOTCH1 molecular testing (any familial CHD, simplex tetralogy of Fallot or hypoplastic left heart); (2) Cascade testing in all at-risk relatives; and (3) A thorough physical exam, in addition to cardiac, brain (structural and vascular), abdominal, and ophthalmologic imaging, in all gene-positive individuals. This information is important for guiding the medical management of these individuals, particularly given the high prevalence of NOTCH1 variants in the CHD population.


Subject(s)
Heart Defects, Congenital , Pedigree , Phenotype , Receptor, Notch1 , Humans , Receptor, Notch1/genetics , Male , Female , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Adult , Adolescent , Child, Preschool , Child , Middle Aged , Aged , Mutation , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/pathology , Ectodermal Dysplasia/diagnosis , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/pathology , Limb Deformities, Congenital/diagnosis , Scalp Dermatoses/congenital
6.
Genes (Basel) ; 15(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38790165

ABSTRACT

Adams-Oliver syndrome is a rare inherited condition characterized by scalp defects and limb abnormalities. It is caused by variants in different genes such as ARHGAP31. Here, we used an interdisciplinary approach to study a family with lower limb anomalies. We identified a novel variant in the ARHGAP31 gene that is predicted to result in a truncated protein with a constitutively activated catalytic site due to the loss of 688 amino acids involved in the C-terminal domain, essential for protein auto-inhibition. Pathogenic variants in ARHGAP31 exon 12, leading to a premature protein termination, are associated with Adams-Oliver syndrome. Bioinformatic analysis was useful to elucidate the impact of the identified genetic variant on protein structure. To better understand the impact of the identified variant, 3D protein models were predicted for the ARHGAP31 wild type, the newly discovered variant, and other pathogenetic alterations already reported. Our study identified a novel variant probably involved in Adams-Oliver syndrome and increased the evidence on the phenotypic variability in patients affected by this syndrome, underlining the importance of translational research, including experimental and bioinformatics analyses. This strategy represents a successful model to investigate molecular mechanisms involved in syndrome occurrence.


Subject(s)
Ectodermal Dysplasia , GTPase-Activating Proteins , Limb Deformities, Congenital , Phosphoproteins , Scalp Dermatoses , Female , Humans , Male , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/pathology , GTPase-Activating Proteins/genetics , Limb Deformities, Congenital/genetics , Mutation , Pedigree , Phenotype , Scalp Dermatoses/genetics , Scalp Dermatoses/congenital , Scalp Dermatoses/pathology
7.
Prenat Diagn ; 44(5): 653-656, 2024 May.
Article in English | MEDLINE | ID: mdl-38504427

ABSTRACT

Autosomal recessive ROR2-Robinow syndrome is caused by pathogenic variants in the ROR2 gene. Fetal ultrasound done on our patient at 24 + 3/7 weeks gestation showed macrocephaly, brachycephaly, flat face, prominent forehead, mild frontal bossing, lower thoracic hemivertebrae, digital abnormalities and micropenis. Fetal trio whole exome sequencing done on amniocytes showed two pathogenic compound heterozygous variants in the ROR2 gene, c.1324 C > T; p.(Arg442*) maternally inherited and c.1366dup; p.(Leu456Profs*3) apparently de novo. c.1324 C > T; p.(Arg442*) is a nonsense variant resulting in protein truncation reported to be associated with RRS3. c.1366dup; p.(Leu456Profs*3) is a frameshift variant predicted to result in protein truncation reported to segregate with the disease in multiple affected individuals from a single large family with distal symphalangism of the fourth finger. Fetal autopsy following pregnancy termination showed a large head with low-set ears, facial abnormalities, mesomelic bone shortening, hemivertebra, fused S3 and S4 vertebral bodies, several fused rib heads and short penis with buried shaft.


Subject(s)
Dwarfism , Limb Deformities, Congenital , Receptor Tyrosine Kinase-like Orphan Receptors , Ultrasonography, Prenatal , Urogenital Abnormalities , Humans , Female , Pregnancy , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/diagnostic imaging , Adult , Spine/abnormalities , Spine/diagnostic imaging , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/diagnostic imaging , Fingers/abnormalities , Fingers/diagnostic imaging , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnostic imaging , Male , Exome Sequencing
8.
Hum Genet ; 143(3): 279-291, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38451290

ABSTRACT

Biallelic pathogenic variants in MAP3K20, which encodes a mitogen-activated protein kinase, are a rare cause of split-hand foot malformation (SHFM), hearing loss, and nail abnormalities or congenital myopathy. However, heterozygous variants in this gene have not been definitively associated with a phenotype. Here, we describe the phenotypic spectrum associated with heterozygous de novo variants in the linker region between the kinase domain and leucine zipper domain of MAP3K20. We report five individuals with diverse clinical features, including craniosynostosis, limb anomalies, sensorineural hearing loss, and ectodermal dysplasia-like phenotypes who have heterozygous de novo variants in this specific region of the gene. These individuals exhibit both shared and unique clinical manifestations, highlighting the complexity and variability of the disorder. We propose that the involvement of MAP3K20 in endothelial-mesenchymal transition provides a plausible etiology of these features. Together, these findings characterize a disorder that both expands the phenotypic spectrum associated with MAP3K20 and highlights the need for further studies on its role in early human development.


Subject(s)
Craniosynostoses , Ectodermal Dysplasia , Hearing Loss, Sensorineural , Heterozygote , Humans , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/pathology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Male , Female , Craniosynostoses/genetics , Phenotype , Child, Preschool , Limb Deformities, Congenital/genetics , Child , Mutation , Infant , MAP Kinase Kinase Kinases/genetics
9.
Am J Med Genet A ; 194(6): e63561, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38352994

ABSTRACT

CHARGE syndrome is a rare autosomal dominant syndrome characterized by multiple congenital anomalies including coloboma, heart defects, ear anomalies, and developmental delay, caused by pathogenic variants in the CHD7 gene. The discovery of the molecular basis of this syndrome increased the number of cases reported and expanded the phenotype and clinical variability. Limb anomalies are occasional clinical findings in this syndrome, present in about 30% of reported cases. The occurrence of limb anomalies in this syndrome suggests that it should be considered as part of the phenotypic spectrum. Here, we describe an individual with CHARGE syndrome presenting unilateral monodactyly.


Subject(s)
CHARGE Syndrome , DNA Helicases , Phenotype , Humans , CHARGE Syndrome/genetics , CHARGE Syndrome/diagnosis , CHARGE Syndrome/pathology , CHARGE Syndrome/complications , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Male , Female , Mutation , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/pathology , Limb Deformities, Congenital/diagnosis
10.
Pediatr Nephrol ; 39(8): 2347-2349, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38329589

ABSTRACT

Congenital anomalies of the kidney and urinary tract (CAKUT) can be a part of the VACTERL association, which represents the non-random combination of the following congenital anomalies: vertebral anomalies, anal anomalies, cardiac anomalies, tracheal-esophageal anomalies, kidney anomalies, and limb anomalies. VACTERL association is generally considered to be a non-genetic condition. Exceptions include a patient with a heterozygous nonsense SALL4 variant and anal stenosis, tetralogy of Fallot, sacro-vertebral fusion, and radial and thumb anomalies. SALL4 encodes a transcription factor that plays a critical role in kidney morphogenesis. Here, we report a patient with VACTERL association and a heterozygous 128-kb deletion spanning SALL4 who presented with renal hypoplasia, radial and atrio-septal defects, and patent ductus arteriosus. The present report of SALL4 deletion, in addition to a previously reported patient with VACTERL association phenotype and SALL4 nonsense mutation, further supports the notion that SALL4 haploinsufficiency can lead to VACTERL association.


Subject(s)
Anal Canal , Esophagus , Heart Defects, Congenital , Kidney , Limb Deformities, Congenital , Spine , Trachea , Transcription Factors , Humans , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/diagnosis , Heart Defects, Congenital/genetics , Heart Defects, Congenital/diagnosis , Trachea/abnormalities , Transcription Factors/genetics , Kidney/abnormalities , Esophagus/abnormalities , Anal Canal/abnormalities , Spine/abnormalities , Male , Infant, Newborn , Abnormalities, Multiple/genetics , Female , Haploinsufficiency/genetics
11.
Am J Med Genet A ; 194(5): e63520, 2024 May.
Article in English | MEDLINE | ID: mdl-38168117

ABSTRACT

Split-hand/foot malformation (SHFM) is a genetically heterogeneous congenital limb reduction defect characterized by the deficiencies of central rays of the autopod. Tandem duplications at 10q24 locus account for approximately 20% of all SHFM cases. Here, we report five affected individuals from four unrelated Indian families with SHFM3 caused by microduplication of 10q24 locus showing varied clinical presentations. This report substantiates and extends the current understanding of this rare, multifaceted, and complex condition.


Subject(s)
Foot Deformities, Congenital , Hand Deformities, Congenital , Limb Deformities, Congenital , Humans , Hand Deformities, Congenital/diagnosis , Hand Deformities, Congenital/genetics , Foot Deformities, Congenital/diagnosis , Foot Deformities, Congenital/genetics , India/epidemiology , Limb Deformities, Congenital/diagnosis , Limb Deformities, Congenital/genetics , Pedigree
13.
Pediatr Res ; 95(5): 1246-1253, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135728

ABSTRACT

The mechanism underlying anorectal malformations (ARMs)-related VACTERL (vertebral defects, anal atresia, cardiac defects, tracheo-esophageal fistula, and renal and limb abnormalities) remains unclear. Copy number variation (CNV) contributed to VACTERL pathogenicity. Here, we report a novel CNV in 8p23 and 12q23.1 identified in a case of ARMs-related VACTERL association. This 12-year-old girl presented a cloaca (urethra, vagina, and rectum opening together and sharing a single tube length), an isolated kidney, and a perpetuation of the left superior vena cava at birth. Her intelligence, growth, and development were slightly lower than those of normal children of the same age. Array comparative genomic hybridization revealed a 9.6-Mb deletion in 8p23.1-23.3 and a 0.52-Mb duplication in 12q23.1 in her genome. Furthermore, we reviewed the cases involving CNVs in patients with VACTERL, 8p23 deletion, and 12q23.1 duplication, and our case was the first displaying ARMs-related VACTERL association with CNV in 8p23 and 12q23.1. These findings enriched our understanding between VACTERL association and the mutations of 8p23 deletion and 12q23.1 duplication. IMPACT: This is a novel case of a Chinese girl with anorectal malformations (ARMs)-related VACTERL with an 8p23.1-23.3 deletion and 12q23.1 duplication. Cloaca malformation is presented with novel copy number variation in 8p23.1-23.3 deletion and 12q23.1 duplication.


Subject(s)
Anal Canal/abnormalities , Chromosomes, Human, Pair 12 , Chromosomes, Human, Pair 8 , DNA Copy Number Variations , Esophagus/abnormalities , Genetic Association Studies , Heart Defects, Congenital , Kidney/abnormalities , Limb Deformities, Congenital , Spine/abnormalities , Trachea/abnormalities , Humans , Female , Limb Deformities, Congenital/genetics , Child , Heart Defects, Congenital/genetics , Chromosomes, Human, Pair 8/genetics , Chromosomes, Human, Pair 12/genetics , Mutation , Comparative Genomic Hybridization , Cloaca/abnormalities , Phenotype , Abnormalities, Multiple/genetics
14.
Genes (Basel) ; 14(8)2023 07 26.
Article in English | MEDLINE | ID: mdl-37628577

ABSTRACT

Split Hand-Foot Malformation (SHFM) is a congenital limb defect characterized by a median cleft of the hands and/or feet due to the absence/hypoplasia of the central rays. It may occur as part of a syndromic condition or as an isolated malformation. The most common of the six genetic loci identified for this condition is correlated to SHFM1 and maps in the 7q21q22 region. SHFM1 is characterized by autosomal dominant transmission, incomplete penetrance and variable expressivity. Associated features often include hearing loss, intellectual disability/developmental delay and craniofacial abnormalities. Disruption of the DLX5/DLX6 genes, mapping within the SHFM1 locus, is now known to be responsible for the phenotype. Through SNP array, we analyzed a patient affected by SHFM1 associated with deafness and an abnormality of the inner ear (incomplete partition type I); we identified a deletion in 7q21, not involving the DLX5/6 genes, but including exons 15 and 17 of DYNC1I1, known to act as exonic enhancers (eExons) of the DLX5/6 genes. We further demonstrated the role of DYNC1I1 eExons in regulating DLX5/6 expression by means of showing a reduced expression of the DLX5/6 genes through RT-PCR in a patient-derived lymphoblastoid cell line. Furthermore, our data and a review of published cases do not support the hypothesis that DLX5/6 are imprinted in humans. This work is an example of how the disruption of regulatory elements can be responsible for congenital malformations.


Subject(s)
Deafness , Limb Deformities, Congenital , Humans , Genes, Homeobox , Lower Extremity , Limb Deformities, Congenital/genetics , Deafness/genetics , Transcription Factors/genetics , Homeodomain Proteins/genetics
15.
HGG Adv ; 4(3): 100200, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37216008

ABSTRACT

Split-hand/foot malformation (SHFM) is a congenital limb defect most typically presenting with median clefts in hands and/or feet, that can occur in a syndromic context as well as in isolated form. SHFM is caused by failure to maintain normal apical ectodermal ridge function during limb development. Although several genes and contiguous gene syndromes are implicated in the monogenic etiology of isolated SHFM, the disorder remains genetically unexplained for many families and associated genetic loci. We describe a family with isolated X-linked SHFM, for which the causative variant could be detected after a diagnostic journey of 20 years. We combined well-established approaches including microarray-based copy number variant analysis and fluorescence in situ hybridization coupled with optical genome mapping and whole genome sequencing. This strategy identified a complex structural variant (SV) comprising a 165-kb gain of 15q26.3 material ([GRCh37/hg19] chr15:99795320-99960362dup) inserted in inverted position at the site of a 38-kb deletion on Xq27.1 ([GRCh37/hg19] chrX:139481061-139518989del). In silico analysis suggested that the SV disrupts the regulatory framework on the X chromosome and may lead to SOX3 misexpression. We hypothesize that SOX3 dysregulation in the developing limb disturbed the fine balance between morphogens required for maintaining AER function, resulting in SHFM in this family.


Subject(s)
Limb Deformities, Congenital , Humans , In Situ Hybridization, Fluorescence , Limb Deformities, Congenital/genetics , Genetic Loci , SOXB1 Transcription Factors/genetics
16.
Dis Model Mech ; 16(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-37083955

ABSTRACT

Split hand/foot malformation (SHFM) is a rare limb abnormality with clefting of the fingers and/or toes. For many individuals, the genetic etiology is unknown. Through whole-exome and targeted sequencing, we detected three novel variants in a gene encoding a transcription factor, PRDM1, that arose de novo in families with SHFM or segregated with the phenotype. PRDM1 is required for limb development; however, its role is not well understood and it is unclear how the PRDM1 variants affect protein function. Using transient and stable overexpression rescue experiments in zebrafish, we show that the variants disrupt the proline/serine-rich and DNA-binding zinc finger domains, resulting in a dominant-negative effect. Through gene expression assays, RNA sequencing, and CUT&RUN in isolated pectoral fin cells, we demonstrate that Prdm1a directly binds to and regulates genes required for fin induction, outgrowth and anterior/posterior patterning, such as fgfr1a, dlx5a, dlx6a and smo. Taken together, these results improve our understanding of the role of PRDM1 in the limb gene regulatory network and identified novel PRDM1 variants that link to SHFM in humans.


Subject(s)
Limb Deformities, Congenital , Zebrafish , Animals , DNA , Limb Deformities, Congenital/genetics , Positive Regulatory Domain I-Binding Factor 1 , Transcription Factors/genetics , Zebrafish/genetics , Zinc Fingers
17.
Nat Commun ; 14(1): 1475, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36928426

ABSTRACT

Split-Hand/Foot Malformation type 3 (SHFM3) is a congenital limb malformation associated with tandem duplications at the LBX1/FGF8 locus. Yet, the disease patho-mechanism remains unsolved. Here we investigate the functional consequences of SHFM3-associated rearrangements on chromatin conformation and gene expression in vivo in transgenic mice. We show that the Lbx1/Fgf8 locus consists of two separate, but interacting, regulatory domains. Re-engineering of a SHFM3-associated duplication and a newly reported inversion in mice results in restructuring of the chromatin architecture. This leads to ectopic activation of the Lbx1 and Btrc genes in the apical ectodermal ridge (AER) in an Fgf8-like pattern induced by AER-specific enhancers of Fgf8. We provide evidence that the SHFM3 phenotype is the result of a combinatorial effect on gene misexpression in the developing limb. Our results reveal insights into the molecular mechanism underlying SHFM3 and provide conceptual framework for how genomic rearrangements can cause gene misexpression and disease.


Subject(s)
Fibroblast Growth Factor 8 , Gene Rearrangement , Limb Deformities, Congenital , Animals , Mice , Gene Expression , Homeodomain Proteins/genetics , Limb Deformities, Congenital/genetics , Phenotype , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics
18.
J Bone Miner Res ; 38(5): 692-706, 2023 05.
Article in English | MEDLINE | ID: mdl-36896612

ABSTRACT

Lethal short-limb skeletal dysplasia Al-Gazali type (OMIM %601356), also called dysplastic cortical hyperostosis, Al-Gazali type, is an ultra-rare disorder previously reported in only three unrelated individuals. The genetic etiology for Al-Gazali skeletal dysplasia has up until now been unknown. Through international collaborative efforts involving seven clinical centers worldwide, a cohort of nine patients with clinical and radiographic features consistent with short-limb skeletal dysplasia Al-Gazali type was collected. The affected individuals presented with moderate intrauterine growth restriction, relative macrocephaly, hypertrichosis, large anterior fontanelle, short neck, short and stiff limbs with small hands and feet, severe brachydactyly, and generalized bone sclerosis with mild platyspondyly. Biallelic disease-causing variants in ADAMTSL2 were detected using massively parallel sequencing (MPS) and Sanger sequencing techniques. Six individuals were compound heterozygous and one individual was homozygous for pathogenic variants in ADAMTSL2. In one of the families, pathogenic variants were detected in parental samples only. Overall, this study sheds light on the genetic cause of Al-Gazali skeletal dysplasia and identifies it as a semi-lethal part of the spectrum of ADAMTSL2-related disorders. Furthermore, we highlight the importance of meticulous analysis of the pseudogene region of ADAMTSL2 where disease-causing variants might be located. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Diseases, Developmental , Limb Deformities, Congenital , Osteochondrodysplasias , Humans , Bone Diseases, Developmental/genetics , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/pathology , Osteochondrodysplasias/genetics , Bone and Bones/pathology , Homozygote , ADAMTS Proteins/genetics
19.
BMJ Case Rep ; 16(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36889805

ABSTRACT

We report a case of fetal microcephaly found during the second trimester ultrasound and confirmed by further ultrasound scans and fetal MRI. The array comparative genomic hybridisation analysis of the fetus and the male parent showed a 1.5 Mb deletion overlapping the Feingold syndrome region, an autosomal dominant syndrome that can cause microcephaly, facial/hand abnormalities, mild neurodevelopmental delay and others. This case illustrates the need for a detailed investigation by a multidisciplinary team to provide prenatal counselling regarding a postnatal outcome to the parents and orient their decision towards the continuation or termination of pregnancy.


Subject(s)
Intellectual Disability , Limb Deformities, Congenital , Microcephaly , Pregnancy , Female , Humans , Male , Microcephaly/diagnostic imaging , Microcephaly/genetics , Prenatal Diagnosis , Intellectual Disability/genetics , Limb Deformities, Congenital/genetics , Ultrasonography, Prenatal
20.
Am J Med Genet A ; 191(6): 1593-1598, 2023 06.
Article in English | MEDLINE | ID: mdl-36866832

ABSTRACT

The Notch proteins play key roles in cell fate determination during development. Germline pathogenic variants in NOTCH1 predispose to a spectrum of cardiovascular malformations including Adams-Oliver syndrome and a wide variety of isolated complex and simple congenital heart defects. The intracellular C-terminus of the single-pass transmembrane receptor encoded by NOTCH1 contains a transcriptional activating domain (TAD) required for target gene activation and a PEST domain (a sequence rich in proline, glutamic acid, serine, and threonine), regulating protein stability and turnover. We present a patient with a novel variant encoding a truncated NOTCH1 protein without the TAD and PEST domain (NM_017617.4: c.[6626_6629del];[=], p.(Tyr2209CysfsTer38)) and extensive cardiovascular abnormalities consistent with a NOTCH1-mediated mechanism. This variant fails to promote transcription of target genes as assessed by luciferase reporter assay. Given the roles of the TAD and PEST domains in NOTCH1 function and regulation, we hypothesize that loss of both the TAD and the PEST domain results in a stable, loss-of-function protein that acts as an antimorph through competition with wild-type NOTCH1.


Subject(s)
Ectodermal Dysplasia , Limb Deformities, Congenital , Scalp Dermatoses , Humans , Receptor, Notch1/genetics , Ectodermal Dysplasia/genetics , Scalp Dermatoses/congenital , Limb Deformities, Congenital/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...