Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42.882
Filter
1.
J Environ Sci (China) ; 148: 1-12, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095148

ABSTRACT

In present work, blue carbon dots (b-CDs) were derived from ammonium citrate and guanidine hydrochloride, and red carbon dots (r-CDs) were stemmed from malonate, ethylenediamine and meso­tetra (4-carboxyphenyl) porphin based on facile hydrothermal method. Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+ utilizing b-CDs and r-CDs. The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm. Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal, whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg2+ and r-CDs, serving as the reference signal in the sensing system. Under optimal circumstances, this probe exhibited an excellent linearity between the fluorescence response values of ΔF450/F650 and Hg2+ concentrations over range of 0.01-10 µmol/L, and the limit of detection was down to 5.3 nmol/L. Furthermore, this probe was successfully employed for sensing Hg2+ in practical environmental water samples with satisfied recoveries of 98.5%-105.0%. The constructed ratiometric fluorescent probe provided a rapid, environmental-friendly, reliable, and efficient platform for measuring trace Hg2+ in environmental field.


Subject(s)
Carbon , Fluorescent Dyes , Mercury , Quantum Dots , Water Pollutants, Chemical , Mercury/analysis , Carbon/chemistry , Fluorescent Dyes/chemistry , Water Pollutants, Chemical/analysis , Quantum Dots/chemistry , Environmental Monitoring/methods , Spectrometry, Fluorescence/methods , Limit of Detection , Fluorescence
2.
J Environ Sci (China) ; 148: 139-150, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095153

ABSTRACT

Herein, a modified screen printed carbon electrode (SPCE) based on a composite material, graphene oxide-gold nanoparticles (GO-AuNPs), and poly(3-aminobenzoic acid)(P3ABA) for the detection of paraquat (PQ) is introduced. The modified electrode was fabricated by drop casting of the GO-AuNPs, followed by electropolymerization of 3-aminobenzoic acid to achieve SPCE/GO-AuNPs/P3ABA. The morphology and microstructural characteristics of the modified electrodes were revealed by scanning electron microscopy (SEM) for each step of modification. The composite GO-AuNPs can provide high surface area and enhance electroconductivity of the electrode. In addition, the presence of negatively charged P3ABA notably improved PQ adsorption and electron transfer rate, which stimulate redox reaction on the modified electrode, thus improving the sensitivity of PQ analysis. The SPCE/GO-AuNPs/P3ABA offered a wide linear range of PQ determination (10-9-10-4 mol/L) and low limit of detection (LOD) of 0.45 × 10-9 mol/L or 0.116 µg/L, which is far below international safety regulations. The modified electrode showed minimum interference effect with percent recovery ranging from 96.5% to 116.1% after addition of other herbicides, pesticides, metal ions, and additives. The stability of the SPCE/GO-AuNPs/P3ABA was evaluated, and the results indicated negligible changes in the detection signal over 9 weeks. Moreover, this modified electrode was successfully implemented for PQ analysis in both natural and tapped water with high accuracy.


Subject(s)
Electrochemical Techniques , Electrodes , Gold , Graphite , Metal Nanoparticles , Paraquat , Graphite/chemistry , Paraquat/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Limit of Detection , Carbon/chemistry , Water Pollutants, Chemical/analysis , Herbicides/analysis
3.
J Environ Sci (China) ; 148: 198-209, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095157

ABSTRACT

Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria. However, the residual norfloxacin in the environment can be biomagnified via food chain and may damage the human liver and delay the bone development of minors. Present work described a reliable and sensitive smartphone colorimetric sensing system based on cobalt-doped Fe3O4 magnetic nanoparticles (Co-Fe3O4 MNPs) for the visual detection of norfloxacin. Compared with Fe3O4, Co-Fe3O4 MNPs earned more remarkably peroxidase-like activity and TMB (colorless) was rapidly oxidized to oxTMB (blue) with the presence of H2O2. Interestingly, the addition of low concentration of norfloxacin can accelerate the color reaction process of TMB, and blue deepening of the solution can be observed with the naked eye. However, after adding high concentration of norfloxacin, the activity of nanozyme was inhibited, resulting in the gradual fading of the solution. Based on this principle, a colorimetric sensor integrated with smartphone RGB mode was established. The visual sensor exhibited good linearity for norfloxacin monitoring in the range of 0.13-2.51 µmol/L and 17.5-100 µmol/L. The limit of visual detection was 0.08 µmol/L. In the actual water sample analysis, the spiked recoveries of norfloxacin were over the range of 95.7%-104.7 %. These results demonstrated that the visual sensor was a convenient and fast method for the efficient and accurate detection of norfloxacin in water, which may have broad application prospect.


Subject(s)
Cobalt , Colorimetry , Norfloxacin , Smartphone , Water Pollutants, Chemical , Norfloxacin/analysis , Colorimetry/methods , Cobalt/analysis , Cobalt/chemistry , Water Pollutants, Chemical/analysis , Anti-Bacterial Agents/analysis , Peroxidase , Limit of Detection
4.
Mikrochim Acta ; 191(9): 506, 2024 08 04.
Article in English | MEDLINE | ID: mdl-39097837

ABSTRACT

Using a chemiluminescence reaction between luminol and H2O2 in basic solution, an ultrasensitive electrochemiluminescence (ECL) aptasensor was developed for the determination of tobramycin (TOB), as an aminoglycoside antibiotic. Ti3C2/Ni/Sm-LDH-based nanocomposite effectively catalyzes the oxidation of luminol and decomposition of H2O2, leading to the formation of different reactive oxygen species (ROSs), thus amplifying the ECL signal intensity of luminol, which can be used for the determination of TOB concentration. To evaluate the performance of the electrochemiluminescence aptasensor and synthesized nanocomposite, different methods such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses were performed. The considerable specific area, large number of active sites, and enhanced electron transfer reaction on this nanocomposite led to the development of an ECL aptasensor with high sensitivity and electrocatalytic activity. After optimizing the preparation method and analysis conditions, the aptasensor revealed a wide linear response ranging from 1.0 pM to 1.0 µM with a detection limit of 18 pM, displaying outstanding accuracy, specificity, and response stability. The developed ECL sensor was found to be applicable to the determination of TOB in human serum samples and is anticipated to possess excellent clinical potentials for detecting other antibiotics, as well.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Limit of Detection , Luminescent Measurements , Nanocomposites , Tobramycin , Nanocomposites/chemistry , Humans , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Luminescent Measurements/methods , Biosensing Techniques/methods , Tobramycin/blood , Tobramycin/analysis , Luminol/chemistry , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/analysis , Hydrogen Peroxide/chemistry , Nickel/chemistry , Titanium/chemistry
5.
Mikrochim Acta ; 191(9): 507, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39098931

ABSTRACT

An electrochemical sensor based on an electroactive nanocomposite was designed for the first time consisting of electrochemically reduced graphene oxide (ERGO), polyaniline (PANI), and poly(alizarin red S) (PARS) for ciprofloxacin (CIPF) detection. The ERGO/PANI/PARS-modified screen-printed carbon electrode (SPCE) was constructed through a three-step electrochemical protocol and characterized using FTIR, UV-visible spectroscopy, FESEM, CV, LSV, and EIS. The new electrochemical CIPF sensor demonstrated a low detection limit of 0.0021 µM, a broad linear range of 0.01 to 69.8 µM, a high sensitivity of 5.09 µA/µM/cm2, and reasonable selectivity and reproducibility. Moreover, the ERGO/PANI/PARS/SPCE was successfully utilized to determine CIPF in milk with good recoveries and relative standard deviation (< 5%), which were close to those with HPLC analysis.


Subject(s)
Aniline Compounds , Anthraquinones , Carbon , Ciprofloxacin , Electrochemical Techniques , Electrodes , Graphite , Limit of Detection , Milk , Graphite/chemistry , Milk/chemistry , Aniline Compounds/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Animals , Ciprofloxacin/analysis , Carbon/chemistry , Anthraquinones/chemistry , Reproducibility of Results , Food Contamination/analysis , Anti-Bacterial Agents/analysis
6.
Mikrochim Acta ; 191(9): 508, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39102114

ABSTRACT

A solid-state electrochemiluminescence (ECL) sensor was fabricated by immobilizing luminol, a classical luminescent reagent, on a Zn-Co-ZIF carbon fiber-modified electrode for the rapid and sensitive detection of procymidone (PCM) in vegetable samples. The sensor was created by sequentially modifying the glassy carbon electrode with Zn-Co-ZIF carbon fiber (Zn-Co-ZIF CNFs), Pt@Au NPs, and luminol. Zn-Co-ZIF CNFs, prepared through electrospinning and high-temperature pyrolysis, possessed a large specific surface area and porosity, making it suitable as carrier and electron transfer accelerator in the system. Pt@Au NPs demonstrated excellent catalytic activity, effectively enhancing the generation of active substances. The ECL signal was significantly amplified by the combination of Zn-Co-ZIF CNFs and Pt@Au NPs, which can subsequently be diminished by procymidone. The ECL intensity decreased proportionally with the addition of procymidone, displaying a linear relationship within the concentration range 1.0 × 10-13 to 1.0 × 10-6 mol L-1 (R2 = 0.993). The sensor exhibited a detection limit of 3.3 × 10-14 mol L-1 (S/N = 3) and demonstrated outstanding reproducibility and stability, making it well-suited for the detection of procymidone in vegetable samples.


Subject(s)
Cobalt , Electrochemical Techniques , Gold , Limit of Detection , Luminescent Measurements , Luminol , Vegetables , Zinc , Luminol/chemistry , Vegetables/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Luminescent Measurements/methods , Zinc/chemistry , Gold/chemistry , Cobalt/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Carbon/chemistry , Electrodes , Luminescent Agents/chemistry , Food Contamination/analysis , Reproducibility of Results
7.
Luminescence ; 39(8): e4853, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39103189

ABSTRACT

Rasagiline (RAS) is a medication for Parkinson's disease that increases dopamine levels in the brain by inhibiting monoamine oxidase, helping to alleviate symptoms. The proposed study aims to develop an efficient, feasible, and sensitive method for RAS assay, utilizing Pyrosin B dye, a convenient fluorescent ligand. Combining the RAS analyte with Pyrosin B ligand in a mildly acidic buffered solution rapidly quenches the native fluorescence of the ligand. This quenching results from the formation of a specific ion-dipole association complex between the lone pair-bearing atoms of the ligand and the protonated amine moiety of RAS, highlighting their interactive chemistry under these conditions. The degree of this interaction demonstrated superior sensitivity compared with reported alternatives, exhibiting a linear range of 50.0 to 1000.0 ng/mL. The method is characterized by a limit of detection (LOD) of 16.0 ng/mL and a limit of quantification (LOQ) of 48.0 ng/mL. By optimizing the RAS-Pyrosin B system, the variable parameters were finely tuned, ensuring the assay method's reliability. The method's accuracy, precision, selectivity, and robustness were validated according to International Council for Harmonization (ICH) guidelines, enabling precise and efficient analysis of RAS in the nanogram range. This method streamlines the analysis procedure and reduces environmental impact, making it a promising approach for the quality control of ParkintreatR tablets (1 mg) and other analytical applications.


Subject(s)
Antiparkinson Agents , Indans , Tablets , Indans/chemistry , Indans/analysis , Antiparkinson Agents/analysis , Antiparkinson Agents/chemistry , Limit of Detection , Molecular Structure , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence
8.
Luminescence ; 39(8): e4860, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099232

ABSTRACT

A sensitive benzothiazole fluorescent probe (PBZO) for the detection of γ-glutamyl transpeptidase (GGT) activity was developed. Based on the enzymatic hydrolysis of peptide bonds by glutamyl transpeptidase, it can be specifically recognized by PBZO. The PBZO has a good linear relationship with different gradients of GGT activity at the emission wavelength of 560 nm, the Stokes shift reached 215 nm, and the detection limit of GGT activity is 0.1644 U/ml. With the increase of GGT concentration in the probe solution, the color of the solution gradually changed from orange to dark yellow under the 365 nm UV lamp. The same color change was also observed on the probe test paper. In addition, there is a linear relationship between the GGT activity and the R-value of the probe solution. More importantly, the probe has a good recovery rate in serum. Therefore, this probe can be used as a convenient tool for detecting GGT activity.


Subject(s)
Benzothiazoles , Fluorescent Dyes , gamma-Glutamyltransferase , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , gamma-Glutamyltransferase/analysis , gamma-Glutamyltransferase/blood , gamma-Glutamyltransferase/metabolism , Benzothiazoles/chemistry , Humans , Spectrometry, Fluorescence , Limit of Detection
9.
Appl Spectrosc ; 78(7): 744-752, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39096170

ABSTRACT

Hemicyanine dyes are an ideal structure for building near-infrared fluorescent probes due to their excellent emission wavelength properties and biocompatibility in biological imaging field. Developing a near-infrared fluorescent probe capable of detecting cysteine (Cys) was the aim of this study. A novel developed fluorescent probe P showed high selectivity and sensitivity to Cys in the presence of various analytes. The detection limit of P was found to be 0.329 µM. The MTT assay showed that the probe was essentially non-cytotoxic. Furthermore, the probe was successfully used as cysteine imaging in living cells and mice.


Subject(s)
Cysteine , Fluorescent Dyes , Cysteine/analysis , Cysteine/chemistry , Fluorescent Dyes/chemistry , Animals , Mice , Humans , Spectroscopy, Near-Infrared/methods , Limit of Detection , Carbocyanines/chemistry , Spectrometry, Fluorescence/methods , HeLa Cells , Optical Imaging/methods
10.
Luminescence ; 39(8): e4846, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39090987

ABSTRACT

Antibiotic residues persist in the environment and represent serious health hazards; thus, it is important to develop sensitive and effective detection techniques. This paper presents a bio-inspired way to make water-soluble fluorescent polymer carbon dots (PCDs@PVA) by heating biomass precursors and polyvinyl alcohol (PVA) together. For example, the synthesized PCDs@PVA are very stable with enhanced emission intensity. This property was observed in a wide range of environmental conditions, including those with changing temperatures, pH levels, UV light, and ionic strength. PCDs@PVA detected the antibiotic chlortetracycline (CTCs) with great selectivity against structurally related compounds and a low detection limit of 20 nM, demonstrating outstanding sensitivity and specificity. We confirmed the sensor's practical application through real sample analysis, yielding recovery rates of 98%-99% in samples of milk, honey, and river water. The synthesized PCDs@PVA fluorescence sensor was successfully used for CTCs detection in real samples.


Subject(s)
Carbon , Chlortetracycline , Fluorescent Dyes , Polyvinyl Alcohol , Quantum Dots , Chlortetracycline/analysis , Polyvinyl Alcohol/chemistry , Carbon/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Quantum Dots/chemistry , Animals , Milk/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Limit of Detection , Honey/analysis , Polymers/chemistry , Polymers/chemical synthesis , Water Pollutants, Chemical/analysis , Rivers/chemistry , Spectrometry, Fluorescence , Hydrogen-Ion Concentration
11.
Mikrochim Acta ; 191(9): 516, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107665

ABSTRACT

Cupric ions (Cu2+), pyrophosphate (PPi), and alkaline phosphatase (ALP) are involved in a variety of biochemical processes such as DNA replication, cellular metabolism and play an important role in human growth and development. It is of great significance to establish a method for the sensitive detection of Cu2+, PPi and ALP. In this work, polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) were successfully synthesized by a one-pot method using hydrazine sulfate as reductant, exhibiting a unique strong fluorescence emission in the near-ultraviolet region at ∼339 nm. Since the fluorescence of PEI-AgNCs can be quenched by Cu2+ through inner filtering effect (IFE), then recovered by competitive binding of pyrophosphate and Cu2+, and later weakened again by catalytic hydrolysis of alkaline phosphatase, a sensitive and selective strategy based on the changes of fluorescence "ON" or "OFF" was established to detect Cu2+, PPi and ALP. The LODs of these three analytes were 36 nM, 0.2 µM, and 0.14 U L-1 at a S/N ratio of 3, respectively. A series of logic gate circuits for sensing cupric ions, pyrophosphate, and alkaline phosphatase were successfully constructed. The established methods have the potential for biosensing and environmental analysis and the specific UV-A fluorescence property of PEI-AgNCs may be helpful in photonic and optical areas.


Subject(s)
Alkaline Phosphatase , Copper , Diphosphates , Metal Nanoparticles , Polyethyleneimine , Silver , Spectrometry, Fluorescence , Silver/chemistry , Polyethyleneimine/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Alkaline Phosphatase/analysis , Alkaline Phosphatase/metabolism , Diphosphates/analysis , Diphosphates/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection , Humans , Fluorescence , Ultraviolet Rays
12.
Luminescence ; 39(8): e4852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39108144

ABSTRACT

In this paper, nitrogen-doped carbon quantum dots (N-CQDs) are synthesized by the hydrothermal method. N-CQDs exhibit strong fluorescence, and N-CQDs are well dispersed in water as well as in various organic solvents. N-CQDs emit multi-color fluorescence from blue to red, with wavelengths in the range of 450-650 nm without the need for purification. Furthermore, the fluorescence emission of N-CQDs was selectively quenched after adding Fe3+ ions. N-CQDs were used as a nanoprobe for the detection of Fe3+ ions, showing a good linear correlation between the fluorescence emission and the concentration of Fe3+ in the Fe3+ concentration range from 0 to 100 µM. The limit of detection (LOD) was 55.7 µM for Fe3+ in water and 40.2 µM in fetal bovine serum (FBS) samples. The study shows that the synthesized N-CQDs have low cost and great potential for application in biological analysis.


Subject(s)
Carbon , Iron , Nitrogen , Quantum Dots , Quantum Dots/chemistry , Carbon/chemistry , Nitrogen/chemistry , Iron/analysis , Iron/chemistry , Animals , Cattle , Spectrometry, Fluorescence , Ions/analysis , Limit of Detection , Fluorescence , Color
13.
Luminescence ; 39(8): e4859, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39108165

ABSTRACT

Chlorpyrifos (CPS) is widely found in food and water sources due to agricultural use, posing health and environmental risks. Therefore, this work introduces a fluorescent sensor design of silver nanoparticle-embedded nano zirconium-based metal-organic frameworks (UiO-66-NH2@AgNPs) for accurate examination of CPS. Briefly, UiO-66-NH2 was synthesized hydrothermally, exhibiting weak luminescence owed to ligand-to-metal charge transfer (LMCT). Here, it limits its direct utility in fluorescence-based detection. To address this limitation, silver nanoparticles (AgNPs) were introduced into UiO-66-NH2, enhancing fluorescence via the metal-enhanced fluorescence (MEF) effect. Briefly, a comprehensive spectral analysis such as XPS, SEM, TEM, PXRD, etc., was performed to validate the synthesis of UiO-66-NH2@AgNPs. Subsequent evaluation revealed that CPS effectively quenched the luminescence intensity of UiO-66-NH2@AgNPs through a static quenching mechanism. The fluorescence intensity exhibited good linearity with CPS concentration in the span of 10 to 1,000 ng/mL, with a recognition limit of 191.5 ng/mL(S/N = 3). The interaction involved Ag-S bond formation and electrostatic interactions, reducing fluorescence intensity. The method was confirmed through successful CPS detection in fruit samples. The UiO-66-NH2@AgNPs nanoprobe offers a simple, sensitive, and accurate platform for CPS sensing, with potential for future use in detecting CPS in fruits and vegetables.


Subject(s)
Chlorpyrifos , Metal Nanoparticles , Metal-Organic Frameworks , Silver , Zirconium , Chlorpyrifos/analysis , Silver/chemistry , Zirconium/chemistry , Metal-Organic Frameworks/chemistry , Metal Nanoparticles/chemistry , Spectrometry, Fluorescence , Limit of Detection , Insecticides/analysis
14.
Luminescence ; 39(8): e4861, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109462

ABSTRACT

Cariprazine represents a new generation of antipsychotic medication, characterized by its heightened affinity for the D3 receptor. It has recently obtained approval as an adjunctive treatment option for patients diagnosed with major depressive disorder. In this study, a novel approach utilizing fluorescence spectroscopy was developed to analyze cariprazine. The methodology involves the transformation of cariprazine into a fluorescent compound by means of chemical derivatization with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Following excitation at 470 nm, the fluorescent derivative displayed peak fluorescence emission at 550 nm. The factors influencing the derivatization process were optimized. Upon reaching the optimal reaction conditions, a linear correlation (r2 = 0.9995) was observed between the fluorescence intensity and concentrations of cariprazine ranging from 20 to 400 ng/ml. Detection and quantitation limits were determined to be 5.85 and 17.74 ng/ml, respectively. The approach was accurate and precise, with percent recovery values ranging from 98.14% to 99.91% and relative standard deviations of less than 2%. Application of the method to the analysis of cariprazine in bulk and commercial capsules forms yielded accurate results. Moreover, adherence to environmentally friendly analytical practices was evident through alignment with the principles of green analysis, as demonstrated by the analytical eco-scale, AGREE, and GAPI greenness assessment tools.


Subject(s)
Piperazines , Spectrometry, Fluorescence , Piperazines/chemistry , Piperazines/analysis , Green Chemistry Technology , Antipsychotic Agents/chemistry , Molecular Structure , Limit of Detection
15.
Mikrochim Acta ; 191(9): 519, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39110252

ABSTRACT

Functional materials with organic/inorganic composites as the main matrix and rare earth ion complexes as the guest have shown a very broad application prospect for antibiotic sensors. However, Eu3+-complex often relies on a single fluorescence response signal, which is susceptible to changes in the detection environment and cannot simultaneously detect and remove tetracycline (TC). Herein, green fluorescent covalent two-dimensional organic framework (COF-TD) is synthesized, followed by modification of Eu3+ to synthesize COF-TD@Eu3+. In the ratiometric sensor, Eu3+ serves as the recognition site and specific response probe for TC, while COF-TD is the fluorescence reference and carrier for Eu3+. Due to the antenna effect, TC enhances the red fluorescence of Eu3+, while the green fluorescence of COF-TD remains almost stable. Based on the change of fluorescence intensity and fluorescence color from green to red, the efficient ratiometric sensing can be finished in 1 min. The developed method shows high sensitivity with a detection limit of 0.3 µM and high selectivity to TC which makes the method applicable to detect TC in traditional Chinese medicine preparations. In addition, due to the high specific surface area of COFs and specific adsorption sites, COF-TD@Eu3+ also shows good performance for TC removal. The findings show that the maximum adsorption capacity is 137.3 mg g-1 and the adsorption equilibrium is reached in 30 min. Smartphone assisted COF-TD@Eu3+ for both ratiometric fluorescence detection and detecting the absorption of TC is proposed for the first time. The molecular cryptosteganography that transforms the selective response of COF-TD@Eu3+ to binary strings is anticipated to advance utilization of nanomaterials in logic sensing and information safety.


Subject(s)
Europium , Fluorescent Dyes , Limit of Detection , Metal-Organic Frameworks , Spectrometry, Fluorescence , Tetracycline , Europium/chemistry , Metal-Organic Frameworks/chemistry , Tetracycline/analysis , Tetracycline/chemistry , Adsorption , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Fluorescence
16.
Mikrochim Acta ; 191(9): 521, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39110277

ABSTRACT

MoO3-x NPs was rapidly synthesized at room temperature by an easy stirring method. It was interesting to find that MoO3-x NPs induce OH- to generate active free radicals (ROS), which is a highly promising property in chemiluminescence (CL). Benefiting from the abundant oxygen vacancy, MoO3-x NPs adsorbs H2O2 and turn it into ·OH. The oxidase activity of fluorescein under visible light had already been reported, which catalyzes dissolved oxygen to become O2-· and continue to convert to H2O2. By creating the synergy effect with fluorescein, MoO3-x NPs strengthen the CL intensity of K3[Fe(CN)6]-fluorescein system significantly. Utilizing the quench effect of uric acid for the CL intensity, we developed a rapid, simple, and highly sensitive CL platform for uric acid detection. The linear range was 5-80 µM and the detection limit (LOD) for uric acid was 3.11 µM (S/N = 3). This work expanded the application of MoO3-x NPs in the CL field and developed a simple and highly sensitive CL sensing system to detect UA in human saliva.


Subject(s)
Fluorescein , Limit of Detection , Molybdenum , Oxides , Saliva , Uric Acid , Uric Acid/analysis , Uric Acid/chemistry , Saliva/chemistry , Humans , Fluorescein/chemistry , Oxides/chemistry , Molybdenum/chemistry , Luminescent Measurements/methods , Hydrogen Peroxide/chemistry
17.
Mikrochim Acta ; 191(9): 510, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103665

ABSTRACT

Cocaine is one of the most abused illicit drugs, and its abuse damages the central nervous system and can even lead directly to death. Therefore, the development of simple, rapid and highly sensitive detection methods is crucial for the prevention and control of drug abuse, traffic accidents and crime. In this work, an electrochemical aptamer-based (EAB) sensor based on the low-temperature enhancement effect was developed for the direct determination of cocaine in bio-samples. The signal gain of the sensor at 10 °C was greatly improved compared to room temperature, owing to the improved affinity between the aptamer and the target. Additionally, the electroactive area of the gold electrode used to fabricate the EAB sensor was increased 20 times by a simple electrochemical roughening method. The porous electrode possesses more efficient electron transfer and better antifouling properties after roughening. These improvements enabled the sensor to achieve rapid detection of cocaine in complex bio-samples. The low detection limits (LOD) of cocaine in undiluted urine, 50% serum and 50% saliva were 70 nM, 30 nM and 10 nM, respectively, which are below the concentration threshold in drugged driving screening. The aptasensor was simple to construct and reusable, which offers potential for drugged driving screening in the real world.


Subject(s)
Aptamers, Nucleotide , Cocaine , Electrochemical Techniques , Gold , Limit of Detection , Substance Abuse Detection , Cocaine/urine , Cocaine/analysis , Cocaine/blood , Aptamers, Nucleotide/chemistry , Humans , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Gold/chemistry , Substance Abuse Detection/methods , Biosensing Techniques/methods , Saliva/chemistry , Electrodes , Automobile Driving , Cold Temperature
18.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125726

ABSTRACT

The ongoing COVID-19 pandemic, caused by the rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since early 2020, has highlighted the need for sensitive and reliable diagnostic methods. Droplet digital PCR (ddPCR) has demonstrated superior performance over the gold-standard reverse transcription PCR (RT-PCR) in detecting SARS-CoV-2. In this study, we explored the development of a multiplex ddPCR assay that enables sensitive quantification of SARS-CoV-2, which could be utilized for antiviral screening and the monitoring of COVID-19 patients. We designed a quadruplex ddPCR assay targeting four SARS-CoV-2 genes and evaluated its performance in terms of specificity, sensitivity, linearity, reproducibility, and precision using a two-color ddPCR detection system. The results showed that the quadruplex assay had comparable limits of detection and accuracy to the simplex ddPCR assays. Importantly, the quadruplex assay demonstrated significantly improved performance for samples with low viral loads and ambiguous results compared to the standard qRT-PCR approach. The developed multiplex ddPCR represents a valuable alternative and complementary tool for the diagnosis of SARS-CoV-2 and potentially other pathogens in various application scenarios beyond the current COVID-19 pandemic. The improved sensitivity and reliability of this assay could contribute to more effective disease monitoring and antiviral screening during the ongoing public health crisis.


Subject(s)
COVID-19 , SARS-CoV-2 , Sensitivity and Specificity , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Humans , COVID-19/diagnosis , COVID-19/virology , Reproducibility of Results , Multiplex Polymerase Chain Reaction/methods , Limit of Detection , RNA, Viral/genetics , G-Quadruplexes , COVID-19 Nucleic Acid Testing/methods
19.
Mikrochim Acta ; 191(9): 530, 2024 08 11.
Article in English | MEDLINE | ID: mdl-39127988

ABSTRACT

The synthesis of cobalt nanocrystal-graphene quantum dot-Ti3C2TX monolithic film electrode (Co-GQD-Ti3C2TX) is reported via self-assembly of Ti3C2TX nanosheets induced by protonated arginine-functionalized graphene quantum dot and subsequent reduction of cobalt (III). The resulting Co-GQD-Ti3C2TX shows good monolithic architecture, mechanical property, dispersibility and conductivity. The structure achieves excellent supercapacitor and sensing behavior. The self-charging supercapacitor produced by printing viscous Co-GQD-Ti3C2TX hydrogel on the back of flexible solar cell surface provides high specific capacitance (296 F g-1 at 1 A g-1), high-rate capacity (153 F g-1 at 20 A g-1), capacity retention (98.1% over 10,000-cycle) and energy density (29.6 W h kg-1 at 299.9 W kg-1). The electrochemical chip produced by printing Co-GQD-Ti3C2TX hydrogel on paper exhibits sensitive electrochemical response towards uric acid. The increase of uric acid between 0.01 and 800 µM causes a linear increase in differential pulse voltammetry signal with a detection limit of 0.0032 µM. The self-powered sensing platform integrating self-charging supercapacitor, electrochemical chip and micro electrochemical workstation was contentedly applied to monitoring uric acid in sweats and shows one broad application prospect in wearable electronic health monitoring device.


Subject(s)
Cobalt , Electric Capacitance , Electrochemical Techniques , Electrodes , Graphite , Limit of Detection , Quantum Dots , Sweat , Titanium , Uric Acid , Cobalt/chemistry , Quantum Dots/chemistry , Graphite/chemistry , Sweat/chemistry , Humans , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Titanium/chemistry , Uric Acid/analysis , Uric Acid/chemistry , Biosensing Techniques/methods , Nanoparticles/chemistry
20.
Rapid Commun Mass Spectrom ; 38(19): e9884, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39129244

ABSTRACT

Nitrosamine compounds pose a significant concern as potential carcinogens, prompting heightened scrutiny from regulatory bodies, particularly regarding their presence in pharmaceuticals. The detection of unacceptable levels of N-nitrosodiethylamine (NDMA) in ranitidine has led to widespread recalls, driving interest in alternative medications such as nizatidine, which shares a similar pharmacological class and is used to treat various gastrointestinal conditions. Despite fewer reports on NDMA levels in nizatidine, its structural similarity to ranitidine, characterized by a tertiary amine, underscores the potential for NDMA formation. Addressing the analytical challenges associated with nitrosamine detection, this study focuses on developing and validating an ultra-high pressure liquid chromatography triple quadrupole mass spectrometry (UHPLC-MS/MS) method for quantifying NDMA in both nizatidine active pharmaceutical ingredients and tablet formulations. Method validation adheres to International Council for Harmonisation recommendations, with a demonstrated linear range of 0.25-100 ng/mL for NDMA, exhibiting excellent linearity (regression coefficient >0.999) and efficient recovery rates ranging from 95.98% to 109.57%. The method shows high sensitivity, with limits of detection and quantification of 0.25 and 0.5 ng/mL, respectively. The developed UHPLC-MS/MS method offers a simple, precise, accurate, and selective approach for monitoring NDMA levels in nizatidine formulations available in Australia, promising enhanced sensitivity and specificity with limits of quantification in the ppb and sub-ppb ranges.


Subject(s)
Carcinogens , Drug Contamination , Nitrosamines , Nizatidine , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Nizatidine/chemistry , Nizatidine/analysis , Nitrosamines/analysis , Nitrosamines/chemistry , Carcinogens/analysis , Carcinogens/chemistry , Limit of Detection , Reproducibility of Results , Diethylnitrosamine/analysis , Diethylnitrosamine/chemistry , Linear Models , Tablets/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL