Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Expert Rev Respir Med ; 18(10): 815-829, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39327745

ABSTRACT

BACKGROUND: Compare the changes and differences in metabolome and lipidome profiles among severe COVID-19 and CAP patients with ARF to identify biomarkers that could be used for personalized diagnosis, prognosis, and treatment. RESEARCH DESIGN AND METHODS: Plasma samples were taken at hospital admission (baseline) and on the 5th day of hospitalization (follow-up) and examined by RP-LC-QTOF-MS and HILIC-LC-QTOF-MS. RESULTS: 127 patients, 17 with CAP and 110 with COVID-19, were included. The analysis revealed 87 altered metabolites, suggesting changes in the metabolism of arachidonic acid, glycerolipids, glycerophospholipids, linoleic acid, pyruvate, glycolysis, among others. Most of these metabolites are involved in inflammatory, hypoxic, and thrombotic processes. At baseline, the greatest differences were found in phosphatidylcholine (PC) 31:4 (p < 0.001), phosphoserine (PS) 34:3 (p < 0.001), and phosphatidylcholine (PC) 36:5 (p < 0.001), all of which were notably decreased in COVID-19 patients. At follow-up, the most dysregulated metabolites were monomethyl-phosphatidylethanolamine (PE-Nme) 40:5 (p < 0.001) and phosphatidylcholine (PC) 38:4 (p < 0.001). CONCLUSIONS: Metabolic and lipidic alterations suggest inhibition of innate anti-inflammatory and anti-thrombotic mechanisms in COVID-19 patients, which might lead to increased viral proliferation, uncontrolled inflammation, and thrombi formation. Results provide novel targets for predictive biomarkers against CAP and COVID-19. TRIAL REGISTRATION: Not applicable.


Subject(s)
Biomarkers , COVID-19 , Community-Acquired Infections , Humans , COVID-19/blood , Male , Female , Middle Aged , Prognosis , Biomarkers/blood , Aged , Community-Acquired Infections/blood , Community-Acquired Infections/diagnosis , Lipidomics , Severity of Illness Index , SARS-CoV-2 , Adult , Metabolome
2.
Meat Sci ; 217: 109621, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39116534

ABSTRACT

The objective of this exploratory study was to assess the changes on lipidome and metabolome profiling of Longissimus lumborum bull muscle with different ultimate pH (pHu) and aging periods. The bull muscles classified as normal, intermediate, or high pHu were collected from a Brazilian commercial slaughterhouse, cut into steaks, individually vacuum-packaged, and aged for 3 days (3-d) or 21 days (21-d) at 2 °C. Muscle extracts were analyzed for the profiles of both lipids, by mass spectrometry (via direct flow-injection), and metabolites, by nuclear magnetic resonance, with downstream multivariate data analysis. As major results, pairwise comparisons identified C12:0 and C14:0 acylcarnitines as potential biomarkers of the intermediate pHu-muscle, which are related to lipid catabolism for alternative energy metabolism and indicate less protein breakage postmortem. Interestingly, the concentration of arginine at early postmortem aging (3-d) may influence the previously reported improved tenderness in normal and high pHu-muscles. Moreover, upregulation of fumarate, formate, and acetate with increased pHu muscle at 21-d aging indicate more intense tricarboxylic acid cycle, amino acid degradation, and pyruvate oxidation by reactive oxygen species, respectively. These three compounds (fumarate, formate, and acetate) discriminated statistically the muscle with high pHu at 21-d aging. The normal pHu-muscle showed higher concentrations of glycogenolysis and glycolysis metabolites, including glucose, mannose, and pyruvate. Hence, our results enhance knowledge of postmortem biochemical changes of beef within different pHu groups aged up to 21 days, which is essential to understand the mechanisms underpinning bull meat quality changes.


Subject(s)
Metabolome , Muscle, Skeletal , Red Meat , Animals , Cattle , Red Meat/analysis , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Hydrogen-Ion Concentration , Male , Lipidomics/methods , Postmortem Changes , Brazil , Food Handling/methods , Formates , Carnitine/analogs & derivatives , Carnitine/metabolism , Carnitine/analysis
3.
Molecules ; 29(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064928

ABSTRACT

Angomonas deanei belongs to Trypanosomatidae family, a family of parasites that only infect insects. It hosts a bacterial endosymbiont in a mutualistic relationship, constituting an excellent model for studying organelle origin and cellular evolution. A lipidomic approach, which allows for a comprehensive analysis of all lipids in a biological system (lipidome), is a useful tool for identifying and measuring different expression patterns of lipid classes. The present study applied GC-MS and NMR techniques, coupled with principal component analysis (PCA), in order to perform a comparative lipidomic study of wild and aposymbiotic A. deanei grown in the presence or absence of FBS. Unusual contents of branched-chain iso C17:0 and C19:0-cis-9,10 and-11,12 fatty acids were identified in A. deanei cultures, and it was interesting to note that their content slightly decreased at the log phase culture, indicating that in the latter growth stages the cell must promote the remodeling of lipid synthesis in order to maintain the fluidity of the membrane. The combination of analytical techniques used in this work allowed for the detection and characterization of lipids and relevant contributors in a variety of A. deanei growth conditions.


Subject(s)
Fatty Acids , Lipidomics , Trypanosomatina , Lipidomics/methods , Fatty Acids/metabolism , Fatty Acids/analysis , Trypanosomatina/metabolism , Gas Chromatography-Mass Spectrometry , Principal Component Analysis , Magnetic Resonance Spectroscopy/methods
4.
Arch Toxicol ; 98(10): 3491-3502, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38951190

ABSTRACT

Snake venoms are complex mixtures majorly composed of proteins with well-studied biological effects. However, the exploration of non-protein components, especially lipids, remains limited despite their potential for discovering bioactive molecules. This study compares three liquid-liquid lipid extraction methods for both chemical and biological analyses of Bothrops moojeni snake venom. The methods evaluated include the Bligh and Dyer method (methanol, chloroform, water), considered standard; the Acunha method, a modification of the Bligh and Dyer protocol; and the Matyash method (MTBE/methanol/water), featuring an organic phase less dense than the aqueous phase. Lipidomic analysis using liquid chromatography with high-resolution mass spectrometry (LC-HRMS) system revealed comparable values of lipid constituents' peak intensity across different extraction methods. Our results show that all methods effectively extracted a similar quantity of lipid species, yielding approximately 17-18 subclasses per method. However, the Matyash and Acunha methods exhibited notably higher proportions of biologically active lipids compared to the Bligh and Dyer method, particularly in extracting lipid species crucial for cellular structure and function, such as sphingomyelins and phosphatidylinositol-phosphate. In conclusion, when selecting a lipid extraction method, it is essential to consider the study's objectives. For a biological approach, it is crucial to evaluate not only the total quantity of extracted lipids but also their quality and biological activity. The Matyash and Acunha methods show promise in this regard, potentially offering a superior option for extracting biologically active lipids compared to the Bligh and Dyer method.


Subject(s)
Bothrops , Lipidomics , Lipids , Animals , Lipids/analysis , Lipids/chemistry , Lipidomics/methods , Crotalid Venoms/chemistry , Chromatography, Liquid/methods , Liquid-Liquid Extraction/methods , Mass Spectrometry
5.
Food Res Int ; 189: 114559, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876608

ABSTRACT

Comprehensive lipid and volatile compound analyses were performed with squids collected from four varied geographical locations to discriminate the regional characteristics. A total of 1442 lipid molecules and 110 volatiles were detected in the squid muscle samples. There were significant differences in the lipid profiles between Argentine squid (Illex argentinus, AGT), North Pacific Ocean squid (Ommastrephes Bartram, NPO), Equatorial squid (Dosidicus gigas, EQ), and Peruvian squid (Dosidicus gigas, PR) muscle. Phosphatidylcholines (14.64%), triacylglycerols (12.42%), and ceramides (10.97%) were the main lipid components. The contents of polyunsaturated fatty acid in phospholipids and in glycerolipids were 30.35-52.05% and 18.11-25.15%, respectively. The volatiles in squids exhibited significant regional variation; 1-pentanol and 1-octanol, 2-ethyl-1-hexanol and terpinen-4-ol, 2,7-ethyl-1-hexanol, 3-methy-1-butanol and 2-propyl-1-pentanol were identified as characteristic flavor compounds in AGT, NPO, EQ, and PR, respectively. Sphingomyelin, phosphatidylserine, phosphatidylethanolamine, and ceramide were strongly correlated with volatiles in squid muscle. Our study is a reference for the lipid nutritional value and flavor compounds of squids.


Subject(s)
Decapodiformes , Gas Chromatography-Mass Spectrometry , Lipidomics , Volatile Organic Compounds , Animals , Decapodiformes/chemistry , Volatile Organic Compounds/analysis , Pacific Ocean , Lipidomics/methods , Gas Chromatography-Mass Spectrometry/methods , Argentina , Peru , Chromatography, High Pressure Liquid , Solid Phase Microextraction/methods , Triglycerides/analysis , Lipids/analysis , Phospholipids/analysis , Muscles/chemistry
6.
Sci Rep ; 14(1): 11898, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789479

ABSTRACT

We have previously reported the transcriptomic and lipidomic profile of the first-generation, hygromycin-resistant (HygR) version of the BCGΔBCG1419c vaccine candidate, under biofilm conditions. We recently constructed and characterized the efficacy, safety, whole genome sequence, and proteomic profile of a second-generation version of BCGΔBCG1419c, a strain lacking the BCG1419c gene and devoid of antibiotic markers. Here, we compared the antibiotic-less BCGΔBCG1419c with BCG. We assessed their colonial and ultrastructural morphology, biofilm, c-di-GMP production in vitro, as well as their transcriptomic and lipidomic profiles, including their capacity to activate macrophages via Mincle and Myd88. Our results show that BCGΔBCG1419c colonial and ultrastructural morphology, c-di-GMP, and biofilm production differed from parental BCG, whereas we found no significant changes in its lipidomic profile either in biofilm or planktonic growth conditions. Transcriptomic profiling suggests changes in BCGΔBCG1419c cell wall and showed reduced transcription of some members of the DosR, MtrA, and ArgR regulons. Finally, induction of TNF-α, IL-6 or G-CSF by bone-marrow derived macrophages infected with either BCGΔBCG1419c or BCG required Mincle and Myd88. Our results confirm that some differences already found to occur in HygR BCGΔBCG1419c compared with BCG are maintained in the antibiotic-less version of this vaccine candidate except changes in production of PDIM. Comparison with previous characterizations conducted by OMICs show that some differences observed in BCGΔBCG1419c compared with BCG are maintained whereas others are dependent on the growth condition employed to culture them.


Subject(s)
BCG Vaccine , Biofilms , Cyclic GMP , Lipidomics , Macrophages , Mycobacterium bovis , Myeloid Differentiation Factor 88 , Transcriptome , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , BCG Vaccine/immunology , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Mycobacterium bovis/genetics , Mycobacterium bovis/immunology , Biofilms/growth & development , Cytokines/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Gene Expression Profiling , Lectins, C-Type
7.
PLoS One ; 19(5): e0299780, 2024.
Article in English | MEDLINE | ID: mdl-38758755

ABSTRACT

Microalgae's ability to mitigate flue gas is an attractive technology that can valorize gas components through biomass conversion. However, tolerance and growth must be ideal; therefore, acclimation strategies are suggested. Here, we compared the transcriptome and lipidome of Desmodesmus abundans strains acclimated to high CO2 (HCA) and low CO2 (LCA) under continuous supply of model flue gas (MFG) and incomplete culture medium (BG11-N-S). Initial growth and nitrogen consumption from MFG were superior in strain HCA, reaching maximum productivity a day before strain LCA. However, similar productivities were attained at the end of the run, probably because maximum photobioreactor capacity was reached. RNA-seq analysis during exponential growth resulted in 16,435 up-regulated and 4,219 down-regulated contigs in strain HCA compared to LCA. Most differentially expressed genes (DEGs) were related to nucleotides, amino acids, C fixation, central carbon metabolism, and proton pumps. In all pathways, a higher number of up-regulated contigs with a greater magnitude of change were observed in strain HCA. Also, cellular component GO terms of chloroplast and photosystems, N transporters, and secondary metabolic pathways of interest, such as starch and triacylglycerols (TG), exhibited this pattern. RT-qPCR confirmed N transporters expression. Lipidome analysis showed increased glycerophospholipids in strain HCA, while LCA exhibited glycerolipids. Cell structure and biomass composition also revealed strains differences. HCA possessed a thicker cell wall and presented a higher content of pigments, while LCA accumulated starch and lipids, validating transcriptome and lipidome data. Overall, results showed significant differences between strains, where characteristic features of adaptation and tolerance to high CO2 might be related to the capacity to maintain a higher flux of internal C, regulate intracellular acidification, active N transporters, and synthesis of essential macromolecules for photosynthetic growth.


Subject(s)
Acclimatization , Carbon Dioxide , Lipidomics , Transcriptome , Carbon Dioxide/metabolism , Acclimatization/genetics , Lipidomics/methods , Microalgae/genetics , Microalgae/metabolism , Microalgae/growth & development , Gene Expression Profiling , Photosynthesis/genetics , Lipid Metabolism/genetics , Chlorophyceae/genetics , Chlorophyceae/metabolism
8.
Adv Exp Med Biol ; 1443: 211-220, 2024.
Article in English | MEDLINE | ID: mdl-38409423

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood sugar levels, resulting from either body's inability to produce or effectively utilize insulin. There are several types of DM, but the most common are type 1 diabetes (T1D), type 2 diabetes (T2D), and gestational diabetes mellitus (GDM). DM is a complex disease and a global health concern, and the current clinical markers, such as fasting glucose, are helpful in the diagnosis of DM, but are not specific and sensitive, especially when measured on the beginning of the pathogenesis. Therefore, there is a pressing need to discover new early biomarkers that can provide an early diagnosis. Omics is an important field for the discovery of potential new biomarkers, especially proteomics, metabolomics, and lipidomics, where techniques such as liquid chromatography, mass spectrometry, and nuclear magnetic resonance are utilized to identify novel DM biomarkers and their pathways. In this review, we report papers that applied omics in the context of DM to identify new markers and their relationship with this disease, with the aim of elucidating new diagnostic techniques for the main types of DM.


Subject(s)
Diabetes Mellitus, Type 2 , Lipidomics , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Proteomics/methods , Metabolomics/methods , Biomarkers
9.
Chem. Phys. lipids ; Chem. Phys. lipids;257: 105348, nov.2023. ilus
Article in English | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1524856

ABSTRACT

Familial hypercholesterolemia (FH) is a disorder of lipid metabolism that causes elevated low-density lipoprotein cholesterol (LDL-c) and increased premature atherosclerosis risk. Statins inhibit endogenous cholesterol biosynthesis, which reduces LDL-c plasma levels and prevent from cardiovascular events. This study aimed to explore the effects of statin treatment on serum lipidomic profile and to identify biomarkers of response in subjects with FH. Seventeen adult FH patients underwent a 6-week washout followed by 4-week treatment with atorvastatin (80 mg/day) or rosuvastatin (40 mg/day). LDL-c response was considered good (40­70 % reduction, n = 9) or poor (3­33 % reduction, n = 8). Serum lipidomic profile was analyzed by ultra-high-performance liquid chromatography combined with electrospray ionization tandem time-of-flight mass spectrometry, and data were analyzed using MetaboAnalyst v5.0. Lipidomic analysis identified 353 lipids grouped into 16 classes. Statin treatment reduced drastically 8 of 13 lipid classes, generating a characteristic lipidomic profile with a significant contribution of phosphatidylinositols (PI) 16:0/18:2, 18:0/18:1 and 18:0/18:2; and triacylglycerols (TAG) 18:2x2/18:3, 18:1/18:2/18:3, 16:1/18:2x2, 16:1/18:2/18:3 and 16:1/18:2/Arachidonic acid (p-adjusted <0.05). Biomarker analysis implemented in MetaboAnalyst subsequently identified PI 16:1/18:0, 16:0/18:2 and 18:0/18:2 as predictors of statin response with and receiver operating characteristic (ROC) areas under the curve of 0.98, 0.94 and 0.91, respectively. In conclusion, statins extensively modulate the overall serum lipid composition of FH individuals and these findings suggest that phosphatidyl-inositol molecules are potential predictive biomarkers of statin response.


Subject(s)
Biomarkers , Hyperlipoproteinemia Type II , Phosphatidylinositols , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Lipidomics
10.
PLoS Negl Trop Dis ; 17(10): e0011676, 2023 10.
Article in English | MEDLINE | ID: mdl-37847671

ABSTRACT

The mosquito Aedes aegypti is the primary vector for all four serotypes of dengue viruses (DENV1-4), which infect millions across the globe each year. Traditional insecticide programs have been transiently effective at minimizing cases; however, insecticide resistance and habitat expansion have caused cases of DENV to surge over the last decade. There is an urgent need to develop novel vector control measures, but these are contingent on a detailed understanding of host-parasite interactions. Here, we have utilized lipidomics to survey the profiles of naturally DENV-resistant (Cali-MIB) or susceptible (Cali-S) populations of Ae. aegypti, isolated from Cali, Colombia, when fed on blood meals containing DENV. Control insects were fed on a DENV-free blood meal. Midguts were dissected from Cali-MIB and Cali-S females at three time points post-infectious blood meal, 18, 24 and 36h, to identify changes in the lipidome at key times associated with the entry, replication and exit of DENV from midgut cells. We used principal component analysis to visualize broad patterns in lipidomic profiles between the treatment groups, and significance analysis of microarray to determine lipids that were altered in response to viral challenge. These data can be used to identify molecules or metabolic pathways particular to the susceptible or refractory phenotypes, and possibly lead to the generation of stable, DENV-resistant strains of Ae. aegypti.


Subject(s)
Aedes , Dengue Virus , Dengue , Animals , Female , Dengue Virus/physiology , Colombia , Lipidomics , Mosquito Vectors
11.
Mol Microbiol ; 120(6): 893-905, 2023 12.
Article in English | MEDLINE | ID: mdl-37864403

ABSTRACT

In the yeast Saccharomyces cerevisiae, the absence of the pseudouridine synthase Pus3/Deg1, which modifies tRNA positions 38 and 39, results in increased lipid droplet (LD) content and translational defects. In addition, starvation-like transcriptome alterations and induced protein aggregation were observed. In this study, we show that the deg1 mutant increases specific misreading errors. This could lead to altered expression of the main regulators of neutral lipid synthesis which are the acetyl-CoA carboxylase (Acc1), an enzyme that catalyzes a key step in fatty acid synthesis, and its regulator, the Snf1/AMPK kinase. We demonstrate that upregulation of the neutral lipid content of LD in the deg1 mutant is achieved by a mechanism operating in parallel to the known Snf1/AMPK kinase-dependent phosphoregulation of Acc1. While in wild-type cells removal of the regulatory phosphorylation site (Ser-1157) in Acc1 results in strong upregulation of triacylglycerol (TG), but not steryl esters (SE), the deg1 mutation more specifically upregulates SE levels. In order to elucidate if other lipid species are affected, we compared the lipidomes of wild type and deg1 mutants, revealing multiple altered lipid species. In particular, in the exponential phase of growth, the deg1 mutant shows a reduction in the pool of phospholipids, indicating a compromised capacity to mobilize acyl-CoA from storage lipids. We conclude that Deg1 plays a key role in the coordination of lipid storage and mobilization, which in turn influences lipid homeostasis. The lipidomic effects in the deg1 mutant may be indirect outcomes of the activation of various stress responses resulting from protein aggregation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , AMP-Activated Protein Kinase Kinases , Lipidomics , Lipids , Protein Aggregates , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
12.
Chem Phys Lipids ; 257: 105348, 2023 11.
Article in English | MEDLINE | ID: mdl-37827478

ABSTRACT

Familial hypercholesterolemia (FH) is a disorder of lipid metabolism that causes elevated low-density lipoprotein cholesterol (LDL-c) and increased premature atherosclerosis risk. Statins inhibit endogenous cholesterol biosynthesis, which reduces LDL-c plasma levels and prevent from cardiovascular events. This study aimed to explore the effects of statin treatment on serum lipidomic profile and to identify biomarkers of response in subjects with FH. Seventeen adult FH patients underwent a 6-week washout followed by 4-week treatment with atorvastatin (80 mg/day) or rosuvastatin (40 mg/day). LDL-c response was considered good (40-70 % reduction, n = 9) or poor (3-33 % reduction, n = 8). Serum lipidomic profile was analyzed by ultra-high-performance liquid chromatography combined with electrospray ionization tandem time-of-flight mass spectrometry, and data were analyzed using MetaboAnalyst v5.0. Lipidomic analysis identified 353 lipids grouped into 16 classes. Statin treatment reduced drastically 8 of 13 lipid classes, generating a characteristic lipidomic profile with a significant contribution of phosphatidylinositols (PI) 16:0/18:2, 18:0/18:1 and 18:0/18:2; and triacylglycerols (TAG) 18:2x2/18:3, 18:1/18:2/18:3, 16:1/18:2x2, 16:1/18:2/18:3 and 16:1/18:2/Arachidonic acid (p-adjusted <0.05). Biomarker analysis implemented in MetaboAnalyst subsequently identified PI 16:1/18:0, 16:0/18:2 and 18:0/18:2 as predictors of statin response with and receiver operating characteristic (ROC) areas under the curve of 0.98, 0.94 and 0.91, respectively. In conclusion, statins extensively modulate the overall serum lipid composition of FH individuals and these findings suggest that phosphatidyl-inositol molecules are potential predictive biomarkers of statin response.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hyperlipoproteinemia Type II , Adult , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Cholesterol, LDL , Lipidomics , Hyperlipoproteinemia Type II/drug therapy , Cholesterol , Biomarkers
13.
Plant Sci ; 336: 111858, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37673219

ABSTRACT

The Sirex noctilio's climatic adaption and rapid proliferation have caused Pinus mortality worldwide. The infestation combines the early effect of female S. noctilio gland secretion and the spreading symbiotic fungus Amylostereum areolatum. 'Lipidomics' is the study of all non-water-soluble components of the metabolome. Most of these non-water-soluble compounds correspond to lipids which can provide information about a biological activity, an organelle, an organism, or a disease. Using HPLC-MS/MS based lipidomics, 122 lipids were identified in P. radiata needles during S. noctilio infestation. Phosphatidic acids, N-acylethanolamines, and phosphatidylinositol-ceramides accumulated in infested trees could suggest a high level of phospholipases activities. The phosphatidylcholines were the most down-regulated species during infection, which could also suggest that they may be used as a substrate for up-regulated lipids. The accumulation of very long-chain fatty acids and long-chain fatty acids during the infestation could imply the tree defense response to create a barrier in the drilled zone to avoid larvae development and fungus proliferation. Also, the growth arrest phase of the trees during the prolonged infestation suggests a resistance response, regulated by the accumulation of NAE, which potentially shifts the tree energy to respond to the infestation.


Subject(s)
Hymenoptera , Pinus , Animals , Lipid Metabolism , Lipidomics , Tandem Mass Spectrometry , Hymenoptera/physiology , Fungi , Trees , Fatty Acids , Lipids
14.
PLoS One ; 18(9): e0289492, 2023.
Article in English | MEDLINE | ID: mdl-37713373

ABSTRACT

The emergence of drug resistance in cutaneous leishmaniasis (CL) has become a major problem over the past decades. The spread of resistant phenotypes has been attributed to the wide misuse of current antileishmanial chemotherapy, which is a serious threat to global health. Photodynamic therapy (PDT) has been shown to be effective against a wide spectrum of drug-resistant pathogens. Due to its multi-target approach and immediate effects, it may be an attractive strategy for treatment of drug-resistant Leishmania species. In this study, we sought to evaluate the activity of PDT in vitro using the photosensitizer 1,9-dimethyl methylene blue (DMMB), against promastigotes of two Leishmania amazonensis strains: the wild-type (WT) and a lab induced miltefosine-resistant (MFR) strain. The underlying mechanisms of DMMB-PDT action upon the parasites was focused on the changes in the lipid metabolism of both strains, which was conducted by a quantitative lipidomics analysis. We also assessed the production of ROS, mitochondrial labeling and lipid droplets accumulation after DMMB-PDT. Our results show that DMMB-PDT produced high levels of ROS, promoting mitochondrial membrane depolarization due to the loss of membrane potential. In addition, both untreated strains revealed some differences in the lipid content, in which MFR parasites showed increased levels of phosphatidylcholine, hence suggesting this could also be related to their mechanism of resistance to miltefosine. Moreover, the oxidative stress and consequent lipid peroxidation led to significant phospholipid alterations, thereby resulting in cellular dysfunction and parasite death. Thus, our results demonstrated that DMMB-mediated PDT is effective to kill L. amazonensis MFR strain and should be further studied as a potential strategy to overcome antileishmanial drug resistance.


Subject(s)
Leishmania mexicana , Leishmania , Lipidomics , Reactive Oxygen Species
15.
Article in English | MEDLINE | ID: mdl-37573715

ABSTRACT

BACKGROUND: The incapacity to store lipids in adipose tissue in Congenital Generalized Lipodystrophy (CGL) causes hypoleptinemia, increased appetite, ectopic fat deposition and lipotoxicity. CGL patients experience shortened life expectancy. The plasma lipidomic profile has not been characterized fully in CGL, nor has the extent of dietary intake in its modulation. The present work investigated the plasma lipidomic profile of CGL patients in comparison to eutrophic individuals at the fasted state and after a breakfast meal. METHOD: Blood samples from 11 CGL patients and 10 eutrophic controls were collected after 12 h fasting (T0) and 90 min after an ad libitum fat-containing breakfast (T90). The lipidomic profile of extracted plasma lipids was characterized by non-target liquid chromatography mass spectrometry. RESULTS: Important differences between groups were observed at T0 and at T90. Several molecular species of fatty acyls, glycerolipids, sphingolipids and glycerophospholipids were altered in CGL. All the detected fatty acyl molecular species, several diacylglycerols and one triacylglycerol species were upregulated in CGL. Among sphingolipids, one sphingomyelin and one glycosphingolipid species showed downregulation in CGL. Alterations in the glycerophospholipids glycerophosphoethanolamines, glycerophosphoserines and cardiolipins were more complex. Interestingly, when comparing T90 versus T0, the lipidomic profile in CGL did not change as intensely as it did for control participants. CONCLUSIONS: The present study found profound alterations in the plasma lipidomic profile of complex lipids in CGL patients as compared to control subjects. A fat-containing breakfast meal did not appear to significantly influence the CGL profile observed in the fasted state. Our study may have implications for clinical practice, also aiding to a deeper comprehension of the role of complex lipids in CGL in view of novel therapeutic strategies.


Subject(s)
Lipodystrophy, Congenital Generalized , Humans , Breakfast , Lipidomics , Adipose Tissue , Lipids
16.
Adv Food Nutr Res ; 105: 97-172, 2023.
Article in English | MEDLINE | ID: mdl-37516469

ABSTRACT

Lipids represent one out of three major macronutrient classes in the human diet. It is estimated to account for about 15-20% of the total dietary intake. Triacylglycerides comprise the majority of them, estimated 90-95%. Other lipid classes include free fatty acids, phospholipids, cholesterol, and plant sterols as minor components. Various methods are used for the characterization of nutritional lipids, however, lipidomics approaches become increasingly attractive for this purpose due to their wide coverage, comprehensiveness and holistic view on composition. In this chapter, analytical methodologies and workflows utilized for lipidomics profiling of food samples are outlined with focus on mass spectrometry-based assays. The chapter describes common lipid extraction protocols, the distinct instrumental mass-spectrometry based analytical platforms for data acquisition, chromatographic and ion-mobility spectrometry methods for lipid separation, briefly mentions alternative methods such as gas chromatography for fatty acid profiling and mass spectrometry imaging. Critical issues of important steps of lipidomics workflows such as structural annotation and identification, quantification and quality assurance are discussed as well. Applications reported over the period of the last 5years are summarized covering the discovery of new lipids in foodstuff, differential profiling approaches for comparing samples from different origin, species, varieties, cultivars and breeds, and for food processing quality control. Lipidomics as a powerful tool for personalized nutrition and nutritional intervention studies is briefly discussed as well. It is expected that this field is significantly growing in the near future and this chapter gives a short insight into the power of nutritional lipidomics approaches.


Subject(s)
Lipids , Phytosterols , Humans , Lipids/chemistry , Lipidomics/methods , Mass Spectrometry/methods , Fatty Acids
17.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511236

ABSTRACT

Rectal cancer (RC) is a gastrointestinal cancer with a poor prognosis. While some studies have shown metabolic reprogramming to be linked to RC development, it is difficult to define biomolecules, like lipids, that help to understand cancer progression and response to therapy. The present study investigated the relative lipid abundance in tumoral tissue associated with neoadjuvant therapy response using untargeted liquid chromatography-mass spectrometry lipidomics. Locally advanced rectal cancer (LARC) patients (n = 13), clinically staged as T3-4 were biopsied before neoadjuvant chemoradiotherapy (nCRT). Tissue samples collected before nCRT (staging) and afterwards (restaging) were analyzed to discover lipidomic differences in RC cancerous tissue from Responders (n = 7) and Non-responders (n = 6) to nCRT. The limma method was used to test differences between groups and to select relevant feature lipids from tissue samples. Simple glycosphingolipids and differences in some residues of glycerophospholipids were more abundant in the Non-responder group before and after nCRT. Oxidized glycerophospholipids were more abundant in samples of Non-responders, especially those collected after nCRT. This work identified potential lipids in tissue samples that take part in, or may explain, nCRT failure. These results could potentially provide a lipid-based explanation for nCRT response and also help in understanding the molecular basis of RC and nCRT effects on the tissue matrix.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Lipidomics , Chemoradiotherapy , Rectal Neoplasms/metabolism , Lipids , Treatment Outcome
18.
Biochem Mol Biol Educ ; 51(5): 486-493, 2023.
Article in English | MEDLINE | ID: mdl-37283298

ABSTRACT

Lipidomics is a discipline that focuses on the identification and quantification of lipids. Although a part of the larger omics field, lipidomics requires specific approaches for the analysis and biological interpretation of datasets. This article presents a series of activities for introducing undergraduate microbiology students to lipidomic analysis through tools from the web-based platform MetaboAnalyst. The students perform a complete lipidomic workflow, which includes experiment design, data processing, data normalization, and statistical analysis of molecular phospholipid species obtained from barley roots exposed to Fusarium macroconidia. The input data are provided by the teacher, but students also learn about the methods through which they were originally obtained (untargeted liquid chromatography coupled with mass spectrometry). The ultimate aim is for students to understand the biological significance of phosphatidylcholine acyl editing. The chosen methodology allows users who are not proficient in statistics to make a comprehensive analysis of quantitative lipidomic datasets. We strongly believe that virtual activities based on the analysis of such datasets should be incorporated more often into undergraduate courses, in order to improve students' data-handling skills for omics sciences.


Subject(s)
Hordeum , Lipidomics , Humans , Lipidomics/methods , Chromatography, Liquid/methods , Mass Spectrometry , Lipids/analysis
19.
Food Res Int ; 167: 112640, 2023 05.
Article in English | MEDLINE | ID: mdl-37087233

ABSTRACT

Stingless bees (Meliponini) represent over than 500 species, found in tropical and sub-tropical regions of the world. They produce geopropolis, a resinous natural product containing bioactive compounds, which is commonly used in folk medicine. In the current study, LC-HRMS and bioinformatic tools were used to carry out for the first time the lipidomic analysis of geopropolis from indigenous Brazilian stingless bees. As a result, 61 compounds of several lipid classes were identified with elevated degree of confidence. Then, we demonstrated that lipids in geopropolis are not restricted to waxes and fatty acids; but fatty amides and amines, phenolic lipids, resorcinols, retinoids, abietanoids, diterpenoids, pentacyclic triterpenoids, prostaglandins, retinoids, and steroids were found. In addition, multivariate analysis, based on the lipidomic profile of extracts, reinforces the assumption that the species of stingless bees, as well as the geographical origin are relevant factors to affect geopropolis composition once that the lipidic profile allowed the discrimination of geopropolis in groups related to the geographical origin, bee specie or bee genus. The lipidic profile also suggest a selective forage habits of T. angustula, which seems to collect resins from more specific vegetal sources regardless geographic origin, while other stingless bees, such as M. marginata and M. quadrifasciata, are less selective and may adapt to collect resins from a wider variety of plants.


Subject(s)
Propolis , Bees , Animals , Propolis/analysis , Brazil , Lipidomics , Retinoids , Lipids
20.
J Toxicol Environ Health A ; 86(9): 283-295, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36895096

ABSTRACT

Due to the high prevalence and clinical relevance, scorpionism is a critical public health issue in several Brazilian regions. Tityus serrulatus, commonly known as the Brazilian yellow scorpion, is the most venomous genus found in Brazilian fauna and associated with severe clinical manifestations such as localized pain, hypertension, sweating, tachycardia and complex hyperinflammatory responses. In general, T. serrulatus venom contains a complex mixture of active compounds, including proteins, peptides, and amino acids. Although knowledge of the protein fractions of scorpion venom is available, venom lipid components are not yet comprehensively known. The aim of the present study was to determine and characterize the lipid constituents/profile of the T. serratus venom utilizing liquid chromatography coupled with high-resolution mass spectrometry. Lipid species (164 in total) belonging to 3 different lipid categories, glycerophospholipids, sphingolipids, and glycerolipids, were identified. A further search on MetaCore/MetaDrug platform, which is based upon a manually curated database of molecular interactions, molecular pathways, gene-disease associations, chemical metabolism, and toxicity information, exhibited several metabolic pathways for 24 of previously identified lipid species, including activation of nuclear factor kappa B and oxidative stress pathways. Further several bioactive compounds, such as plasmalogens, lyso-platelet-activating factors, and sphingomyelins, associated with systemic responses triggered by T. serrulatus envenomation were detected. Finally, lipidomic data presented provide advanced and valuable information to better comprehend the mechanisms underlying the complex pathophysiology induced by T. serrulatus envenomation.


Subject(s)
Scorpion Venoms , Animals , Scorpion Venoms/toxicity , Scorpion Venoms/chemistry , Scorpions , Brazil , Lipidomics , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL