Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.714
Filter
2.
Medicina (Kaunas) ; 60(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39064543

ABSTRACT

Background and Objectives: Preoperative right portal vein embolization (RPVE) is often attempted before right hepatectomy for liver tumors to increase the future remnant liver volume (FRLV). Although many factors affecting FRLV have been discussed, few studies have focused on the ratio of the cross-sectional area of the right portal vein to that of the left portal vein (RPVA/LPVA). The aim of the present study was to evaluate the effect of RPVA/LPVA on predicting FRLV increase after RPVE. Materials and Methods: The data of 65 patients who had undergone RPVE to increase FRLV between 2004 and 2021 were investigated retrospectively. Using computed tomography scans, we measured the total liver volume (TLV), FRLV, the proportion of FRLV relative to TLV (FRLV%), the increase in FRLV% (ΔFRLV%), and RPVA/LPVA twice, immediately before and 2-3 weeks after RPVE; we analyzed the correlations among those variables, and determined prognostic factors for sufficient ΔFRLV%. Results: Fifty-four patients underwent hepatectomy. Based on the cut-off value of RPVA/LPVA, the patients were divided into low (RPVA/LPVA ≤ 1.20, N = 30) and high groups (RPVA/LPVA > 1.20, N = 35). The ΔFRLV% was significantly greater in the high group than in the low group (9.52% and 15.34%, respectively, p < 0.001). In a multivariable analysis, RPVA/LPVA (HR = 20.368, p < 0.001) was the most significant prognostic factor for sufficient ΔFRLV%. Conclusions: RPVE was more effective in patients with higher RPVA/LPVA, which is an easily accessible predictive factor for sufficient ΔFRLV%.


Subject(s)
Embolization, Therapeutic , Hepatectomy , Liver Neoplasms , Portal Vein , Humans , Portal Vein/diagnostic imaging , Male , Female , Middle Aged , Retrospective Studies , Embolization, Therapeutic/methods , Embolization, Therapeutic/statistics & numerical data , Aged , Hepatectomy/methods , Liver Neoplasms/surgery , Liver Neoplasms/therapy , Liver Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Preoperative Care/methods , Preoperative Care/standards , Preoperative Care/statistics & numerical data , Adult , Liver/diagnostic imaging , Liver/blood supply
3.
PLoS One ; 19(7): e0305725, 2024.
Article in English | MEDLINE | ID: mdl-39028708

ABSTRACT

BACKGROUND AND OBJECTIVE: The measurement of portal venous pressure (PVP) has been extensively studied, primarily through indirect methods. However, the potential of ultrasound-guided percutaneous transhepatic PVP measurement as a direct method has been largely unexplored. This study aimed to investigate the accuracy, safety, and feasibility of this approach. METHODS: In vitro, the experiment aimed to select a needle that could accurately transmit pressure, had a small inner diameter and was suitable for liver puncture, and performed on 20 healthy New Zealand white rabbits. An ultrasound-guided percutaneous transhepatic portal vein puncture was undertaken to measure PVP. Additionally, free hepatic venous pressure (FHVP) and wedged hepatic venous pressure (WHVP) were measured under digital subtraction angiography (DSA). The correlation between the two methods was assessed. Enroll study participants from October 18, 2023 to November 11, 2023 with written informed consent. Five patients were measured the PVP under ultrasound guidance before surgery to determine the feasibility of this measurement method. RESULTS: There was no significant difference in the results obtained using 9 different types of needles (P > 0.05). This demonstrated a great repeatability (P < 0.05). The 22G chiba needle with small inner diameter, allowing for accurate pressure transmission and suitable for liver puncture, was utilized for percutaneous transhepatic PVP measurement. There were positive correlations between PVP and HVPG (r = 0.881), PVP and WHVP (r = 0.709), HVPG and WHVP (r = 0.729), IVCP and FHVP (r = 0.572). The PVP was accurately and safely measured in 5 patients with segmental hepatectomy. No complications could be identified during postoperative ultrasound. CONCLUSION: Percutaneous transhepatic portal venous puncture under ultrasound guidance is accurate, safe and feasible to measure portal venous pressure. CLINICAL TRIAL REGISTRATION NUMBER: This study has been registered in the Chinese Clinical Trial Registry with registration number ChiCTR2300076751.


Subject(s)
Feasibility Studies , Portal Pressure , Portal Vein , Animals , Rabbits , Humans , Male , Female , Portal Vein/diagnostic imaging , Middle Aged , Ultrasonography, Interventional/methods , Adult , Liver/diagnostic imaging , Liver/surgery , Liver/blood supply , Punctures/methods , Ultrasonography/methods , Aged , Angiography, Digital Subtraction/methods , Blood Pressure Determination/methods
4.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000529

ABSTRACT

Despite significant efforts toward improving therapy for septic shock, mortality remains high. Applying veno-arterial (V-A) extracorporeal membrane oxygenation (ECMO) in this context remains controversial. Since the cannulation of the femoral artery for V-A ECMO return leads to lower body hyperoxia, this study investigated the impact of V-A ECMO therapy on the intestinal and hepatic microcirculation during septic shock in a rodent model. Thirty male Lewis rats were randomly assigned to receive V-A ECMO therapy with low (60 mL/kg/min) or high (90 mL/kg/min) blood flow or a sham procedure. Hemodynamic data were collected through a pressure-volume catheter in the left ventricle and a catheter in the lateral tail artery. Septic shock was induced by intravenous administration of lipopolysaccharide (1 mg/kg). The rats received lung-protective ventilation during V-A ECMO therapy. The hepatic and intestinal microcirculation was measured by micro-lightguide spectrophotometry after median laparotomy for two hours. Systemic and pulmonary inflammation was detected via enzyme-linked immunosorbent assays (ELISA) of the plasma and bronchoalveolar lavage (BAL), respectively, measuring tumor necrosis factor-alpha (TNF-α), interleukins 6 (IL-6) and 10 (IL-10), and C-X-C motif ligands 2 (CXCL2) and 5 (CXCL5). Oxygen saturation and relative hemoglobin concentration were reduced in the hepatic and intestinal microcirculation during V-A ECMO therapy, independent of the blood flow rate. Further, rats treated with V-A ECMO therapy also presented elevated systolic, diastolic, and mean arterial blood pressure and increased stroke volume, cardiac output, and left ventricular end-diastolic volume. However, left ventricular end-diastolic pressure was only elevated during high-flow V-A ECMO therapy. Blood gas analysis revealed a dilutional anemia during V-A ECMO therapy. ELISA analysis showed an elevated plasma CXCL2 concentration only during high-flow V-A ECMO therapy and elevated BAL CXCL2 and CXCL5 concentrations only during low-flow V-A ECMO therapy. Rats undergoing V-A ECMO therapy exhibited impaired microcirculation of the intestine and liver during septic shock despite increased blood pressure and cardiac output. Increased pulmonary inflammation was detected only during low-flow V-A ECMO therapy in septic shock.


Subject(s)
Disease Models, Animal , Extracorporeal Membrane Oxygenation , Intestines , Liver , Microcirculation , Rats, Inbred Lew , Shock, Septic , Animals , Extracorporeal Membrane Oxygenation/methods , Male , Rats , Shock, Septic/therapy , Shock, Septic/physiopathology , Shock, Septic/metabolism , Liver/metabolism , Liver/blood supply , Intestines/blood supply , Pneumonia/therapy , Pneumonia/metabolism , Pneumonia/physiopathology , Hemodynamics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood
5.
BMC Surg ; 24(1): 174, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824553

ABSTRACT

BACKGROUND: The purpose of this study was to investigate effect of liver Transplants (LT) with retrograde reperfusion on early postoperative recovery of liver function and its risk factors. METHODS: We conducted a retrospective analysis of clinical data from 136 liver transplantation (LT) patients at the 900th Hospital of the Chinese People's Liberation Army Joint Support Army, covering the period from January 2015 to January 2021. All participants provided informed consent, adhering to medical ethics guidelines. Patients were stratified into two groups based on the liver perfusion technique used: retrograde reperfusion (RTR, n = 108) and initial portal reperfusion (IPR, n = 28). Our study focused on a subset of 23 patients from each group to compare postoperative liver function recovery. The final analysis included 86 RTR and 28 IPR cases after excluding 8 RTR patients who underwent initial hepatic artery reperfusion and 14 who received simultaneous hepatic artery and portal vein reperfusion. Further subdivision within the RTR group identified 19 patients with early hepatic allograft dysfunction (EAD) and 67 without, allowing for an assessment of the influence of preoperative and intraoperative parameters, as well as perfusion methods, on EAD incidence post-LT. RESULTS: Alanine aminotransferase (ALT) was 329 (211 ~ 548) and 176 (98 ~ 282) U/L on the 3rd and 7th day after RTR, respectively, which was significantly lower than 451 (288 ~ 918) and 251 (147 ~ 430) U/L in the IPR group (Z =-1.979, -2.299, P = 0.048, 0.021). Aspartate aminotransferase (AST) on postoperative days 3, 5, and 7 was 252 (193, 522), 105 (79, 163), and 93 (41, 135) U/L in the RTR group, respectively; it was also significantly lower than 328 (251, 724), 179 (129, 306), and 150 (91, 200)U/L in the IPR group (Z=-2.212, -3.221, -2.979; P = 0.027, 0.001, 0.003). Logistic regression analysis showed that MELD score was an independent risk factor for EAD after LT. CONCLUSION: RTR LT is more favorable for patients' early postoperative liver function recovery. For patients undergoing LT for RTR, preoperative MELD score was an independent risk factor for their postoperative development of EAD.


Subject(s)
Liver Transplantation , Recovery of Function , Reperfusion , Humans , Male , Retrospective Studies , Female , Middle Aged , Risk Factors , Reperfusion/methods , Adult , Liver Function Tests , Liver/blood supply , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control , Postoperative Complications/etiology
6.
Transpl Int ; 37: 12686, 2024.
Article in English | MEDLINE | ID: mdl-38911062

ABSTRACT

Optimizing graft preservation is key for ex-situ split grafts in pediatric liver transplantation (PSLT). Hypothermic Oxygenated Perfusion (HOPE) improves ischemia-reperfusion injury (IRI) and post-operative outcomes in adult LT. This study compares the use of HOPE in ex-situ partial grafts to static cold storage ex-situ partial grafts (SCS-Split) and to the gold standard living donor liver transplantation (LDLT). All consecutive HOPE-Split, SCS-Split and LDLT performed between 2018-2023 for pediatric recipients were included. Post-reperfusion syndrome (PRS, drop ≥30% in systolic arterial pressure) and reperfusion biopsies served as early indicators of IRI. We included 47 pediatric recipients (15 HOPE-Split, 17 SCS-Split, and 15 LDLT). In comparison to SCS-Split, HOPE-Split had a significantly shorter cold ischemia time (CIT) (470min vs. 538 min; p =0.02), lower PRS rates (13.3% vs. 47.1%; p = 0.04) and a lower IRI score (3 vs. 4; p = 0.03). The overall IRI score (3 vs. 3; p = 0.28) and PRS (13.3% vs. 13.3%; p = 1) after HOPE-Split were comparable to LDLT, despite a longer CIT (470 min vs. 117 min; p < 0.001). Surgical complications, one-year graft, and recipient survival did not differ among the groups. In conclusion, HOPE-Split mitigates early IRI in pediatric recipients in comparison to SCS-Split, approaching the gold standard of LDLT.


Subject(s)
Liver Transplantation , Living Donors , Organ Preservation , Perfusion , Reperfusion Injury , Humans , Liver Transplantation/methods , Liver Transplantation/adverse effects , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Male , Female , Child , Child, Preschool , Organ Preservation/methods , Perfusion/methods , Adolescent , Infant , Cold Ischemia , Graft Survival , Retrospective Studies , Liver/blood supply
7.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928327

ABSTRACT

Treatment of critically ill patients with venovenous (V-V) extracorporeal membrane oxygenation (ECMO) has gained wide acceptance in the last few decades. However, the use of V-V ECMO in septic shock remains controversial. The effect of ECMO-induced inflammation on the microcirculation of the intestine, liver, and critically damaged lungs is unknown. Therefore, the aim of this study was to measure the hepatic and intestinal microcirculation and pulmonary inflammatory response in a model of V-V ECMO and septic shock in the rat. Twenty male Lewis rats were randomly assigned to receive V-V ECMO therapy or a sham procedure. Hemodynamic data were measured by a pressure-volume catheter in the left ventricle and a catheter in the lateral tail artery. Septic shock was induced by the intravenous infusion of lipopolysaccharide (1 mg/kg). During V-V ECMO therapy, rats received lung-protective ventilation. The hepatic and intestinal microcirculation was assessed by micro-lightguide spectrophotometry after median laparotomy for 2 h. Systemic and pulmonary inflammation was measured by enzyme-linked immunosorbent assays of plasma and bronchoalveolar lavage (BAL), respectively, which included tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), IL-10, C-X-C motif ligand 2 (CXCL2), and CXCL5. Reduced oxygen saturation and relative hemoglobin concentration were measured in the hepatic and intestinal microcirculation during treatment with V-V ECMO. These animals also showed increased systolic, mean, and diastolic blood pressures. While no differences in left ventricular ejection fraction were observed, animals in the V-V ECMO group presented an increased heart rate, stroke volume, and cardiac output. Blood gas analysis showed dilutional anemia during V-V ECMO, whereas plasma analysis revealed a decreased concentration of IL-10 during V-V ECMO therapy, and BAL measurements showed increased concentrations of TNF-α, CXCL2, and CXCL5. Rats treated with V-V ECMO showed impaired microcirculation of the intestine and liver during septic shock despite increased blood pressure and cardiac output. Despite lung-protective ventilation, increased pulmonary inflammation was recognized during V-V ECMO therapy in septic shock.


Subject(s)
Disease Models, Animal , Extracorporeal Membrane Oxygenation , Intestines , Liver , Microcirculation , Rats, Inbred Lew , Shock, Septic , Animals , Extracorporeal Membrane Oxygenation/methods , Male , Rats , Shock, Septic/therapy , Shock, Septic/physiopathology , Shock, Septic/metabolism , Intestines/blood supply , Liver/metabolism , Liver/blood supply , Pneumonia/therapy , Pneumonia/metabolism , Pneumonia/physiopathology , Hemodynamics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood
8.
Ulus Travma Acil Cerrahi Derg ; 30(6): 390-396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863289

ABSTRACT

BACKGROUND: Hepatic ischemia/reperfusion (I/R) injury is a significant clinical condition that can arise during liver resections, trauma, and shock. Geraniol, an isoterpene molecule commonly found in nature, possesses antioxidant and hepatoprotective properties. This study investigates the impact of geraniol on hepatic damage by inducing experimental liver I/R injury in rats. METHODS: Twenty-eight male Wistar Albino rats weighing 350-400 g were utilized for this study. The rats were divided into four groups: control group, I/R group, 50 mg/kg geraniol+I/R group, and 100 mg/kg geraniol+I/R group. Ischemia times were set at 15 minutes with reperfusion times at 20 minutes. Ischemia commenced 15 minutes after geraniol administration. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactic acid were measured, along with superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity levels in liver tissues. Liver tissues were also examined histopathologically. RESULTS: It was observed that intraperitoneal administration of 50 mg/kg and 100 mg/kg geraniol significantly reduced AST, lactic acid, and tumor necrosis factor-alpha (TNF-α) levels. The serum ALT level decreased significantly in the 50 mg/kg group, whereas no significant decrease was found in the 100 mg/kg group. SOD and GPx enzyme activities were shown to increase significantly in the 100 mg/kg group. Although there was an increase in these enzyme levels in the 50 mg/kg group, it was not statistically significant. Similarly, CAT enzyme activity increased in both the 50 mg/kg and 100 mg/kg groups, but the increase was not significant. The Suzuki score significantly decreased in both the 50 mg/kg and 100 mg/kg groups. CONCLUSION: The study demonstrates that geraniol reduced hepatic damage both biochemically and histopathologically and increased antioxidant defense enzymes. These findings suggest that geraniol could be used to prevent hepatic I/R injury, provided it is corroborated by large-scale and comprehensive studies.


Subject(s)
Acyclic Monoterpenes , Disease Models, Animal , Liver , Rats, Wistar , Reperfusion Injury , Terpenes , Animals , Acyclic Monoterpenes/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Male , Rats , Terpenes/pharmacology , Terpenes/therapeutic use , Liver/drug effects , Liver/pathology , Liver/blood supply , Antioxidants/pharmacology , Oxidative Stress/drug effects , Aspartate Aminotransferases/blood
9.
Clin Liver Dis ; 28(3): 369-381, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945632

ABSTRACT

This article reviews the pathophysiology of portal hypertension that includes multiple mechanisms internal and external to the liver. This article starts with a review of literature describing the cellular and molecular mechanisms of portal hypertension, microvascular thrombosis, sinusoidal venous congestion, portal angiogenesis, vascular hypocontractility, and hyperdynamic circulation. Mechanotransduction and the gut-liver axis, which are newer areas of research, are reviewed. Dysfunction of this axis contributes to chronic liver injury, inflammation, fibrosis, and portal hypertension. Sequelae of portal hypertension are discussed in subsequent studies.


Subject(s)
Hypertension, Portal , Hypertension, Portal/physiopathology , Hypertension, Portal/etiology , Humans , Mechanotransduction, Cellular , Liver Cirrhosis/physiopathology , Liver Cirrhosis/complications , Liver/physiopathology , Liver/blood supply , Neovascularization, Pathologic/physiopathology , Liver Circulation/physiology , Portal Vein/physiopathology
10.
J Med Case Rep ; 18(1): 303, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918846

ABSTRACT

BACKGROUND: Hemorrhage is the most common major complication after liver biopsy. Hemothorax is one type of bleeding and is very rare and dangerous. Several cases of hemothorax subsequent to liver biopsy have been documented, primarily attributed to injury of the intercostal artery or inferior phrenic artery and a few resulting from lung tissue damage; however, no previous case report of hemothorax caused by injury of musculophrenic artery after liver biopsy has been reported. CASE PRESENTATION: A 45-year-old native Chinese woman diagnosed with primary biliary cirrhosis due to long-term redness in urination and abnormal blood test indicators was admitted to our hospital for an ultrasound-guided liver biopsy to clarify pathological characteristics and disease staging. A total of 2 hours after surgery, the patient complained of discomfort in the right chest and abdomen. Ultrasound revealed an effusion in the right thorax and hemothorax was strongly suspected. The patient was immediately referred to the interventional department for digital subtraction angiography. Super-selective angiography of the right internal thoracic artery was performed which revealed significant contrast medium extravasation from the right musculophrenic artery, the terminal branch of the internal thoracic artery. Embolization was performed successfully. The vital signs of the patient were stabilized after the transarterial embolization and supportive treatment. CONCLUSION: This case draws attention to the musculophrenic artery as a potential source of hemorrhage after percutaneous liver biopsy.


Subject(s)
Embolization, Therapeutic , Hemothorax , Liver , Humans , Hemothorax/etiology , Female , Middle Aged , Liver/pathology , Liver/diagnostic imaging , Liver/blood supply , Ultrasonography, Interventional , Image-Guided Biopsy/adverse effects , Angiography, Digital Subtraction
11.
Math Biosci Eng ; 21(4): 5735-5761, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38872556

ABSTRACT

Precise segmentation of liver tumors from computed tomography (CT) scans is a prerequisite step in various clinical applications. Multi-phase CT imaging enhances tumor characterization, thereby assisting radiologists in accurate identification. However, existing automatic liver tumor segmentation models did not fully exploit multi-phase information and lacked the capability to capture global information. In this study, we developed a pioneering multi-phase feature interaction Transformer network (MI-TransSeg) for accurate liver tumor segmentation and a subsequent microvascular invasion (MVI) assessment in contrast-enhanced CT images. In the proposed network, an efficient multi-phase features interaction module was introduced to enable bi-directional feature interaction among multiple phases, thus maximally exploiting the available multi-phase information. To enhance the model's capability to extract global information, a hierarchical transformer-based encoder and decoder architecture was designed. Importantly, we devised a multi-resolution scales feature aggregation strategy (MSFA) to optimize the parameters and performance of the proposed model. Subsequent to segmentation, the liver tumor masks generated by MI-TransSeg were applied to extract radiomic features for the clinical applications of the MVI assessment. With Institutional Review Board (IRB) approval, a clinical multi-phase contrast-enhanced CT abdominal dataset was collected that included 164 patients with liver tumors. The experimental results demonstrated that the proposed MI-TransSeg was superior to various state-of-the-art methods. Additionally, we found that the tumor mask predicted by our method showed promising potential in the assessment of microvascular invasion. In conclusion, MI-TransSeg presents an innovative paradigm for the segmentation of complex liver tumors, thus underscoring the significance of multi-phase CT data exploitation. The proposed MI-TransSeg network has the potential to assist radiologists in diagnosing liver tumors and assessing microvascular invasion.


Subject(s)
Algorithms , Contrast Media , Liver Neoplasms , Microvessels , Tomography, X-Ray Computed , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Liver Neoplasms/blood supply , Microvessels/diagnostic imaging , Microvessels/pathology , Neoplasm Invasiveness , Image Processing, Computer-Assisted/methods , Liver/diagnostic imaging , Liver/pathology , Liver/blood supply , Radiographic Image Interpretation, Computer-Assisted/methods , Male , Female
12.
Cardiovasc Intervent Radiol ; 47(8): 1095-1100, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844687

ABSTRACT

PURPOSE: Hepatic venous transplant anastomotic pressure gradient measurement and transjugular liver biopsy are commonly used in clinical decision-making in patients with suspected anastomotic hepatic venous outflow obstruction. This investigation aimed to determine if sinusoidal dilatation and congestion on histology are predictive of hepatic venous anastomotic outflow obstruction, and if it can help select patients for hepatic vein anastomosis stenting. MATERIALS AND METHODS: This is a single-center retrospective study of 166 transjugular liver biopsies in 139 patients obtained concurrently with transplant venous anastomotic pressure gradient measurement. Demographic characteristics, laboratory parameters, procedure and clinical data, and histology of time-zero allograft biopsies were analyzed. RESULTS: No relationship was found between transplant venous anastomotic pressure gradient and sinusoidal dilatation and congestion (P = 0.92). Logistic regression analysis for sinusoidal dilatation and congestion confirmed a significant relationship with reperfusion/preservation injury and/or necrosis of the allograft at time-zero biopsy (OR 6.6 [1.3-33.1], P = 0.02). CONCLUSION: There is no relationship between histologic sinusoidal dilatation and congestion and liver transplant hepatic vein anastomotic gradient. In this study group, sinusoidal dilatation and congestion is a nonspecific histopathologic finding that is not a reliable criterion to select patients for venous anastomosis stenting.


Subject(s)
Hepatic Veins , Liver Transplantation , Liver , Humans , Male , Female , Retrospective Studies , Middle Aged , Hepatic Veins/pathology , Adult , Liver/pathology , Liver/blood supply , Liver/surgery , Anastomosis, Surgical , Aged , Stents , Biopsy , Dilatation, Pathologic
13.
Cardiovasc Intervent Radiol ; 47(8): 1025-1036, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38884781

ABSTRACT

This CIRSE Standards of Practice document is aimed at interventional radiologists and provides best practices for performing liver regeneration therapies prior to major hepatectomies, including portal vein embolization, double vein embolization and liver venous deprivation. It has been developed by an expert writing group under the guidance of the CIRSE Standards of Practice Committee. It encompasses all clinical and technical details required to perform liver regeneration therapies, revising the indications, contra-indications, outcome measures assessed, technique and expected outcomes.


Subject(s)
Embolization, Therapeutic , Hepatic Veins , Liver Regeneration , Portal Vein , Humans , Portal Vein/diagnostic imaging , Embolization, Therapeutic/methods , Hepatic Veins/diagnostic imaging , Hepatectomy/methods , Radiography, Interventional , Liver/blood supply , Liver/diagnostic imaging
14.
Hepatol Int ; 18(4): 1238-1248, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833138

ABSTRACT

BACKGROUND: To provide patients the chance of accepting curative transjugular intrahepatic portosystemic shunt (TIPS) rather than palliative treatments for portal hypertension-related variceal bleeding and ascites, we aimed to assess hepatic-associated vascular morphological change to improve the predictive accuracy of overt hepatic encephalopathy (HE) risks. METHODS: In this multicenter study, 621 patients undergoing TIPS were subdivided into training (413 cases from 3 hospitals) and external validation datasets (208 cases from another 3 hospitals). In addition to traditional clinical factors, we assessed hepatic-associated vascular morphological changes using maximum diameter (including absolute and ratio values). Three predictive models (clinical, hepatic-associated vascular, and combined) were constructed using logistic regression. Their discrimination and calibration were compared to test the necessity of hepatic-associated vascular assessment and identify the optimal model. Furthermore, to verify the improved performance of ModelC-V, we compared it with four previous models, both in discrimination and calibration. RESULTS: The combined model outperformed the clinical and hepatic-associated vascular models (training: 0.814, 0.754, 0.727; validation: 0.781, 0.679, 0.776; p < 0.050) and had the best calibration. Compared to previous models, ModelC-V showed superior performance in discrimination. The high-, middle-, and low-risk populations displayed significantly different overt HE incidence (p < 0.001). Despite the limited ability of pre-TIPS ammonia to predict overt HE risks, the combined model displayed a satisfactory ability to predict overt HE risks, both in the low- and high-ammonia subgroups. CONCLUSION: Hepatic-associated vascular assessment improved the predictive accuracy of overt HE, ensuring curative chances by TIPS for suitable patients and providing insights for cirrhosis-related studies.


Subject(s)
Hepatic Encephalopathy , Portasystemic Shunt, Transjugular Intrahepatic , Humans , Hepatic Encephalopathy/etiology , Male , Female , Middle Aged , Liver Cirrhosis/complications , Hypertension, Portal , Retrospective Studies , Aged , Predictive Value of Tests , Liver/pathology , Liver/blood supply
15.
BMC Med Imaging ; 24(1): 129, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822274

ABSTRACT

BACKGROUND: Segmenting liver vessels from contrast-enhanced computed tomography images is essential for diagnosing liver diseases, planning surgeries and delivering radiotherapy. Nevertheless, identifying vessels is a challenging task due to the tiny cross-sectional areas occupied by vessels, which has posed great challenges for vessel segmentation, such as limited features to be learned and difficult to construct high-quality as well as large-volume data. METHODS: We present an approach that only requires a few labeled vessels but delivers significantly improved results. Our model starts with vessel enhancement by fading out liver intensity and generates candidate vessels by a classifier fed with a large number of image filters. Afterwards, the initial segmentation is refined using Markov random fields. RESULTS: In experiments on the well-known dataset 3D-IRCADb, the averaged Dice coefficient is lifted to 0.63, and the mean sensitivity is increased to 0.71. These results are significantly better than those obtained from existing machine-learning approaches and comparable to those generated from deep-learning models. CONCLUSION: Sophisticated integration of a large number of filters is able to pinpoint effective features from liver images that are sufficient to distinguish vessels from other liver tissues under a scarcity of large-volume labeled data. The study can shed light on medical image segmentation, especially for those without sufficient data.


Subject(s)
Liver , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Liver/diagnostic imaging , Liver/blood supply , Contrast Media , Machine Learning , Algorithms , Deep Learning
16.
JCI Insight ; 9(11)2024 May 07.
Article in English | MEDLINE | ID: mdl-38713515

ABSTRACT

Portal hypertension (PHTN) is a severe complication of liver cirrhosis and is associated with intrahepatic sinusoidal remodeling induced by sinusoidal resistance and angiogenesis. Collagen type IV (COL4), a major component of basement membrane, forms in liver sinusoids upon chronic liver injury. However, the role, cellular source, and expression regulation of COL4 in liver diseases are unknown. Here, we examined how COL4 is produced and how it regulates sinusoidal remodeling in fibrosis and PHTN. Human cirrhotic liver sample RNA sequencing showed increased COL4 expression, which was further verified via immunofluorescence staining. Single-cell RNA sequencing identified liver sinusoidal endothelial cells (LSECs) as the predominant source of COL4 upregulation in mouse fibrotic liver. In addition, COL4 was upregulated in a TNF-α/NF-κB-dependent manner through an epigenetic mechanism in LSECs in vitro. Indeed, by utilizing a CRISPRi-dCas9-KRAB epigenome-editing approach, epigenetic repression of the enhancer-promoter interaction showed silencing of COL4 gene expression. LSEC-specific COL4 gene mutation or repression in vivo abrogated sinusoidal resistance and angiogenesis, which thereby alleviated sinusoidal remodeling and PHTN. Our findings reveal that LSECs promote sinusoidal remodeling and PHTN during liver fibrosis through COL4 deposition.


Subject(s)
Collagen Type IV , Endothelial Cells , Hypertension, Portal , Liver Cirrhosis , Liver , Hypertension, Portal/metabolism , Hypertension, Portal/pathology , Hypertension, Portal/genetics , Animals , Collagen Type IV/metabolism , Collagen Type IV/genetics , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver/pathology , Liver/metabolism , Liver/blood supply , Male , NF-kappa B/metabolism , Mice, Inbred C57BL , Epigenesis, Genetic
18.
Cryobiology ; 115: 104904, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734364

ABSTRACT

Increasing shortage of donor organs leads to the acceptance of less than optimal grafts for transplantation, up to and including organs donated after circulatory standstill of the donor. Therefore, protective strategies and pharmacological interventions destined to reduce ischemia induced tissue injury are considered a worthwhile focus of research. The present study evaluates the potential of a multidrug pharmacological approach as single flush at the end of static preservation to protect the liver from reperfusion injury. Livers were retrieved from male Wistar rats 20 min after cardiac standstill. The organs were cold stored for 18 h, flushed with 20 ml of saline, kept at room temperature for 20 min, and reperfused at 37 °C with oxygenated Williams E solution. In half of the cases, the flush solution was supplemented with a cocktail containing metformin, bucladesine and cyclosporin A. Upon reperfusion, treated livers disclosed a massive mitigation of hepatic release of alanine aminotransferase and aspartate aminotransferase, along with a significant approximately 50 % reduction of radical mediated lipid peroxidation, caspase activation and release of TNF-alpha. Even after preceding cold preservation, a pharmacological cocktail given as single flush is capable to mitigate manifestations of reperfusion injury in the present model.


Subject(s)
Cyclosporine , Lipid Peroxidation , Liver , Organ Preservation , Rats, Wistar , Reperfusion Injury , Tumor Necrosis Factor-alpha , Animals , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Male , Rats , Liver/drug effects , Liver/metabolism , Liver/blood supply , Organ Preservation/methods , Cyclosporine/pharmacology , Lipid Peroxidation/drug effects , Tumor Necrosis Factor-alpha/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Alanine Transaminase/metabolism , Alanine Transaminase/blood , Aspartate Aminotransferases/metabolism , Rewarming/methods , Organ Preservation Solutions/pharmacology
19.
Transplantation ; 108(6): 1417-1421, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38755751

ABSTRACT

BACKGROUND: Split liver transplantation is a valuable means of mitigating organ scarcity but requires significant surgical and logistical effort. Ex vivo splitting is associated with prolonged cold ischemia, with potentially negative effects on organ viability. Machine perfusion can mitigate the effects of ischemia-reperfusion injury by restoring cellular energy and improving outcomes. METHODS: We describe a novel technique of full-left/full-right liver splitting, with splitting and reconstruction of the vena cava and middle hepatic vein, with dual arterial and portal hypothermic oxygenated machine perfusion. The accompanying video depicts the main surgical passages, notably the splitting of the vena cava and middle hepatic vein, the parenchymal transection, and the venous reconstruction. RESULTS: The left graft was allocated to a pediatric patient having methylmalonic aciduria, whereas the right graft was allocated to an adult patient affected by hepatocellular carcinoma and cirrhosis. CONCLUSIONS: This technique allows ex situ splitting, counterbalancing prolonged ischemia with the positive effects of hypothermic oxygenated machine perfusion on graft viability. The venous outflow is preserved, safeguarding both grafts from venous congestion; all reconstructions can be performed ex situ, minimizing warm ischemia. Moreover, there is no need for highly skilled surgeons to reach the donor hospital, thereby simplifying logistical aspects.


Subject(s)
Hepatic Veins , Liver Transplantation , Perfusion , Humans , Hepatic Veins/surgery , Liver Transplantation/methods , Perfusion/methods , Perfusion/instrumentation , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Liver/blood supply , Liver/surgery , Organ Preservation/methods , Organ Preservation/instrumentation , Carcinoma, Hepatocellular/surgery , Male , Treatment Outcome , Cold Ischemia , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Adult , Liver Cirrhosis/surgery , Hypothermia, Induced
20.
J Vasc Interv Radiol ; 35(8): 1227-1233, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38754759

ABSTRACT

PURPOSE: To characterize the relationship between ablation zone volume (AZV) and microwave ablation (MWA) energy in an in vivo porcine liver model following arterial embolization. MATERIALS AND METHODS: With Institutional Animal Care and Use Committee (IACUC) approval, 11 female swine underwent either right (n = 5) or left (n = 6) hepatic artery embolization under fluoroscopic guidance. Subsequently, ultrasound (US)-guided MWA was performed in each liver segment (left lateral, left medial, right medial, and right lateral) at either 30 W (n = 4 lobes), 60 W (n = 4), 65 W (n = 20), 90 W (n = 8), 120 W (n = 4), or 140 W (n = 4) continuously for 5 minutes. Postprocedural volumetric segmentation was performed on standardized multiphase T1 magnetic resonance (MR) imaging sequences. RESULTS: Mean AZVs in embolized lobes (15.8 mL ± SD 10.6) were significantly larger than those in nonembolized lobes (11.2 mL ± SD 6.5, P < .01). MWA energy demonstrated significant positive linear correlation with both embolized (R2 = 0.66, P < .01) and nonembolized (R2 = 0.64, P < .01) lobes. The slope of the linear models corresponded to a 0.95 mL/kJ (SD ± 0.16) and 0.54 mL/kJ (SD ± 0.09) increase in ablation volume per applied kilojoule of energy (E) in embolized and nonembolized lobes, respectively. In the multivariate model, embolization status significantly modified the relationship between E and AZV as described by the following interaction term: 0.42∗E∗(embolization status) (P = .031). CONCLUSIONS: Linear models demonstrated a near 1.8-fold increase in ratio of AZV per unit E, R(AZV:E), when applied to embolized lobes relative to nonembolized lobes. Absolute AZV differences between embolized and nonembolized lobes were greater at higher-power MWA.


Subject(s)
Embolization, Therapeutic , Hepatic Artery , Liver , Microwaves , Models, Animal , Animals , Microwaves/therapeutic use , Female , Liver/blood supply , Liver/diagnostic imaging , Hepatic Artery/diagnostic imaging , Swine , Ablation Techniques , Sus scrofa , Magnetic Resonance Imaging , Ultrasonography, Interventional
SELECTION OF CITATIONS
SEARCH DETAIL