Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 575
Filter
1.
World J Gastroenterol ; 30(28): 3428-3446, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39091710

ABSTRACT

BACKGROUND: Alcohol-associated liver disease (ALD) is a leading cause of liver-related morbidity and mortality, but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis. Peroxisome proliferator activated receptor (PPAR) α and δ play a key role in lipid metabolism and intestinal barrier homeostasis, which are major contributors to the pathological progression of ALD. Meanwhile, elafibranor (EFN), which is a dual PPARα and PPARδ agonist, has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease and primary biliary cholangitis. However, the benefits of EFN for ALD treatment is unknown. AIM: To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model. METHODS: ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol (EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly (1 mL/kg) for 8 weeks. EFN (3 and 10 mg/kg/day) was orally administered during the experimental period. Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis, fibrosis, and intestinal barrier integrity. The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays. RESULTS: The hepatic steatosis, apoptosis, and fibrosis in the ALD mice model were significantly attenuated by EFN treatment. EFN promoted lipolysis and ß-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells, primarily through PPARα activation. Moreover, EFN inhibited the Kupffer cell-mediated inflammatory response, with blunted hepatic exposure to lipopolysaccharide (LPS) and toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling. EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses. The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation. CONCLUSION: EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis, enhancing hepatocyte autophagic and antioxidant capacities, and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function.


Subject(s)
Chalcones , Disease Models, Animal , Intestinal Mucosa , Liver Cirrhosis , Liver Diseases, Alcoholic , Mice, Inbred C57BL , PPAR alpha , Animals , Mice , Humans , Female , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/drug therapy , PPAR alpha/metabolism , PPAR alpha/agonists , Chalcones/pharmacology , Liver Cirrhosis/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Caco-2 Cells , Liver/pathology , Liver/drug effects , Liver/metabolism , Ethanol/toxicity , Apoptosis/drug effects , Lipid Metabolism/drug effects , PPAR delta/agonists , PPAR delta/metabolism , Signal Transduction/drug effects , Oxidative Stress/drug effects , Propionates
2.
J Agric Food Chem ; 72(29): 16323-16333, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38990278

ABSTRACT

Abrus cantoniensis Hance is a vegetative food and can be used as a folk beverage or soup to clear liver toxins and prevent liver damage. However, the components and effects of A. cantoniensis Hance in alcohol-induced liver injury were unknown. This study aimed to obtain abundant phytochemicals from A. cantoniensis Hance and identify the potency of the isolates in preventing alcohol-induced liver injury. Alcohol-stimulated AML12 cells and Lieber-DeCarli diet-fed mice were used to establish in vitro and in vivo models, respectively. Our findings indicated that flavonoid glycosides, especially AH-15, could significantly alleviate alcohol-induced liver injury by inhibiting oxidative stress. Furthermore, we demonstrated that AH-15 inhibited ferroptosis induced by lipid peroxidation. Mechanically, we found that AH-15 regulated nuclear factor erythroid 2-related factor 2 (NRF2) expression via activation of AMP-activated protein kinase (AMPK) signaling. These results indicate that A. cantoniensis Hance is a great potential functional food for alleviating alcohol-induced liver injury.


Subject(s)
AMP-Activated Protein Kinases , Abrus , Ferroptosis , Flavonoids , Glycosides , Liver Diseases, Alcoholic , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Plant Extracts , Animals , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Mice , Glycosides/pharmacology , Glycosides/chemistry , Ferroptosis/drug effects , Flavonoids/pharmacology , Flavonoids/chemistry , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , Abrus/chemistry , Liver/drug effects , Liver/metabolism , Oxidative Stress/drug effects , Cell Line
3.
Hepatol Commun ; 8(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39082957

ABSTRACT

BACKGROUND: Dysregulation of bile acids (BAs) has been reported in alcohol-associated liver disease. However, the causal relationship between BA dyshomeostasis and alcohol-associated liver disease remains unclear. The study aimed to determine whether correcting BA perturbation protects against alcohol-associated liver disease and elucidate the underlying mechanism. METHODS: BA sequestrant cholestyramine (CTM) was administered to C57BL/6J mice fed alcohol for 8 weeks to assess its protective effect and explore potential BA targets. The causal relationship between identified BA metabolite and cellular damage was examined in hepatocytes, with further manipulation of the detoxifying enzyme cytochrome p450 3A11. The toxicity of the BA metabolite was further validated in mice in an acute study. RESULTS: We found that CTM effectively reversed hepatic BA accumulation, leading to a reversal of alcohol-induced hepatic inflammation, cell death, endoplasmic reticulum stress, and autophagy dysfunction. Specifically, nordeoxycholic acid (NorDCA), a hydrophobic BA metabolite, was identified as predominantly upregulated by alcohol and reduced by CTM. Hepatic cytochrome p450 3A11 expression was in parallel with NorDCA levels, being upregulated by alcohol and reduced by CTM. Moreover, CTM reversed alcohol-induced gut barrier disruption and endotoxin translocation. Mechanistically, NorDCA was implicated in causing endoplasmic reticulum stress, suppressing autophagy flux, and inducing cell injury, and such deleterious effects could be mitigated by cytochrome p450 3A11 overexpression. Acute NorDCA administration in mice significantly induced hepatic inflammation and injury along with disrupting gut barrier integrity, leading to subsequent endotoxemia. CONCLUSIONS: Our study demonstrated that CTM treatment effectively reversed alcohol-induced liver injury in mice. The beneficial effects of BA sequestrant involve lowering toxic NorDCA levels. NorDCA not only worsens hepatic endoplasmic reticulum stress and inhibits autophagy but also mediates gut barrier disruption and systemic translocation of pathogen-associated molecular patterns in mice.


Subject(s)
Bile Acids and Salts , Cholestyramine Resin , Liver Diseases, Alcoholic , Mice, Inbred C57BL , Animals , Mice , Cholestyramine Resin/pharmacology , Cholestyramine Resin/therapeutic use , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Male , Bile Acids and Salts/metabolism , Liver/drug effects , Liver/metabolism , Endoplasmic Reticulum Stress/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Autophagy/drug effects , Disease Models, Animal
4.
Mol Nutr Food Res ; 68(12): e2300833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850176

ABSTRACT

SCOPE: Alcoholic liver disease (ALD) is a global public health concern. Nobiletin, a polymethoxyflavone abundant in citrus fruits, enhances circadian rhythms and ameliorates diet-induced hepatic steatosis, but its influences on ALD are unknown. This study investigates the role of brain and muscle Arnt-like protein-1 (Bmal1), a key regulator of the circadian clock, in nobiletin-alleviated ALD. METHODS AND RESULTS: This study uses chronic ethanol feeding plus an ethanol binge to establish ALD models in Bmal1flox/flox and Bmal1 liver-specific knockout (Bmal1LKO) mice. Nobiletin mitigates ethanol-induced liver injury (alanine aminotransferase [ALT]), glucose intolerance, hepatic apoptosis, and lipid deposition (triglyceride [TG], total cholesterol [TC]) in Bmal1flox/flox mice. Nobiletin fails to modulated liver injury (ALT, aspartate aminotransferase [AST]), apoptosis, and TG accumulation in Bmal1LKO mice. The expression of lipogenic genes (acetyl-CoA carboxylase alpha [Acaca], fatty acid synthase [Fasn]) and fatty acid oxidative genes (carnitine pamitoyltransferase [Cpt1a], cytochrome P450, family 4, subfamily a, polypeptide 10 [Cyp4a10], and cytochrome P450, family4, subfamily a, polypeptide 14 [Cyp4a14]) is inhibited, and the expression of proapoptotic genes (Bcl2 inteacting mediator of cell death [Bim]) is enhanced by ethanol in Bmal1flox/flox mice. Nobiletin antagonizes the expression of these genes in Bmal1flox/flox mice and not in Bmal1LKO mice. Nobiletin activates protein kinase B (PKB, also known as AKT) phosphorylation, increases the levels of the carbohydrate response element binding protein (ChREBP), ACC1, and FASN, and reduces the level of sterol-regulatory element binding protein 1 (SREBP1) and phosphorylation of ACC1 in a Bmal1-dependent manner. CONCLUSION: Nobiletin alleviates ALD by increasing the expression of genes involved in fatty acid oxidation by increasing AKT phosphorylation and lipogenesis in a Bmal1-dependent manner.


Subject(s)
ARNTL Transcription Factors , Flavones , Lipogenesis , Liver Diseases, Alcoholic , Mice, Knockout , Proto-Oncogene Proteins c-akt , Animals , Flavones/pharmacology , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Lipogenesis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Male , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Mice , Protective Agents/pharmacology , Ethanol , Signal Transduction/drug effects , Apoptosis/drug effects
5.
Food Funct ; 15(13): 7124-7135, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38881239

ABSTRACT

Alcoholic liver injury has become a leading threat to human health, with complicated pathogenesis and limited therapeutic options. Our previous study showed that Musculus senhousei peptides (MSPs) exhibit protective potential against early-stage alcoholic liver injury, although the underlying mechanism is not yet clear. In this study, histopathological analysis, mRNA abundance of injury-associated biomarkers, the gut microbiota, and faecal metabolome were evaluated using a mouse model subjected to acute alcohol exposure, aiming to identify the mechanism by which MSP can alleviate alcoholic hepatotoxicity. The results showed that MSP intervention significantly ameliorated symptoms of liver injury (suppressed serum ALT increment, hepatic lipid accumulation, and neutrophil infiltration in liver tissue), and reversed the abnormal mRNA abundance of biomarkers associated with oxidative stress (iNOS), inflammation (TNF-α, IL-1ß, MCP-1, TNF-R1, and TLR4), and apoptosis (Bax and Casp. 3) in the liver. Moreover, MSP improved intestinal barrier function by increasing the expression of tight junction proteins (Claudin-1 and Claudin-3). Further analysis of faecal microbiota and metabolome revealed that MSP promoted the growth of tryptophan-metabolizing bacteria (Clostridiales, Alistipes, and Odoribacter), leading to increased production of indole derivatives (indole-3-lactic acid and N-acetyltryptophan). These results suggested that MSPs may alleviate alcohol-induced liver injury targeting the gut-liver axis, and could be an effective option for the prevention of alcoholic liver injury.


Subject(s)
Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Liver , Mice, Inbred C57BL , Animals , Mice , Gastrointestinal Microbiome/drug effects , Male , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Liver/metabolism , Liver/drug effects , Peptides/pharmacology , Oxidative Stress/drug effects , Disease Models, Animal
6.
Medicine (Baltimore) ; 103(25): e38315, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905402

ABSTRACT

Gegensan (GGS) has been reported for the treatment of alcoholic liver disease (ALD), but its therapeutic mechanism is still unclear. This paper aims to determine the therapeutic mechanism and targets of action of GGS on alcoholic liver disease utilizing network pharmacology and bioinformatics. The active ingredients in GGS were screened in the literature and databases, and common targets of ALD were then obtained from public databases to construct the network diagram of traditional Chinese medicine-active ingredient targets. Based on the common targets, Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to find target enrichment pathways, and the core targets were screened out by combining differential analysis and protein-protein interaction network analysis. Molecular docking was performed to verify the binding effect between the core targets and the corresponding active ingredients. ALD and GGS have 84 common targets, corresponding to 91 active ingredients. After subsequent differential analysis and protein-protein interaction network analysis, 10 core targets were identified. Gene Ontology and KEGG enrichment analyses showed that the main BPs corresponding to the common targets included the response to lipopolysaccharide, inflammatory response, etc. The KEGG pathways involved in the regulation of the common targets included the lipid-atherosclerosis pathway and the alcoholic liver disease pathway, etc. Further molecular docking showed that the core targets CYP1A1, CYP1A2, CXCL8, ADH1C, MMP1, SERPINE1, COL1A1, APOB, MMP1, and their corresponding 4 active ingredients, Naringenin, Kaempferol, Quercetin, and Stigmasterol, have a greater docking potential. The above results suggest that GGS can regulate lipid metabolism and inflammatory response in the ALD process, and alleviate the lipid accumulation and oxidative stress caused by ethanol. This study analyzed the core targets and mechanisms of action of GGS on ALD, which provides certain theoretical support for the further development of GGS in the treatment of ALD, and provides a reference for the subsequent research on the treatment of ALD.


Subject(s)
Computational Biology , Drugs, Chinese Herbal , Liver Diseases, Alcoholic , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Network Pharmacology/methods , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Computational Biology/methods , Medicine, Chinese Traditional/methods , Gene Ontology
7.
J Biomed Sci ; 31(1): 54, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790021

ABSTRACT

BACKGROUND: Alcohol-related liver disease (ALD) is a major health concern worldwide, but effective therapeutics for ALD are still lacking. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells, was shown to reduce liver fibrosis and promote successful liver repair in mice with chronically damaged livers. However, the effect of TSG-6 and the mechanism underlying its activity in ALD remain poorly understood. METHODS: To investigate its function in ALD mice with fibrosis, male mice chronically fed an ethanol (EtOH)-containing diet for 9 weeks were treated with TSG-6 (EtOH + TSG-6) or PBS (EtOH + Veh) for an additional 3 weeks. RESULTS: Severe hepatic injury in EtOH-treated mice was markedly decreased in TSG-6-treated mice fed EtOH. The EtOH + TSG-6 group had less fibrosis than the EtOH + Veh group. Activation of cluster of differentiation 44 (CD44) was reported to promote HSC activation. CD44 and nuclear CD44 intracellular domain (ICD), a CD44 activator which were upregulated in activated HSCs and ALD mice were significantly downregulated in TSG-6-exposed mice fed EtOH. TSG-6 interacted directly with the catalytic site of MMP14, a proteolytic enzyme that cleaves CD44, inhibited CD44 cleavage to CD44ICD, and reduced HSC activation and liver fibrosis in ALD mice. In addition, a novel peptide designed to include a region that binds to the catalytic site of MMP14 suppressed CD44 activation and attenuated alcohol-induced liver injury, including fibrosis, in mice. CONCLUSIONS: These results demonstrate that TSG-6 attenuates alcohol-induced liver damage and fibrosis by blocking CD44 cleavage to CD44ICD and suggest that TSG-6 and TSG-6-mimicking peptide could be used as therapeutics for ALD with fibrosis.


Subject(s)
Cell Adhesion Molecules , Hyaluronan Receptors , Liver Cirrhosis , Liver Diseases, Alcoholic , Animals , Male , Mice , Cell Adhesion Molecules/administration & dosage , Ethanol , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Mice, Inbred C57BL , Peptides/pharmacology , Peptides/metabolism
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167259, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38796918

ABSTRACT

BACKGROUND: Alcohol-associated liver disease (ALD) is a leading cause of liver disease-related deaths worldwide. Unfortunately, approved medications for the treatment of this condition are quite limited. One promising candidate is the anthocyanin, Cyanidin-3-O-glucoside (C3G), which has been reported to protect mice against hepatic lipid accumulation, as well as fibrosis in different animal models. However, the specific effects and mechanisms of C3G on ALD remain to be investigated. EXPERIMENTAL APPROACH: In this report, a Gao-binge mouse model of ALD was used to investigate the effects of C3G on ethanol-induced liver injury. The mechanisms of these C3G effects were assessed using AML12 hepatocytes. RESULTS: C3G administration ameliorated ethanol-induced liver injury by suppressing hepatic oxidative stress, as well as through reducing hepatic lipid accumulation and inflammation. Mechanistically, C3G activated the AMPK pathway and enhanced mitophagy to eliminate damaged mitochondria, thus reducing mitochondria-derived reactive oxidative species in ethanol-challenged hepatocytes. CONCLUSIONS: The results of this study indicate that mitophagy plays a potentially important role underlying the hepatoprotective action of C3G, as demonstrated in a Gao-binge mouse model of ALD. Accordingly, C3G may serve as a promising, new therapeutic drug candidate for use in ALD.


Subject(s)
Anthocyanins , Disease Models, Animal , Ethanol , Glucosides , Liver Diseases, Alcoholic , Mitophagy , Oxidative Stress , Animals , Anthocyanins/pharmacology , Mitophagy/drug effects , Mice , Glucosides/pharmacology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Ethanol/toxicity , Ethanol/adverse effects , Oxidative Stress/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Male , Mice, Inbred C57BL , Liver/metabolism , Liver/drug effects , Liver/pathology , Reactive Oxygen Species/metabolism , Lipid Metabolism/drug effects
9.
Phytomedicine ; 130: 155774, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38820659

ABSTRACT

BACKGROUND: Metabolic and alcohol-associated liver disease (MetALD) shows a high prevalence rate in liver patients, but there is currently no effective treatment for MetALD. As a typical edible traditional Chinese medicinal herb, the anti-inflammatory, antioxidant, and hepatoprotective properties of water extract of Chrysanthemum morifolium Ramat. (WECM) has been demonstrated. However, its therapeutic effect on MetALD and the associated mechanisms remain unclear. PURPOSE: To investigate the underlying mechanisms of WECM against MetALD. METHODS: We constructed a MetALD rat model following a high-fat & high-sucrose plus alcohol diet (HFHSAD). MetALD rats were treated with WECM at 2.1, 4.2, and 8.4 g/kg/d for six weeks. Efficacy was determined, and pathways associated with WECM against MetALD were predicted through serum and hepatic biochemical marker measurement, histopathological section analysis, 16S rDNA sequencing of the gut microbiota and untargeted serum metabolomics analyses. Changes in genes and proteins in the peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ) signaling pathways were detected by RT‒PCR and Western blotting. RESULTS: WECM treatment significantly attenuated hepatic steatosis, hyperlipidemia and markers of liver injury in MetALD rats. Moreover, WECM improved vascular endothelial function, hypertension, and systematic oxidative stress. Mechanistically, WECM treatment altered the overall structure of the gut microbiota through maintaining Firmicutes/Bacteroidota ratio and reducing harmful bacterial abundances such as Clostridium, Faecalibaculum, and Herminiimonas. Notably, WECM promoted 15-deoxy-△12, 14-prostaglandin J2 (15d-PGJ2) release and further activated the PPARγ to reduce serum TNF-α, IL-1ß, and IL-6 levels. Additionally, WECM upregulated PPARα and downregulated the levels of CD36 and FABP4 to improve lipid metabolism. CONCLUSION: Our findings provide the first evidence that WECM treatment significantly improved hepatic steatosis, oxidative stress and inflammation in MetALD rats by regulating the gut microbiota and activating the 15d-PGJ2/PPARγ and PPARα signaling pathway.


Subject(s)
Chrysanthemum , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , PPAR alpha , PPAR gamma , Rats, Sprague-Dawley , Chrysanthemum/chemistry , Animals , Gastrointestinal Microbiome/drug effects , PPAR gamma/metabolism , PPAR alpha/metabolism , Male , Liver Diseases, Alcoholic/drug therapy , Diet, High-Fat/adverse effects , Rats , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Disease Models, Animal , Signal Transduction/drug effects , Drugs, Chinese Herbal/pharmacology , Oxidative Stress/drug effects
10.
Phytomedicine ; 130: 155693, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38763006

ABSTRACT

BACKGROUND: Alcoholic liver disease (ALD), a public health challenge worldwide caused by long-term persistent drinking, is life-threatening with minimal approved therapies. Hepatic steatosis accompanied by inflammation is an initial and inevitable stage in the complex progression of simple alcoholic liver injury to more severe liver diseases such as hepatitis, liver fibrosis, cirrhosis and liver cancer. PURPOSE: We aimed to identify the therapeutic role of Bruceine A (BA) in ALD whilst attempting to explore whether its protective effects depend specifically on the farnesoid X receptor (FXR). METHODS: Autodock was applied to detect the affinity between BA and FXR. Lieber-DeCarli liquid diet with 5 % ethanol (v/v) was adopted to establish the mouse ALD model. The lentivirus mediating FXR (LV-FXR) was injected into mice via the tail vein to establish FXR-overexpressed mice. FXR silencing or overexpression plasmids were transfected into AML-12 cells prior to ethanol stimulation. Quantitative real-time PCR, Western blotting and immunofluorescence assays were employed to determine the expression of related genes. We subjected liver sections to H&E and Oil Red O staining to evaluate the liver histological injury and the deposition of lipid droplets. RESULTS: BA significantly reduced body weight and liver-to-body weight ratios as well as biochemical indexes in mice. Ethanol-induced liver damage and lipid accumulation could be alleviated by BA treatment. BA bound to FXR by two hydrogen bonds. There was a positive correlation between BA administration and FXR expression. BA inhibited the expression of lipid synthesis genes and enhanced the expression of lipid metabolism genes by activating FXR, thus alleviating steatosis in ALD. Moreover, BA exerted an ameliorative effect against inflammation by inhibiting the activation of absent in melanoma 2 (AIM2) inflammasome by activating FXR. FXR overexpression possessed the ability to counter the accumulation of lipid and the activation of AIM2 inflammasome caused by ethanol. FXR deficiency exacerbated ethanol-induced liver steatosis and inflammation. The hepatoprotective effect of BA could be disrupted by FXR antagonist guggulsterone (GS) in vivo and FXR siRNA in vitro. CONCLUSION: BA alleviated alcoholic liver disease by inhibiting AIM2 inflammasome activation through an FXR-dependent mechanism. This study may potentially represent a new therapeutic approach for ALD.


Subject(s)
Inflammasomes , Liver Diseases, Alcoholic , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear , Animals , Receptors, Cytoplasmic and Nuclear/metabolism , Liver Diseases, Alcoholic/drug therapy , Inflammasomes/metabolism , Inflammasomes/drug effects , Male , Mice , Disease Models, Animal , Liver/drug effects , Liver/pathology , Liver/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Ethanol
11.
Free Radic Biol Med ; 220: 236-248, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38704052

ABSTRACT

Alcoholic liver disease (ALD) is a common chronic redox disease caused by increased alcohol consumption. Abstinence is a major challenge for people with alcohol dependence, and approved drugs have limited efficacy. Therefore, this study aimed to explore a new treatment strategy for ALD using ferroferric oxide endohedral fullerenol (Fe3O4@C60(OH)n) in combination with static magnetic and electric fields (sBE). The primary hepatocytes of 8-9-week-old female BALB/c mice were used to evaluate the efficacy of the proposed combination treatment. A mouse chronic binge ethanol feeding model was established to determine the alleviatory effect of Fe3O4@C60(OH)n on liver injury under sBE exposure. Furthermore, the ability of Fe3O4@C60(OH)n to eliminate •OH was evaluated. Alcohol-induced hepatocyte and mitochondrial damage were reversed in vitro. Additionally, the combination therapy reduced liver damage, alleviated oxidative stress by improving antioxidant levels, and effectively inhibited liver lipid accumulation in animal experiments. Here, we used a combination of magnetic derivatives of fullerenol and sBE to further improve the ROS clearance rate, thereby alleviating ALD. The developed combination treatment may effectively improve alcohol-induced liver damage and maintain redox balance without apparent toxicity, thereby enhancing therapy aimed at ALD and other redox diseases.


Subject(s)
Fullerenes , Hepatocytes , Liver Diseases, Alcoholic , Mice, Inbred BALB C , Oxidative Stress , Reactive Oxygen Species , Animals , Fullerenes/pharmacology , Fullerenes/chemistry , Fullerenes/therapeutic use , Mice , Reactive Oxygen Species/metabolism , Female , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Oxidative Stress/drug effects , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/drug therapy , Liver/metabolism , Liver/pathology , Liver/drug effects , Antioxidants/pharmacology , Disease Models, Animal , Humans , Oxidation-Reduction/drug effects , Ethanol/toxicity
12.
Int J Biol Macromol ; 270(Pt 1): 132093, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710247

ABSTRACT

Long-term and excessive alcohol consumption can lead to the development of alcoholic liver disease (ALD), characterized by oxidative damage, intestinal barrier injury, and disruption of intestinal microbiota. In this study, we extracted fucoidan (Aj-FUC) from Apostichopus japonicus using enzymatic methods and characterized its structure. The ALD model was established in male Balb/c mice using 56° Baijiu, with silymarin as a positive control. Mice were orally administered 100 mg/kg·bw and 300 mg/kg·bw of Aj-FUC for 28 days to evaluate its effects on liver injury in ALD mice and explore its potential role in modulating the gut-liver axis. The results showed significant improvements in histopathological changes and liver disease in the Aj-FUC group. Aj-FUC treatment significantly increased the levels of glutathione (GSH) and glutathione peroxidase (GSH-Px) while weakly reduced the elevation of malondialdehyde (MDA) induced by ALD. It also regulated the Nrf2/HO-1 signaling pathway, collectively alleviating hepatic oxidative stress. Aj-FUC intervention upregulated the expression of ZO-1 and Occludin, thus contributing to repair the intestinal barrier. Additionally, Aj-FUC increased the content of short-chain fatty acids (SCFAs) and regulated the imbalance in gut microbiota. These results suggested that Aj-FUC alleviates ALD by modulating the gut-liver axis homeostasis. It may prove to be a useful dietary supplement in the treatment of alcoholic liver damage.


Subject(s)
Homeostasis , Liver Diseases, Alcoholic , Liver , Oxidative Stress , Polysaccharides , Stichopus , Animals , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Homeostasis/drug effects , Oxidative Stress/drug effects , Stichopus/chemistry , Mice, Inbred BALB C , Malondialdehyde/metabolism , Gastrointestinal Microbiome/drug effects , Glutathione/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Disease Models, Animal , Glutathione Peroxidase/metabolism
13.
J Food Sci ; 89(7): 4535-4550, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38809252

ABSTRACT

Polysaccharides from natural sources can regulate the composition of intestinal flora through the "gut-liver axis" pathway, potentially ameliorating alcoholic liver injury. Aspalathus linearis, also known as rooibos, is one such natural product that has shown promise in this regard. This study looked at the structural properties of A. linearis polysaccharide (ALP) and how well it would work to treat acute alcoholic liver impairment. This study looks at the composition of monosaccharides, functional groups, and molecular weight (Mw) of a newly discovered water-soluble polysaccharide, named ALP. The polysaccharide is composed of pyranose rings, amide groups, and sulfate groups linked by ß-glycosidic linkage. It has a relative Mw of 4.30 × 103 kDa and is composed of glucose, rhamnose, and some other monosaccharides. The study found that treating mice with the model of acute alcoholic liver disease with ALP could alleviate pathological symptoms, inhibit the release of inflammatory cytokines, and suppress indicators of oxidative stress. Experiments have shown that different doses of ALP can activate the P4502E1/Keap1-Nrf2-HO-1 signaling pathway. The regulation of inflammatory factors and downstream antioxidant enzymes occurs as a result. Based on these data, it is likely that ALP protects the liver via the "gut-liver axis" pathway by reducing oxidative stress-related damage, inflammation, and alcohol-related alterations to the gut microbiome. The results indicate that ALP mitigates injury caused by oxidative stress, inflammatory responses, and changes in the gut microbiota induced by alcohol through the "gut-liver axis" pathway, which provides protection to the liver. This provides preliminary evidence for the development of related drugs. PRACTICAL APPLICATION: Researchers extracted a polysaccharide from fresh leaves of Auricularia auricula. The polysaccharide was purified and determined to have a predominantly homogeneous molecular weight. An acute alcoholic liver damage mouse model was established, and it was concluded that the polysaccharide could ameliorate liver injury in mice through the "gut-liver axis" pathway. This novel polysaccharide can be used as an additive to develop functional foods with beneficial effects, which can positively impact the daily maintenance of consumers.


Subject(s)
Liver Diseases, Alcoholic , Oxidative Stress , Polysaccharides , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Liver Diseases, Alcoholic/drug therapy , Male , Oxidative Stress/drug effects , Liver/drug effects , Liver/metabolism , Antioxidants/pharmacology , Molecular Weight , Mice, Inbred C57BL , Disease Models, Animal , Cytokines/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Cytochrome P-450 CYP2E1/metabolism
14.
Anal Biochem ; 691: 115534, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38621605

ABSTRACT

Xing 9 Ling tablet candy (X9LTC) effectively treats alcoholic liver disease (ALD), but its potential mechanism and molecular targets remain unstudied. We aimed to address this gap using network pharmacology. Furthermore, high-performance liquid chromatography (HPLC) and database analysis revealed a total of 35 active ingredients and 311 corresponding potential targets of X9LTC. Protein interaction analysis revealed PTGS2, JUN, and FOS as its core targets. Enrichment analysis indicated that chemical carcinogenesis-receptor activation, IL-17 and TNF signaling pathway were enriched by multiple core targets, which might be the main pathway of action. Further molecular docking validation showed that the core targets had good binding activities with the identified compounds. Animal experiments showed that X9LTC could reduce the high expression of ALT, AST and TG in the serum of ALD mice, alleviate the lesions in liver tissues, and reverse the high expression of PTGS2, JUN, and FOS proteins in the liver tissues. In this study, we established a method for the determination of X9LTC content for the first time, and predicted its active ingredient and mechanism of action in treating ALD, providing theoretical basis for further research.


Subject(s)
Drugs, Chinese Herbal , Liver Diseases, Alcoholic , Molecular Docking Simulation , Network Pharmacology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Animals , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Tablets , Cyclooxygenase 2/metabolism , Mice, Inbred C57BL , Chromatography, High Pressure Liquid , Liver/metabolism , Liver/drug effects
15.
Biomed Pharmacother ; 175: 116590, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653109

ABSTRACT

Alcohol-associated liver disease (ALD) is a leading factor of liver-related death worldwide. ALD has various manifestations that include steatosis, hepatitis, and cirrhosis and is currently without approved pharmacotherapies. The Src homology phosphatase 2 (Shp2) is a drug target in some cancers due to its positive regulation of Ras-mitogen-activated protein kinase signaling and cell proliferation. Shp2 pharmacological inhibition yields beneficial outcomes in animal disease models, but its impact on ALD remains unexplored. This study aims to investigate the effects of Shp2 inhibition and its validity using a preclinical mouse model of ALD. We report that the administration of SHP099, a potent and selective allosteric inhibitor of Shp2, partially ameliorated ethanol-induced hepatic injury, inflammation, and steatosis in mice. Additionally, Shp2 inhibition was associated with reduced ethanol-evoked activation of extracellular signal-regulated kinase (ERK), oxidative, and endoplasmic reticulum (ER) stress in the liver. Besides the liver, excessive alcohol consumption induces multi-organ injury and dysfunction, including the intestine. Notably, Shp2 inhibition diminished ethanol-induced intestinal inflammation and permeability, abrogated the reduction in tight junction protein expression, and the activation of ERK and stress signaling in the ileum. Collectively, Shp2 pharmacological inhibition mitigates the deleterious effects of ethanol in the liver and intestine in a mouse model of ALD. Given the multifactorial aspects underlying ALD pathogenesis, additional studies are needed to decipher the utility of Shp2 inhibition alone or as a component in a multitherapeutic regimen to combat this deadly malady.


Subject(s)
Disease Models, Animal , Ethanol , Liver Diseases, Alcoholic , Mice, Inbred C57BL , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Animals , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/enzymology , Liver Diseases, Alcoholic/drug therapy , Mice , Male , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Ethanol/toxicity , Liver/drug effects , Liver/pathology , Liver/enzymology , Liver/metabolism , Endoplasmic Reticulum Stress/drug effects , Oxidative Stress/drug effects
16.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1275-1285, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621975

ABSTRACT

This study aims to investigate the regulatory effects of Shenling Baizhu Powder(SBP) on cellular autophagy in alcoholic liver disease(ALD) and its intervention effect through the TLR4/NLRP3 pathway. A rat model of chronic ALD was established by gavage of spirits. An ALD cell model was established by stimulating BRL3A cells with alcohol. High-performance liquid chromatography(HPLC) was utilized for the compositional analysis of SBP. Liver tissue from ALD rats underwent hematoxylin-eosin(HE) and oil red O staining for pathological evaluation. Enzyme-linked immunosorbent assay(ELISA) was applied to quantify lipopolysaccharides(LPS), tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1ß), and interleukin-18(IL-18) levels. Quantitative reverse transcription polymerase chain reaction(qRT-PCR) was conducted to evaluate the mRNA expression of myeloid differentiation factor 88(MyD88) and Toll-like receptor 4(TLR4). The effect of different drugs on BRL3A cell proliferation activity was assessed through CCK-8 analysis. Western blot analysis was performed to examine the protein expression of NOD-like receptor pyrin domain-containing 3(NLRP3), nuclear factor-kappa B P65(NF-κB P65), phosphorylated nuclear factor-kappa B P65(p-P65), caspase-1, P62, Beclin1, and microtubule-associated protein 1 light chain 3(LC3Ⅱ). The results showed that SBP effectively ameliorated hepatic lipid accumulation, reduced liver function, mitigated hepatic tissue inflammation, and reduced levels of LPS, TNF-α, IL-1ß, and IL-18. Moreover, SBP exhibited the capacity to modulate hepatic autophagy induced by prolonged alcohol intake through the TLR4/NLRP3 signaling pathway. This modulation resulted in decreased expression of LC3Ⅱ and Beclin1, an elevation in P62 expression, and the promotion of autolysosome formation. These research findings imply that SBP can substantially enhance liver function and mitigate lipid irregularities in the context of chronic ALD. It achieves this by regulating excessive autophagic responses caused by prolonged spirit consumption, primarily through the inhibition of the TLR4/NLRP3 pathway.


Subject(s)
Drugs, Chinese Herbal , Liver Diseases, Alcoholic , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18 , Powders , Lipopolysaccharides , Tumor Necrosis Factor-alpha , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Beclin-1 , NF-kappa B/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/genetics
17.
Aging (Albany NY) ; 16(7): 6147-6162, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38507458

ABSTRACT

The active ingredient in Poria cocos, a parasitic plant belonging to the family Polyporaceae, is Poria cocos polysaccharide (PCP). PCP exhibits liver protection and anti-inflammatory effects, although its effect on alcoholic liver disease (ALD) remains unstudied. This study investigated the mechanism of PCP in improving ALD by regulating the Nrf2 signaling pathway. After daily intragastric administration of high-grade liquor for 4 hours, each drug group received PCPs or the ferroptosis inhibitor ferrostatin-1. The Nrf2 inhibitor ML385 (100 mg/kg/day) group was intraperitoneally injected, after which PCP (100 mg/kg/day) was administered by gavage. Samples were collected after 6 weeks for liver function and blood lipid analysis using an automatic biochemical analyzer. In the alcoholic liver injury cell model established with 150 mM alcohol, the drug group was pretreated with PCP, Fer-1, and ML385, and subsequent results were analyzed. The results revealed that PCP intervention significantly reduced liver function and blood lipid levels in alcohol-fed rats, along with decreased lipid deposition. PCP notably enhanced Nrf2 signaling expression, regulated oxidative stress levels, inhibited NF-κß, and its downstream inflammatory signaling pathways. Furthermore, PCP upregulated FTH1 protein expression and reduced intracellular Fe2+, suggesting an improvement in ferroptosis. In vitro studies yielded similar results, indicating that PCP can reduce intracellular ferroptosis by regulating oxidative stress and improve alcoholic liver injury by inhibiting the production of inflammatory factors.


Subject(s)
Ferroptosis , Liver Diseases, Alcoholic , NF-E2-Related Factor 2 , Polysaccharides , Animals , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Polysaccharides/pharmacology , Rats , Male , Signal Transduction/drug effects , Oxidative Stress/drug effects , Humans , Rats, Sprague-Dawley , Liver/metabolism , Liver/drug effects , Liver/pathology , Wolfiporia/chemistry , Disease Models, Animal
18.
Phytomedicine ; 128: 155495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471317

ABSTRACT

BACKGROUND: Ginsenosides have received increased amounts of attention due to their ability to modulate the intestinal flora, which may subsequently alleviate alcoholic liver disease (ALD). The effects of ginseng fermentation solution (GFS) on the gut microbiota and metabolism in ALD patients have not been explored. PURPOSE: This research aimed to explore the regulatory effect of GFS on ALD both in vitro and in vivo. METHOD: This study assessed the anti-ALD efficacy of GFS using an LO2 cell model and a zebrafish model. Untargeted metabolomics was used for differentially abundant metabolite analysis, and high-throughput 16S rRNA sequencing was used to examine the effect of GFS on ALD. RESULTS: The LO2 cell line experiments demonstrated that GFS effectively mitigated alcohol-induced oxidative stress and reduced apoptosis by upregulating PI3K and Bcl-2 expression and decreasing the levels of malondialdehyde, total cholesterol, and triglycerides. In zebrafish, GFS improved morphological and physiological parameters and diminished oxidative stress-induced ALD. Meanwhile, the results from Western blotting indicated that GFS enhanced the expression of PI3K, Akt, and Bcl-2 proteins while reducing Bax protein expression, thereby ameliorating the ALD model in zebrafish. Metabolomics data revealed significant changes in a total of 46 potential biomarkers. Among them, metabolites such as prostaglandin F2 alpha belong to arachidonic acid metabolism. In addition, GFS also partly reversed the imbalance of gut microbiota composition caused by alcohol. At the genus level, alcohol consumption elevated the presence of Flectobacillus, Curvibacter, among others, and diminished Elizabethkingia within the intestinal microbes of zebrafish. Conversely, GFS reversed these effects, notably enhancing the abundance of Proteobacteria and Archaea. Correlation analyses further indicated a significant negative correlation between prostaglandin F2 alpha, 11,14,15-THETA, Taurocholic acid and Curvibacter. CONCLUSION: This study highlights a novel mechanism by which GFS modulates anti-ALD activity through the PI3K/Akt signalling pathway by influencing the intestinal flora-metabolite axis. These results indicate the potential of GFS as a functional food for ALD treatment via modulation of the gut flora.


Subject(s)
Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Panax , Animals , Humans , Apoptosis/drug effects , Cell Line , Disease Models, Animal , Fermentation , Gastrointestinal Microbiome/drug effects , Ginsenosides/pharmacology , Liver Diseases, Alcoholic/drug therapy , Oxidative Stress/drug effects , Panax/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Zebrafish
19.
Chem Biodivers ; 21(5): e202400005, 2024 May.
Article in English | MEDLINE | ID: mdl-38504590

ABSTRACT

OBJECTIVE: To delve into the primary active ingredients and mechanism of Pueraria lobata for alleviating iron overload in alcoholic liver disease. METHODS: Pueraria lobata's potential targets and signaling pathways in treating alcohol-induced iron overloads were predicted using network pharmacology analysis. Then, animal experiments were used to validate the predictions of network pharmacology. The impact of puerarin or genistein on alcohol-induced iron accumulation, liver injury, oxidative stress, and apoptosis was assessed using morphological examination, biochemical index test, and immunofluorescence. Key proteins implicated in linked pathways were identified using RT-qPCR, western blot analysis, and immunohistochemistry. RESULTS: Network pharmacological predictions combined with animal experiments suggest that the model group compared to the control group, exhibited activation of the MAPK/ERK signaling pathway, suppression of hepcidin expression, and aggravated iron overload, liver damage, oxidative stress, and hepatocyte death. Puerarin and genistein, the active compounds in Pueraria lobata, effectively mitigated the aforementioned alcohol-induced effects. No statistically significant disparities were seen in the effects above between the two groups receiving drug therapy. CONCLUSION: This study preliminarily demonstrated that puerarin and genistein in Pueraria lobata may increase hepcidin production to alleviate alcohol-induced iron overload by inhibiting the MAPK/ERK signaling pathway.


Subject(s)
Iron Overload , Isoflavones , Liver Diseases, Alcoholic , MAP Kinase Signaling System , Pueraria , Pueraria/chemistry , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/pathology , Animals , Iron Overload/drug therapy , Iron Overload/metabolism , Isoflavones/pharmacology , Isoflavones/chemistry , MAP Kinase Signaling System/drug effects , Male , Oxidative Stress/drug effects , Genistein/pharmacology , Genistein/chemistry , Mice , Apoptosis/drug effects
20.
Curr Opin Gastroenterol ; 40(3): 134-142, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38362864

ABSTRACT

PURPOSE OF REVIEW: The intestinal microbiome and the gut-liver axis play a major role in health and disease. The human gut harbors trillions of microbes and a disruption of the gut homeostasis can contribute to liver disease. In this review, the progress in the field within the last 3 years is summarized, focusing on metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), autoimmune liver disease (AILD), and hepatocellular carcinoma (HCC). RECENT FINDINGS: Changes in the fecal virome and fungal mycobiome have been described in patients with various liver diseases. Several microbial derived metabolites including endogenous ethanol produced by bacteria, have been mechanistically linked to liver disease such as MASLD. Virulence factors encoded by gut bacteria contribute to ALD, AILD and HCC. Novel therapeutic approaches focused on the microbiome including phages, pre- and postbiotics have been successfully used in preclinical models. Fecal microbiota transplantation has been effective in attenuating liver disease. Probiotics are safe in patients with alcohol-associated hepatitis and improve liver disease and alcohol addiction. SUMMARY: The gut-liver axis plays a key role in the pathophysiology of liver diseases. Understanding the microbiota in liver disease can help to develop precise microbiota centered therapies.


Subject(s)
Carcinoma, Hepatocellular , Gastrointestinal Microbiome , Hepatitis, Alcoholic , Liver Diseases, Alcoholic , Liver Neoplasms , Probiotics , Humans , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , Liver Diseases, Alcoholic/drug therapy , Probiotics/therapeutic use , Gastrointestinal Microbiome/physiology
SELECTION OF CITATIONS
SEARCH DETAIL