Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.811
Filter
1.
Sensors (Basel) ; 24(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39066149

ABSTRACT

Continuous monitoring of lower extremity muscles is necessary, as the muscles support many human daily activities, such as maintaining balance, standing, walking, running, and jumping. However, conventional electromyography and physiological cross-sectional area methods inherently encounter obstacles when acquiring precise and real-time data pertaining to human bodies, with a notable lack of consideration for user comfort. Benefitting from the fast development of various fabric-based sensors, this paper addresses these current issues by designing an integrated smart compression stocking system, which includes compression garments, fabric-embedded capacitive pressure sensors, an edge control unit, a user mobile application, and cloud backend. The pipeline architecture design and component selection are discussed in detail to illustrate a comprehensive user-centered STIMES design. Twelve healthy young individuals were recruited for clinical experiments to perform maximum voluntary isometric ankle plantarflexion contractions. All data were simultaneously collected through the integrated smart compression stocking system and a muscle force measurement system (Humac NORM, software version HUMAC2015). The obtained correlation coefficients above 0.92 indicated high linear relationships between the muscle torque and the proposed system readout. Two-way ANOVA analysis further stressed that different ankle angles (p = 0.055) had more important effects on the results than different subjects (p = 0.290). Hence, the integrated smart compression stocking system can be used to monitor the muscle force of the lower extremities in isometric mode.


Subject(s)
Lower Extremity , Muscle, Skeletal , Wearable Electronic Devices , Humans , Lower Extremity/physiology , Muscle, Skeletal/physiology , Male , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Electromyography/methods , Adult , Young Adult , Female
2.
Article in English | MEDLINE | ID: mdl-39063523

ABSTRACT

The purpose of this study was to devise a tilt sensation measurement method to evaluate ankle proprioception and to examine its reliability. It was also used to determine the relationship among tilt sensation abilities, physical development, and lower limb injuries in junior athletes. In this study, a step platform created tilt angles. Participants with eye masks answered "yes" or "no" to sensing a tilt, evaluated over nine or seven trials. Experiment 1 involved 22 university students (20.6 ± 0.9 years). The minimum angle at which a tilt could be sensed while standing on both feet was determined, and measurements were taken again to examine reliability. Experiment 2 involved 40 junior athletes (12.3 ± 2.0 years), where the minimum angle for tilt sensation was obtained, and medical checks were conducted to assess injuries in the knee, lower leg, and foot. Reliability studies showed a moderately significant correlation between the first and second sessions (r = 0.504, p = 0.017), suggesting the reliability of the experimental method. The proportion capable of sensing a tilt of 1.1° and 1.6° was significantly higher in junior high school students than in elementary school students (1.1°; χ2 = 8.839, p = 0.003. 1.6°; χ2 = 4.038, p = 0.044). The group unable to sense a tilt of 1.6° and 2.1° had a significantly higher positive rate of knee injuries compared to the sensed group among junior high school students (1.6°; χ2 = 4.622, p = 0.032. 2.1°; χ2 = 4.622, p = 0.032). Our findings suggested that a reduced tilt sensation ability was associated with knee injuries in junior high school students. Utilizing our devised tilt sensation assessment could play a crucial role in preventing and detecting early injuries in junior high school students.


Subject(s)
Athletes , Proprioception , Humans , Adolescent , Male , Female , Proprioception/physiology , Child , Young Adult , Lower Extremity/physiology , Athletic Injuries/physiopathology , Reproducibility of Results
3.
PeerJ ; 12: e17626, 2024.
Article in English | MEDLINE | ID: mdl-38948226

ABSTRACT

Background: Abnormal gait is prevalent among the elderly population, leading to reduced physical activity, increased risk of falls, and the potential development of dementia and disabilities, thus degrading the quality of life in later years. Numerous studies have highlighted the crucial roles of lower limb muscle strength asymmetry and static postural control in gait, and the reciprocal influence of lower limb muscle strength asymmetry on static postural control. However, research exploring the interrelationship between lower limb muscle strength asymmetry, static postural control, and gait performance has been limited. Methods: A total of 55 elderly participants aged 60 to 75 years were recruited. Isokinetic muscle strength testing was used to assess bilateral knee extension strength, and asymmetry values were calculated. Participants with asymmetry greater than 15% were categorized as the Asymmetry Group (AG), while those with asymmetry less than 15% were classified in the Symmetry Group (SG). Gait parameters were measured using a plantar pressure gait analysis system to evaluate gait performance, and static postural control was assessed through comfortable and narrow stance tests. Results: First, participants in the AG demonstrated inferior gait performance, characterized by slower gait speed, longer stance time and percentage of stance time in gait, and smaller swing time and percentage of swing time in gait. Spatial-temporal gait parameters of the weaker limb tended to be abnormal. Second, static postural control indices were higher in AG compared to SG in all aspects except for the area of ellipse during the comfortable stance with eyes open test. Third, abnormal gait parameters were associated with static postural control. Conclusion: Firstly, elderly individuals with lower limb muscle strength asymmetry are prone to abnormal gait, with the weaker limb exhibiting poorer gait performance. Secondly, lower limb muscle strength asymmetry contributes to diminished static postural control in the elderly. Thirdly, the mechanism underlying abnormal gait in the elderly due to lower limb muscle strength asymmetry may be linked to a decline in static postural control.


Subject(s)
Gait , Lower Extremity , Muscle Strength , Postural Balance , Humans , Aged , Muscle Strength/physiology , Male , Female , Postural Balance/physiology , Lower Extremity/physiology , Gait/physiology , Middle Aged
4.
PeerJ ; 12: e17606, 2024.
Article in English | MEDLINE | ID: mdl-38952989

ABSTRACT

Objective: To investigate the effects of 12-week weight-bearing dance aerobics (WBDA) on muscle morphology, strength and functional fitness in older women. Methods: This controlled study recruited 37 female participants (66.31y ± 3.83) and divided them into intervention and control groups according to willingness. The intervention group received 90-min WBDA thrice a week for 12 weeks, while the control group maintained normal activities. The groups were then compared by measuring muscle thickness, fiber length and pennation angle by ultrasound, muscle strength using an isokinetic multi-joint module and functional fitness, such as 2-min step test, 30-s chair stand, chair sit-and-reach, TUG and single-legged closed-eyed standing test. The morphology, strength, and functional fitness were compared using ANCOVA or Mann-Whitney U test to study the effects of 12 weeks WBDA. Results: Among all recruited participants, 33 completed all tests. After 12 weeks, the thickness of the vastus intermedius (F = 17.85, P < 0.01) and quadriceps (F = 15.62, P < 0.01) was significantly increased in the intervention group compared to the control group, along with a significant increase in the torque/weight of the knee flexor muscles (F = 4.47, P = 0.04). Similarly, the intervention group revealed a significant improvement in the single-legged closed-eyed standing test (z = -2.16, P = 0.03) compared to the control group. Conclusion: The study concluded that compared to the non-exercising control group, 12-week WBDA was shown to thicken vastus intermedius, increase muscle strength, and improve physical function in older women. In addition, this study provides a reference exercise program for older women.


Subject(s)
Dancing , Muscle Strength , Weight-Bearing , Humans , Female , Muscle Strength/physiology , Aged , Dancing/physiology , Weight-Bearing/physiology , Physical Fitness/physiology , Lower Extremity/physiology , Lower Extremity/diagnostic imaging , Middle Aged , Muscle, Skeletal/physiology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/diagnostic imaging , Exercise/physiology , Quadriceps Muscle/physiology , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/anatomy & histology
5.
Scand J Med Sci Sports ; 34(8): e14690, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39049546

ABSTRACT

How the neuromechanics of the lower limb functional muscle groups change with running speed remains to be fully elucidated, with implications for our understanding of human locomotion, conditioning, and injury prevention. This study compared the neuromechanics (ground reaction and joint kinetics, kinematics and muscle activity) of middle-distance athletes running on an instrumented treadmill at six wide-ranging speeds (2.78-8.33 m·s-1). Ground reaction forces and kinematics were analyzed using inverse dynamics to calculate flexor and extensor joint torques, and positive and negative work done by these torques. Contributions of each functional muscle group to the total positive and negative work done by the limb during stance, swing, and the whole stride were quantified. During stance, the ankle plantar flexors were the major energy generator and absorber (>60%) at all speeds, but their contribution to whole stride energy generation and absorption declined with speed. Positive work by the hip extensors rose superlinearly with speed during stance (3-fold) and especially during swing (12-fold), becoming the biggest energy generator across the whole stride at >5 m·s-1. Knee flexor and extensor negative work also rose superlinearly with speed during swing, with the knee flexors becoming the greatest energy absorber over the whole stride at >7.22 m·s-1. Across speeds, plantar flexor peak moment and positive work accounted for 97% and 96% of the variance in step length, and swing hip extension peak moment and positive work accounted for 98% and 99% of the variance in step frequency. There were pronounced speed, phase (stance/swing), and work (positive/negative) dependent contributions of the different functional muscle groups during running, with extensive implications for conditioning and injury prevention.


Subject(s)
Muscle, Skeletal , Running , Humans , Running/physiology , Biomechanical Phenomena , Muscle, Skeletal/physiology , Male , Adult , Young Adult , Electromyography , Torque , Lower Extremity/physiology , Ankle Joint/physiology , Female , Gait/physiology , Knee Joint/physiology
6.
PLoS One ; 19(7): e0304665, 2024.
Article in English | MEDLINE | ID: mdl-38976655

ABSTRACT

Understanding the pivoting neuromuscular control of the lower limb and its associated muscle properties is critical for developing diagnostic and rehabilitation tools. However, to the best of our knowledge, a device that can evaluate these factors simultaneously remains lacking. To address this gap, a device that can investigate pivoting neuromuscular control and associated muscle properties was developed in this study. The proposed device consisted of a pivoting mechanism and height-adjustable chair with a brace interface. The device can control a footplate at various speeds to facilitate pivoting stretching and quantify neuromuscular control. Time-synchronized ultrasonographic images can be acquired simultaneously to quantify muscle properties during both active and passive pivoting movements. The muscle displacement, fascicle length/displacement, pennation angle, pivoting stiffness, and pivoting instability were investigated using the proposed device. Further, the feasibility of the device was demonstrated through a cross-sectional study with healthy subjects. The proposed device successfully quantified changes in muscle displacement during passive and active pivoting movements, pivoting stiffness during passive movements, and neuromuscular control during active movements. Therefore, the proposed device is expected to be used as a research and therapeutic tool for improving pivoting neuromuscular control and muscle functions and investigating the underlying mechanisms associated between muscle properties and joint movement in the transverse plane.


Subject(s)
Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Male , Adult , Female , Ultrasonography/methods , Biomechanical Phenomena , Movement/physiology , Cross-Sectional Studies , Equipment Design , Young Adult , Range of Motion, Articular/physiology , Lower Extremity/physiology
7.
PeerJ ; 12: e17658, 2024.
Article in English | MEDLINE | ID: mdl-39006011

ABSTRACT

Background: Vertical jumping is an important evaluation tool to measure muscle strength and power as well as lower limb symmetry. It is of practical importance and value to develop and utilize a portable and low-cost mobile application (APP) to evaluate jumping. The "My Jump 2" app is an iPhone camera-based application for measuring jumping movements, which is applied to the countermovement jump (CMJ) vertical jumps of the lower limbs of athletes in different sports. The validity of this application and previous versions applied to different forms of vertical jump tests has been preliminarily demonstrated in different population, which has an obvious progress in research. Therefore, the reliability and validity of the jump height, time of flight parameters and symmetry of the CMJ vertical jump of athletes in different sports are needed to be verified by more experiments. Purpose: The purpose of this study is to verify whether "My Jump 2" can effectively and reliably assess jump height, flight practice and lower limb symmetry in CMJAM (countermovement jump free arm) tests in fencing, swimming and diving athletes. Methods: Seventy-nine fencers, swimmers and divers with training experience participated in this study. They completed a total of three CMJAM vertical jump and lower limb symmetry tests in 1 day, while being assessed by using the "My Jump 2" application and a force platform. The intra-group correlation coefficient (ICC) was used to verify reliability, while the Cronbach's alpha and coefficient of variation (CV%) was used to analyze the stability of the CMJAM vertical jump test over three jumps. The Pearson correlation coefficient was used to verify the strength of the relationship between methods (i.e., concurrent validity), and the Bland-Altman plot was used to represent consistency, meanwhile, the t-test was used to determine the systematic bias between methods. Results: Compared with the force platform, the cumulative height values of the total number of jumps (r = 0.999; p = 0.000), the cumulative time to vacate (r = 0.999; p = 0.000) for the CMJAM test obtained by the "My Jump 2" application, the height (ICC = 0.999-1, p = 0.000), the time to vacate flight (ICC = 0.999-1, p = 0.000), contact time symmetry (ICC = 0.976-0.994, p = 0.000), and flight time symmetry (ICC = 0.921-0.982, p = 0.000), respectively. Showed high correlation between the results of "my jump 2" app and the force platform. Conclusion: The "My Jump 2" application is a valid tool to assess CMJAM vertical jump and lower limb symmetry in fencing, swimming and diving athletes with training experience.


Subject(s)
Athletes , Humans , Reproducibility of Results , Male , Female , Adult , Young Adult , Muscle Strength/physiology , Exercise Test/methods , Exercise Test/instrumentation , Mobile Applications , Sports/physiology , Lower Extremity/physiology , Athletic Performance/physiology
8.
J Neuroeng Rehabil ; 21(1): 114, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978051

ABSTRACT

BACKGROUND: Video-feedback observational therapy (VOT) is an intensive rehabilitation technique based on movement repetition and visualization that has shown benefits for motor rehabilitation of the upper and lower limbs. Despite an increase in recent literature on the neurophysiological effects of VOT in the upper limb, there is little knowledge about the cortical effects of visual feedback therapies when applied to the lower limbs. The aim of our study was to better understand the neurophysiological effects of VOT. Thus, we identified and compared the EEG biomarkers of healthy subjects undergoing lower limb VOT during three tasks: passive observation, observation and motor imagery, observation and motor execution. METHODS: We recruited 38 healthy volunteers and monitored their EEG activity while they performed a right ankle dorsiflexion task in the VOT. Three graded motor tasks associated with action observation were tested: action observation alone (O), motor imagery with action observation (OI), and motor execution synchronized with action observation (OM). The alpha and beta event-related desynchronization (ERD) and event-related synchronization (or beta rebound, ERS) rhythms were used as biomarkers of cortical activation and compared between conditions with a permutation test. Changes in connectivity during the task were computed with phase locking value (PLV). RESULTS: During the task, in the alpha band, the ERD was comparable between O and OI activities across the precentral, central and parietal electrodes. OM involved the same regions but had greater ERD over the central electrodes. In the beta band, there was a gradation of ERD intensity in O, OI and OM over central electrodes. After the task, the ERS changes were weak during the O task but were strong during the OI and OM (Cz) tasks, with no differences between OI and OM. CONCLUSION: Alpha band ERD results demonstrated the recruitment of mirror neurons during lower limb VOT due to visual feedback. Beta band ERD reflects strong recruitment of the sensorimotor cortex evoked by motor imagery and action execution. These results also emphasize the need for an active motor task, either motor imagery or motor execution task during VOT, to elicit a post-task ERS, which is absent during passive observation. Trial Registration NCT05743647.


Subject(s)
Electroencephalography , Feedback, Sensory , Healthy Volunteers , Lower Extremity , Humans , Male , Female , Feedback, Sensory/physiology , Adult , Lower Extremity/physiology , Young Adult , Imagination/physiology , Alpha Rhythm/physiology , Psychomotor Performance/physiology
9.
BMC Musculoskelet Disord ; 25(1): 527, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982445

ABSTRACT

BACKGROUND: This study investigated the effects of changes in motor skills from an educational video program on the kinematic and kinetic variables of the lower extremity joints and knee ligament load. METHODS: Twenty male participants (age: 22.2 ± 2.60 y; height: 1.70 ± 6.2 m; weight: 65.4 ± 7.01 kg; BMI: 23.32 ± 2.49 [Formula: see text]) were instructed to run at 4.5 ± 0.2 m/s from a 5 m distance posterior to the force plate, land their foot on the force plate, and perform the cutting maneuver on the left. The educational video program for cutting maneuvers consisted of preparatory posture, foot landing orientation, gaze and trunk directions, soft landing, and eversion angle. The measured variables were the angle, angular velocity of lower extremity joints, ground reaction force (GRF), moment, and anterior cruciate ligament (ACL) and medial collateral ligament (MCL) forces through musculoskeletal modeling. RESULTS: After the video feedback, the hip joint angles increased in flexion, abduction, and external rotation (p < 0.05), and the angular velocity increased in extension (p < 0.05). The ankle joint angles increased in dorsiflexion (p < 0.05), and the angular velocity decreased in dorsiflexion (p < 0.05) but increased in abduction (p < 0.05). The GRF increased in the anterior-posterior and medial-lateral directions and decreased vertically (p < 0.05). The hip joint moments decreased in extension and external rotation (p < 0.05) but increased in adduction (p < 0.05). The knee joint moments were decreased in extension, adduction, and external rotation (p < 0.05). The abduction moment of the ankle joint decreased (p < 0.001). There were differences in the support zone corresponding to 64‒87% of the hip frontal moment (p < 0.001) and 32‒100% of the hip horizontal moment (p < 0.001) and differences corresponding to 32‒100% of the knee frontal moment and 21‒100% of the knee horizontal moment (p < 0.001). The GRF varied in the support zone at 44‒95% in the medial-lateral direction and at 17‒43% and 73‒100% in the vertical direction (p < 0.001). CONCLUSIONS: Injury prevention feedback reduced the load on the lower extremity joints during cutting maneuvers, which reduced the knee ligament load, mainly on the MCL.


Subject(s)
Knee Joint , Motor Skills , Weight-Bearing , Humans , Male , Young Adult , Weight-Bearing/physiology , Knee Joint/physiology , Biomechanical Phenomena/physiology , Motor Skills/physiology , Video Recording , Hip Joint/physiology , Ankle Joint/physiology , Adult , Running/physiology , Lower Extremity/physiology
10.
J Biomech ; 172: 112211, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955093

ABSTRACT

Creating musculoskeletal models in a paediatric population currently involves either creating an image-based model from medical imaging data or a generic model using linear scaling. Image-based models provide a high level of accuracy but are time-consuming and costly to implement, on the other hand, linear scaling of an adult template musculoskeletal model is faster and common practice, but the output errors are significantly higher. An articulated shape model incorporates pose and shape to predict geometry for use in musculoskeletal models based on existing information from a population to provide both a fast and accurate method. From a population of 333 children aged 4-18 years old, we have developed an articulated shape model of paediatric lower limb bones to predict bone geometry from eight bone landmarks commonly used for motion capture. Bone surface root mean squared errors were found to be 2.63 ± 0.90 mm, 1.97 ± 0.61 mm, and 1.72 ± 0.51 mm for the pelvis, femur, and tibia/fibula, respectively. Linear scaling produced bone surface errors of 4.79 ± 1.39 mm, 4.38 ± 0.72 mm, and 4.39 ± 0.86 mm for the pelvis, femur, and tibia/fibula, respectively. Clinical bone measurement errors were low across all bones predicted using the articulated shape model, which outperformed linear scaling for all measurements. However, the model failed to accurately capture torsional measures (femoral anteversion and tibial torsion). Overall, the articulated shape model was shown to be a fast and accurate method to predict lower limb bone geometry in a paediatric population, superior to linear scaling.


Subject(s)
Models, Anatomic , Humans , Child , Adolescent , Child, Preschool , Male , Female , Tibia/anatomy & histology , Tibia/diagnostic imaging , Tibia/physiology , Models, Biological , Lower Extremity/anatomy & histology , Lower Extremity/physiology , Lower Extremity/diagnostic imaging , Femur/anatomy & histology , Femur/diagnostic imaging , Femur/physiology
11.
Sensors (Basel) ; 24(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38931685

ABSTRACT

BACKGROUND: During city running or marathon races, shifts in level ground and up-and-down slopes are regularly encountered, resulting in changes in lower limb biomechanics. The longitudinal bending stiffness of the running shoe affects the running performance. PURPOSE: This research aimed to investigate the biomechanical changes in the lower limbs when transitioning from level ground to an uphill slope under different longitudinal bending stiffness (LBS) levels in running shoes. METHODS: Fifteen male amateur runners were recruited and tested while wearing three different LBS running shoes. The participants were asked to pass the force platform with their right foot at a speed of 3.3 m/s ± 0.2. Kinematics data and GRFs were collected synchronously. Each participant completed and recorded ten successful experiments per pair of shoes. RESULTS: The range of motion in the sagittal of the knee joint was reduced with the increase in the longitudinal bending stiffness. Positive work was increased in the sagittal plane of the ankle joint and reduced in the keen joint. The negative work of the knee joint increased in the sagittal plane. The positive work of the metatarsophalangeal joint in the sagittal plane increased. CONCLUSION: Transitioning from running on a level surface to running uphill, while wearing running shoes with high LBS, could lead to improved efficiency in lower limb function. However, the higher LBS of running shoes increases the energy absorption of the knee joint, potentially increasing the risk of knee injuries. Thus, amateurs should choose running shoes with optimal stiffness when running.


Subject(s)
Lower Extremity , Running , Shoes , Humans , Male , Biomechanical Phenomena/physiology , Running/physiology , Lower Extremity/physiology , Adult , Range of Motion, Articular/physiology , Ankle Joint/physiology , Knee Joint/physiology , Young Adult
13.
J Electromyogr Kinesiol ; 77: 102888, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833795

ABSTRACT

Whole-body vibration (WBV) training has been employed alongside conventional exercise like resistance training to enhance skeletal muscle strength and performance. This systematic review examines the evidence regarding the effect of WBV on muscle activity, strength, and performance in healthy individuals. The Academic Search Ultimate, CINAHL, Cochrane CENTRAL, PubMed, ProQuest One Academic and SCOPUS databases were searched from 1990 to April 2023 to retrieve relevant studies. Methodological quality was assessed using the Modified Downs and Black checklist, while the level of evidence was evaluated through the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) tool. Even though the quality of the included studies was moderate to high, the level of evidence was very low owing to serious concerns with three or more GRADE domains (risk of bias, inconsistency, indirectness, imprecision, and publication bias) for each outcome of interest across studies. The review suggests that in WBV training, using moderate to high vibration frequencies (25-40 Hz) and high magnitudes (3-6 mm) can enhance muscle activation and strength in pelvis and lower limb muscles. However, findings regarding WBV effect on muscle performance measures were inconsistent. Future research with robust methodology is necessary in this area to validate and support these findings.


Subject(s)
Muscle Strength , Muscle, Skeletal , Vibration , Humans , Healthy Volunteers , Lower Extremity/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology
14.
PLoS One ; 19(6): e0303397, 2024.
Article in English | MEDLINE | ID: mdl-38848334

ABSTRACT

A novel powered ankle-foot prosthesis is designed. The effect of wearing the novel prosthesis and an energy-storage-and-return (ESAR) foot on lower-limb biomechanics is investigated to preliminarily evaluate the design. With necessary auxiliary materials, a non-amputated subject (a rookie at using prostheses) is recruited to walk on level ground with an ESAR and the novel powered prostheses separately. The results of the stride characteristics, the ground reaction force (GRF) components, kinematics, and kinetics in the sagittal plane are compared. Wearing the powered prosthesis has less prolongation of the gait cycle on the unaffected side than wearing the ESAR foot. Wearing ESAR or proposed powered prostheses influences the GRF, kinematics, and kinetics on the affected and unaffected sides to some extent. Thereinto, the knee moment on the affected side is influenced most. Regarding normal walking as the reference, among the total of 15 indexes, the influences of wearing the proposed powered prosthesis on six indexes on the affected side (ankle's/knee's/hip's angles, hip's moment, and Z- and X-axis GRF components) and five indexes on the unaffected side (ankle's/knee's/hip's angles and ankle's/hip's moments) are slighter than those of wearing the ESAR foot. The influences of wearing the powered prosthesis on two indexes on the unaffected side (knee's moment and X-axis GRF component) are similar to those of wearing the ESAR foot. The greatest improvement of wearing the powered prosthesis is to provide further plantarflexion after reaching the origin of the ankle joint before toe-off, which means that the designed powered device can provide further propulsive power for the lifting of the human body's centre of gravity during walking on level ground. The results demonstrate that wearing the novel powered ankle-foot prosthesis benefits the rookie in recovering the normal gait more than wearing the ESAR foot.


Subject(s)
Artificial Limbs , Foot , Prosthesis Design , Humans , Biomechanical Phenomena , Foot/physiology , Gait/physiology , Walking/physiology , Male , Ankle/physiology , Ankle Joint/physiology , Adult , Lower Extremity/physiology
15.
PLoS One ; 19(6): e0304511, 2024.
Article in English | MEDLINE | ID: mdl-38848409

ABSTRACT

Change of direction, stops, and pivots are among the most common non-contact movements associated with anterior cruciate ligament (ACL) injuries in soccer. By observing these dynamic movements, clinicians recognize abnormal kinematic patterns that contribute to ACL tears such as increased knee valgus or reduced knee flexion. Different motions and physical demands are observed across playing positions, which may result in varied lower limb kinematic patterns. In the present study, 28 college and sub-elite soccer players performed four dynamic motions (change of direction with and without ball, header, and instep kick) with the goal of examining the effect of on-field positioning, leg dominance, and gender in lower body kinematics. Motion capture software monitored joint angles in the knee, hip, and ankle. A three-way ANOVA showed significant differences in each category. Remarkably, centrally positioned players displayed significantly greater knee adduction (5° difference, p = 0.013), hip flexion (9° difference, p = 0.034), hip adduction (7° difference, p = 0.016), and dorsiflexion (12° difference, p = 0.022) when performing the instep kick in comparison to their laterally positioned counterparts. These findings suggest that central players tend to exhibit a greater range of motion when performing an instep kicking task compared to laterally positioned players. At a competitive level, this discrepancy could potentially lead to differences in lower limb muscle development among on-field positions. Accordingly, it is suggested to implement position-specific prevention programs to address these asymmetries in lower limb kinematics, which can help mitigate dangerous kinematic patterns and consequently reduce the risk of ACL injury in soccer players.


Subject(s)
Lower Extremity , Soccer , Humans , Soccer/physiology , Biomechanical Phenomena , Male , Female , Young Adult , Lower Extremity/physiology , Adult , Anterior Cruciate Ligament Injuries/physiopathology , Range of Motion, Articular/physiology , Knee Joint/physiology , Adolescent , Athletes , Ankle Joint/physiology , Hip Joint/physiology
16.
Sci Rep ; 14(1): 14847, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937524

ABSTRACT

Muscle morphological architecture, a crucial determinant of muscle function, has fascinated researchers since the Renaissance. Imaging techniques enable the assessment of parameters such as muscle thickness (MT), pennation angle (PA), and fascicle length (FL), which may vary with growth, sex, and physical activity. Despite known interrelationships, robust mathematical models like causal mediation analysis have not been extensively applied to large population samples. We recruited 109 males and females, measuring knee flexor and extensor, and plantar flexor MT, PA, and FL using real-time ultrasound imaging at rest. A mixed-effects model explored sex, leg (dominant vs. non-dominant), and muscle region differences. Males exhibited greater MT in all muscles (0.1 to 2.1 cm, p < 0.01), with no sex differences in FL. Dominant legs showed greater rectus femoris (RF) MT (0.1 cm, p = 0.01) and PA (1.5°, p = 0.01), while vastus lateralis (VL) had greater FL (1.2 cm, p < 0.001) and PA (0.6°, p = 0.02). Regional differences were observed in VL, RF, and biceps femoris long head (BFlh). Causal mediation analyses highlighted MT's influence on PA, mediated by FL. Moderated mediation occurred in BFlh, with FL differences. Gastrocnemius medialis and lateralis exhibited FL-mediated MT and PA relationships. This study unveils the intricate interplay of MT, FL, and PA in muscle architecture.


Subject(s)
Lower Extremity , Muscle, Skeletal , Ultrasonography , Humans , Male , Female , Adult , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Muscle, Skeletal/anatomy & histology , Ultrasonography/methods , Lower Extremity/diagnostic imaging , Lower Extremity/physiology , Lower Extremity/anatomy & histology , Young Adult , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/anatomy & histology , Quadriceps Muscle/physiology
17.
Geriatr Gerontol Int ; 24(7): 683-692, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38840315

ABSTRACT

AIM: This study aimed to investigate the associations between upper- and lower-limb muscle strength, mass, and quality and health-related quality of life (HRQoL) among community-dwelling older adults. METHODS: A cross-sectional study was conducted with 428 Brazilian community-dwelling older adults aged 60 to 80 years. Upper- and lower-limb muscle strength were evaluated through the handgrip strength (HGS) test and the 30-s chair stand test, respectively. Muscle mass was assessed by dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA). Muscle quality was evaluated using the muscle quality index (MQI). HRQoL was assessed using the World Health Organization Quality of Life Brief Version questionnaire. RESULTS: Lower-limb, but not upper-limb, muscle strength and quality were independently associated with HRQoL, particularly within the domains of physical capacity, environment, and overall HRQoL for both males and females (P < 0.05). DXA- and BIA-derived analyses provided similar results in relation to muscle mass and muscle quality. CONCLUSIONS: Lower-limb, but not upper-limb, muscle strength and quality were independently associated with HRQoL among community-dwelling older adults. Moreover, the results obtained from both BIA and DXA were similar, highlighting that BIA can serve as a viable surrogate method for estimating body composition in resource-limited clinical settings. Geriatr Gerontol Int 2024; 24: 683-692.


Subject(s)
Independent Living , Lower Extremity , Muscle Strength , Quality of Life , Upper Extremity , Humans , Aged , Male , Female , Cross-Sectional Studies , Muscle Strength/physiology , Aged, 80 and over , Upper Extremity/physiology , Brazil , Lower Extremity/physiology , Middle Aged , Absorptiometry, Photon , Hand Strength/physiology , Electric Impedance , Geriatric Assessment/methods , Surveys and Questionnaires
18.
J Therm Biol ; 122: 103877, 2024 May.
Article in English | MEDLINE | ID: mdl-38850622

ABSTRACT

The objective of the study was to examine the lower limbs skin temperature (TSK) changes in response to exhaustive whole-body exercise in trained individuals in reference to changes in plasma adenosine triphosphate (ATP). Eighteen trained participants from distinct sport type ‒ endurance (25.2 ± 4.9 yr) and speed-power (25.8 ± 3.1 yr), and 9 controls (24,9 ± 4,3 yr) ‒ were examined. Lower limbs TSK and plasma ATP measures were applied in parallel in response to incremental treadmill test and during 30-min recovery period. Plasma ATP kinetics were inversely associated to changes in TSK. The first significant decrease in TSK (76-89% of V˙ O2MAX) occurred shortly before a significant plasma ATP increase (86-97% of V˙ O2MAX). During recovery, TSK increased, reaching pre-exercise values (before exercise vs. after 30-min recovery: 31.6 ± 0.4 °C vs. 32.0 ± 0.8 °C, p = 0.855 in endurance; 32.4 ± 0.5 °C vs. 32.9 ± 0.5 °C, p = 0.061 in speed-power; 31.9 ± 0.7 °C vs. 32.4 ± 0.8 °C, p = 0.222 in controls). Plasma ATP concentration did not returned to pre-exercise values in well trained participants (before exercise vs. after 30-min recovery: 699 ± 57 nmol l-1 vs. 854 ± 31 nmol l-1, p < 0.001, η2 = 0.961 and 812 ± 35 nmol l-1 vs. 975 ± 55 nmol l-1, p < 0.001, η2 = 0.974 in endurance and speed-power, respectively), unlike in controls (651 ± 40 nmol l-1 vs. 687 ± 61 nmol·l-1, p = 0.58, η2 = 0.918). The magnitude of TSK and plasma ATP response differed between the groups (p < 0.001, η2 = 0.410 for TSK; p < 0.001, η2 = 0.833 for plasma ATP). We conclude that lower limbs TSK change indirectly corresponds to the reverse course of plasma ATP during incremental exercise and the magnitude of the response depends on the level of physical activity and the associated to it long-term metabolic adaptation.


Subject(s)
Adenosine Triphosphate , Exercise , Lower Extremity , Skin Temperature , Humans , Male , Adenosine Triphosphate/blood , Adenosine Triphosphate/metabolism , Adult , Exercise/physiology , Lower Extremity/physiology , Lower Extremity/blood supply , Young Adult , Female , Physical Endurance
19.
Med Sci Monit ; 30: e944560, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885187

ABSTRACT

BACKGROUND In various situations such as pain, exposure to hot or cold, and mental stress, where physiological stress occurs, the increased excitatory response in the sympathetic efferent neurons leads to an increased return of blood flow from the peripheral veins to the right atrium. The cold pressor test (CPT) is based on the effects of a cold stimulus that activates afferent sensory pathways to trigger a sympathetic response, resulting in an increase in blood pressure. This study aimed to evaluate the effects of the cold pressor test on popliteal vein diameter, flow velocity, and blood flow in the lower limbs in 60 healthy individuals. MATERIAL AND METHODS We included 30 men and 30 women age 18-40 years. Baseline vein diameter, flow velocity, and blood flow of the left popliteal vein were measured by Doppler ultrasound, then the left hand was immersed in a bucket of cold water. After immersing the hand in cold water for 1 minute (CPT-1), 3 measurements of vein diameter, flow velocity, and blood flow were taken again, and their averages were calculated. RESULTS In the study, data obtained from the individuals were statistically analyzed. At CPT-1, venous diameter and flow values showed significant increase compared to baseline (P=0.001, P<0.001, respectively). CONCLUSIONS In healthy volunteers, CPT increases venous flow in the popliteal veins. However, our study did not provide evidence for the hypothesis that the increase in venous return is due to venoconstriction mechanisms.


Subject(s)
Cold Temperature , Lower Extremity , Popliteal Vein , Regional Blood Flow , Humans , Male , Adult , Female , Popliteal Vein/physiology , Popliteal Vein/diagnostic imaging , Blood Flow Velocity/physiology , Young Adult , Adolescent , Lower Extremity/blood supply , Lower Extremity/physiology , Regional Blood Flow/physiology , Healthy Volunteers , Blood Pressure/physiology , Ultrasonography, Doppler/methods
20.
Sci Rep ; 14(1): 13379, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862689

ABSTRACT

As age increases, a decline in lower extremity strength leads to reduced mobility and increased fall risks. This decline outpaces the age-related reduction in muscle mass, resulting in mobility limitations. Older adults with varying degrees of mobility-disability use different stepping strategies. However, the link between functional lower extremity strength and stepping strategy is unknown. Therefore, understanding how age-related reductions in functional lower extremity strength influence stepping strategy is vital to unraveling mobility limitations. Twenty participants (17F, 72 ± 6 years) were recruited and tested at a local community event. Participants were outfitted with inertial measurement units (IMU) and walked across a pressurized walkway under single and dual motor task conditions (walking with and without carrying a tray with water) at their usual and fast speeds. Participants were dichotomized into normal (11) or low functional strength groups (9) based on age-specific normative cutoffs using the instrumented 5-repetition Sit-to-Stand test duration. Our study reveals that older adults with normal strength prefer adjusting their step time during walking tasks, while those with reduced strength do not exhibit a preferred stepping strategy. This study provides valuable insights into the influence of functional lower extremity strength on stepping strategy in community-dwelling older adults during simple and complex walking tasks. These findings could aid in diagnosing gait deviations and developing appropriate treatment or management plans for mobility disability in older adults.


Subject(s)
Independent Living , Lower Extremity , Muscle Strength , Walking , Humans , Aged , Male , Female , Walking/physiology , Lower Extremity/physiology , Muscle Strength/physiology , Gait/physiology , Aged, 80 and over , Mobility Limitation
SELECTION OF CITATIONS
SEARCH DETAIL