Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.965
Filter
1.
Luminescence ; 39(7): e4810, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965929

ABSTRACT

Four eight-coordinated luminescent samarium complexes of type [Sm(hfpd)3L2] and [Sm(hfpd)3L'] [where hfpd = 1,1,1,5,5,5-Hexafluoro-2,4-pentanedione L = tri-octyl-phosphine oxide (TOPO) and L' = 1,10-phenanthroline (phen), neocuproine (neoc) and bathocuproine (bathoc) were synthesized via a stoichiometrically controlled approach. This allows for precise control over the stoichiometry of the complexes, leading to reproducible properties. This investigation focuses on understanding the impact of secondary ligands on the luminescent properties of these complexes. Infrared (IR) spectra provided information about the molecular structures, whereas 1H and 13C nuclear magnetic resonance (NMR) spectra confirmed these structural details along with the coordination of ligands to trivalent Sm ion. The UV-vis spectra revealed the molar absorption coefficient and absorption bands associated with the hfpd ligand and photoluminescence (PL) spectroscopy demonstrated intense orange-red emission (648 nm relative to 4G5/2 → 6H9/2) from the complexes. The Commission Internationale de l'Éclairage (CIE) triangles indicated that the complexes emitted warm orange red light with color coordinates (x, y) ranging from (0.62, 0.36) to (0.40, 0.27). The investigation of the band gap as well as color parameters confirms the utility of these complexes in displays and LEDs.


Subject(s)
Luminescence , Samarium , Ligands , Samarium/chemistry , Molecular Structure , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Pentanones/chemistry , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Luminescent Measurements
2.
Luminescence ; 39(6): e4807, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38890121

ABSTRACT

ZnAl2O4 with a typical spinel structure is highly expected to be a novel rare-earth-free ion-activated oxide phosphor with red emission, which holds high actual meaning for advancing phosphor-converted light-emitting diode (pc-LED) lighting. Among the rare-earth-free activators, Mn4+ ions have emerged as one of the most promising activators. Considering the price advantage of MnCO3 generating Mn2+ ions and the charge compensation effect potentially obtaining Mn4+ ions from Mn2+ ions, this research delves into a collection of ZnAl2O4:Mn2+(Mn4+), x Li+ (x = 0%-40%) phosphors with Li+ as co-dopant and MnCO3 as Mn2+ dopant source prepared by a high temperature solid-state reaction method. The lattice structure was investigated using X-ray diffraction (XRD), photoluminescence (PL), and photoluminescence excitation (PLE) spectroscopy. Results suggest a relatively high probability of Li+ ions occupying Zn2+ lattice sites. Furthermore, Li+ ion doping was assuredly found to facilitate the oxidization of Mn2+ to Mn4+, leading to a shift of luminescence peak from 516 to 656 nm. An intriguing phenomenon that the emission color changed with the Li+ doping content was also observed. Meanwhile, the luminescence intensity and quantum yield (QY) at different temperatures, as well as the relevant thermal quenching mechanism, were determined and elucidated detailedly.


Subject(s)
Lithium , Luminescence , Manganese , Manganese/chemistry , Lithium/chemistry , Cations/chemistry , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Luminescent Measurements , Oxides/chemistry , X-Ray Diffraction , Zinc/chemistry
3.
Luminescence ; 39(6): e4809, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38890149

ABSTRACT

Utilizing the structure characteristic of KCaY (PO4)2 crystal, the site distribution of Eu2+ in KCaY (PO4)2:Eu phosphor coactivated with Eu2+ and Eu3+ ions is tuned. Upon 393-nm excitation, the as-prepared phosphor exhibits a broadband emission of Eu2+ peaked at ~ 475 nm and a typical red emission of Eu3+ with a strong 5D0-7F1 emission at ~ 591 nm. The luminescence color of the phosphor can be adjusted from blue to green, white, yellow, and red. The increasing concentration of Sr2+ and Eu2+ results in a blue shifting of Eu2+ emission. The increasing concentration of Eu3+ results in a red shifting of Eu2+ emission and an enhanced red emission of Eu3+. The luminescence behaviors of the phosphors are analyzed in terms of the site distribution of Eu2+ and Eu3+. A single-phase white light emitting was achieved in KCaY (PO4)2:Eu phosphor upon UV and NUV light excitation, indicating that the phosphor has potential application in white lighting.


Subject(s)
Europium , Luminescence , Luminescent Agents , Europium/chemistry , Luminescent Agents/chemistry , Luminescent Measurements , Phosphates/chemistry
4.
J Inorg Biochem ; 258: 112617, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38805758

ABSTRACT

Four Pt(II) bis(pyrrole-imine) Schiff base chelates (1-4) were synthesised by previously reported methods, through a condensation reaction, and the novel crystal structure of 2,2'-{propane-1,3-diylbis[nitrilo(E)methylylidene]}bis(pyrrol-1-ido)platinum(II) (1) was obtained. Pt(II) complexes 1-4 exhibited phosphorescence, with increased luminescence in anaerobic solvents or when bound to human serum albumin (HSA). One of the complexes shows a 15.6-fold increase in quantum yield when bound to HSA and could be used to detect HSA concentrations as low as 5 nM. Pt(II) complexes 1-3 was investigated as potential theranostic agents in MCF-7 breast cancer cells, but only complex 3 exhibited cytotoxicity when irradiated with UV light (λ355nmExcitation). Interestingly, the cytotoxicity of complex 1 was unresponsive to UV light irradiation. This indicates that only complex 3 can be considered a potential photosensitising agent.


Subject(s)
Pyrroles , Humans , MCF-7 Cells , Pyrroles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Schiff Bases/chemistry , Imines/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/radiation effects , Coordination Complexes/chemical synthesis , Luminescent Agents/chemistry , Luminescent Agents/toxicity , Luminescent Agents/chemical synthesis , Breast Neoplasms/pathology , Breast Neoplasms/metabolism
5.
Anal Bioanal Chem ; 416(17): 3923-3944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705905

ABSTRACT

Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Biosensing Techniques/methods , Luminescence , Animals , Peptides/chemistry , DNA/chemistry , Proteins/chemistry , Luminescent Agents/chemistry , Amino Acids/chemistry
6.
Colloids Surf B Biointerfaces ; 239: 113975, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762934

ABSTRACT

Early and accurate cancer diagnosis is crucial for improving patient survival rates. Luminescent nanoparticles have emerged as a promising tool in fluorescence bioimaging for cancer diagnosis. To enhance diagnostic accuracy, ligands promoting endocytosis into cancer cells are commonly incorporated onto nanoparticle surfaces. Folic acid (FA) is one such ligand, known to specifically bind to folate receptors (FR) overexpressed in various cancer cells such as cervical and ovarian carcinoma. Therefore, surface modification of luminescent nanoparticles with FA can enhance both luminescence efficiency and diagnostic accuracy. In this study, luminescent europium-doped hydroxyapatite (EuHAp) nanocrystals were prepared via hydrothermal method and subsequently modified with (3-Aminopropyl)triethoxysilane (APTES) followed by FA to target FR-positive human cervical adenocarcinoma cell line (HeLa) cells. The sequential grafting of APTES and then FA formed a robust covalent linkage between the nanocrystals and FA. Rod-shaped FA-modified EuHAp nanocrystals, approximately 100 nm in size, exhibited emission peaks at 589, 615, and 650 nm upon excitation at 397 nm. Despite a reduction in photoluminescence intensity following FA modification, fluorescence microscopy revealed a remarkable 120-fold increase in intensity compared to unmodified EuHAp, attributed to the enhanced uptake of FA-modified EuHAp. Additionally, confocal microscope observations confirmed the specificity and the internalization of FA-modified EuHAp nanocrystals in HeLa cells. In conclusion, the modification of EuHAp nanocrystals with FA presents a promising strategy to enhance the diagnostic potential of cancer bioimaging probes.


Subject(s)
Durapatite , Europium , Folic Acid , Nanoparticles , Humans , Folic Acid/chemistry , Europium/chemistry , Nanoparticles/chemistry , HeLa Cells , Durapatite/chemistry , Luminescence , Microscopy, Fluorescence , Propylamines/chemistry , Particle Size , Luminescent Agents/chemistry
7.
Anal Chem ; 96(22): 9236-9243, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38767294

ABSTRACT

The early detection of nonalcoholic fatty liver disease (NAFLD) through bioluminescent probes is of great significance. However, there remains a challenge to apply them in nontransgenic natural animals due to the lack of exogenous luciferase. To address this issue, we herein report a new strategy for in situ monitoring of endogenous hydrogen sulfide (H2S) in the liver of NAFLD mice by leveraging a H2S-responsive bioluminescent probe (H-Luc) combined with firefly luciferase (fLuc) mRNA delivery. The probe H-Luc was created by installing a H2S recognition moiety, 2,4-dinitrophenol, onto the luciferase substrate (d-luciferin), which is allowed to release cage-free d-luciferin in the presence of H2S via a nucleophilic aromatic substitution reaction. In the meantime, the intracellular luciferase was introduced by lipid nanoparticle (LNP)-mediated fLuc mRNA delivery, rendering it suitable for bioluminescence (BL) imaging in vitro and in vivo. Based on this luciferase-luciferin system, the endogenous H2S could be sensitively and selectively detected in living cells, showing a low limit of detection (LOD) value of 0.72 µM. More importantly, after systematic administration of fLuc mRNA-loaded LNPs in vivo, H-Luc was able to successfully monitor the endogenous H2S levels in the NAFLD mouse model for the first time, displaying a 28-fold higher bioluminescence intensity than that in the liver of normal mice. We believe that this strategy may shed new light on the diagnosis of inflammatory liver disease, further elucidating the roles of H2S.


Subject(s)
Hydrogen Sulfide , Luciferases, Firefly , Luminescent Measurements , Non-alcoholic Fatty Liver Disease , RNA, Messenger , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/analysis , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Mice , RNA, Messenger/metabolism , RNA, Messenger/administration & dosage , Humans , Luminescent Agents/chemistry , Nanoparticles/chemistry , Mice, Inbred C57BL
8.
J Am Chem Soc ; 146(19): 13406-13416, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698549

ABSTRACT

Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.


Subject(s)
Luciferases , Luminescent Measurements , Potassium , Potassium/metabolism , Potassium/chemistry , Animals , Luminescent Measurements/methods , Mice , Luciferases/chemistry , Luciferases/metabolism , Humans , Protein Engineering , Luminescent Agents/chemistry , Firefly Luciferin/chemistry , Firefly Luciferin/metabolism
9.
Luminescence ; 39(5): e4762, 2024 May.
Article in English | MEDLINE | ID: mdl-38698695

ABSTRACT

Broadband near-infrared (NIR) spectroscopy has gained significant attention due to its versatile application in various fields. In the realm of NIR phosphors, Fe3+ ion is an excellent activator known for its nontoxic and harmless nature. In this study, we prepared an Fe3+-activated SrGa12O19 (SGO) NIR phosphor and analyzed its phase and luminescence properties. Upon excitation at 326 nm, the SGO:Fe3+ phosphor exhibited a broadband emission in the range 700-1000 nm, peaking at 816 nm. The optical band gap of SGO:Fe3+ was evaluated. To enhance the long-lasting phosphorescence, an oxygen vacancy-rich SGO:Fe3+ (VO-SGO:Fe3+) sample was prepared for activation. Interestingly, the increase in the oxygen-vacancy concentration indeed contributed to the activation of persistent luminescence of Fe3+ ions. The VO-SGO:Fe3+ sample has a long duration and high charge storage capacity, allowing it to perform efficiently in various applications. This work provides the foundation for further design of Cr3+-free PersL phosphors with efficient NIR PersL.


Subject(s)
Luminescence , Luminescent Agents , Oxygen , Oxygen/chemistry , Luminescent Agents/chemistry , Strontium/chemistry , Luminescent Measurements , Ferric Compounds/chemistry , Gallium/chemistry , Iron/chemistry , Spectroscopy, Near-Infrared
10.
Luminescence ; 39(5): e4750, 2024 May.
Article in English | MEDLINE | ID: mdl-38733198

ABSTRACT

Ultra-high thermally stable Ca2MgWO6:xSm3+ (x = 0.5, 0.75, 1, 1.25, and 1.5 mol%) double perovskite phosphors were synthesized through solid-state reaction method. Product formation was confirmed by comparing the X-ray diffraction (XRD) patterns of the phosphors with the standard reference file. The structural, morphological, thermal, and optical properties of the prepared phosphor were examined in detail using XRD, Fourier transform infrared spectra, scanning electron microscopy, diffused reflectance spectra, thermogravimetric analysis (TGA), photoluminescence emission, and temperature-dependent PLE (TDPL). It was seen that the phosphor exhibited emission in the reddish region for the near-ultraviolet excitation with moderate Colour Rendering Index values and high colour purity. The optimized phosphor (x = 1.25 mol%) was found to possess a direct optical band gap of 3.31 eV. TGA studies showed the astonishing thermal stability of the optimized phosphor. Additionally, near-zero thermal quenching was seen in TDPL due to elevated phonon-assisted radiative transition. Furthermore, the anti-Stokes and Stokes emission peaks were found to be sensitive toward the temperature change and followed a Boltzmann-type distribution. All these marked properties will make the prepared phosphors a suitable candidate for multifield applications and a fascinating material for further development.


Subject(s)
Luminescence , Luminescent Agents , Samarium , Temperature , Tungsten Compounds , Tungsten Compounds/chemistry , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Samarium/chemistry , Luminescent Measurements , X-Ray Diffraction , Calcium Compounds/chemistry , Oxides/chemistry , Thermogravimetry
11.
Luminescence ; 39(5): e4779, 2024 May.
Article in English | MEDLINE | ID: mdl-38769873

ABSTRACT

Carbon dots have attracted widespread attention due to their excellent optical properties and so on and are therefore used in various fields such as anti-counterfeiting. There are many reports on carbon dot-based room-temperature phosphorescent materials, but there are still fewer reports on carbon dot-based room-temperature phosphorescent materials with time-dependent color-changing properties. In this work, a time-dependent color-changing carbon dot-based room-temperature phosphorescent material with the ability to change from green to blue was successfully prepared by a simple one-pot heating method using hydroxyurea as the only raw material. In this process, hydroxyurea is used as both a carbon and nitrogen source, and in the process of material formation, hydroxyurea also partially forms cyanuric acid as a matrix to make the carbon dots uniformly dispersed in it. By blending the ratio of the dual emission centers of the carbon dots themselves, the final effect of time-dependent color-changing is achieved by taking advantage of the intensity changes and color differences of each emission center. The present work provides new ideas for the preparation of time-dependent color-changing carbon dot-based room-temperature phosphorescent materials.


Subject(s)
Carbon , Color , Quantum Dots , Temperature , Carbon/chemistry , Quantum Dots/chemistry , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Time Factors
12.
Inorg Chem ; 63(22): 10443-10451, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38774973

ABSTRACT

Long-term in situ plasma membrane-targeted imaging is highly significant for investigating specific biological processes and functions, especially for the imaging and tracking of apoptosis processes of cells. However, currently developed membrane probes are rarely utilized to monitor the in situ damage of the plasma membrane. Herein, a transition-metal complex phosphorescent indicator, Ru-Chol, effectively paired with cholesterol, exhibits excellent properties on staining the plasma membrane, with excellent antipermeability, good photostability, large Stokes shift, and long luminescence lifetime. In addition, Ru-Chol not only has the potential to differentiate cancerous cells from normal cells but also tracks in real time the entire progression of cisplatin-induced plasma membrane damage and cell apoptosis. Therefore, Ru-Chol can serve as an efficient tool for the monitoring of morphological and physiological changes in the plasma membrane, providing assistance for drug screening and early diagnosis and treatment of diseases, such as immunodeficiency, diabetes, cirrhosis, and tumors.


Subject(s)
Cell Membrane , Cholesterol , Coordination Complexes , Ruthenium , Humans , Ruthenium/chemistry , Cholesterol/chemistry , Cholesterol/analysis , Cell Membrane/chemistry , Cell Membrane/metabolism , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Apoptosis/drug effects , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Cisplatin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Structure
13.
Chemistry ; 30(33): e202400680, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38593232

ABSTRACT

Supramolecular metallogels combine the rheological properties of gels with the color, magnetism, and other properties of metal ions. Lanthanide ions such as Eu(III) can be valuable components of metallogels due to their fascinating luminescence. In this work, we combine Eu(III) and iminodiacetic acid (IDA) into luminescent hydrogels. We investigate the tailoring of the rheological properties of these gels by changes in their metal:ligand ratio. Further, we use the highly sensitive Eu(III) luminescence to obtain information about the chemical structure of the materials. In special, we take advantage of computational calculations to employ an indirect method for structural elucidation, in which the simulated luminescent properties of candidate structures are matched to the experimental data. With this strategy, we can propose molecular structures for different EuIDA gels. We also explore the usage of these gels for the loading of bioactive molecules such as OXA, observing that its aldose reductase activity remains present in the gel. We envision that the findings from this work could inspire the development of luminescent hydrogels with tunable rheology for applications such as 3D printing and imaging-guided drug delivery platforms. Finally, Eu(III) emission-based structural elucidation could be a powerful tool in the characterization of advanced materials.


Subject(s)
Europium , Hydrogels , Europium/chemistry , Hydrogels/chemistry , Luminescence , Imino Acids/chemistry , Rheology , Luminescent Agents/chemistry , Ligands , Gels/chemistry
14.
Inorg Chem ; 63(18): 8320-8328, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38660721

ABSTRACT

Histidine plays an essential role in most biological systems. Changes in the homeostasis of histidine and histidine-rich proteins are connected to several diseases. Herein, we report a water-soluble Cu(II) coordination polymer, labeled CuCP, for the fluorimetric detection of histidine and histidine-rich proteins and peptides. Single-crystal structure determination of CuCP revealed a two-dimensional wavy network structure in which a carboxylate group connects the individual Cu(II) dimer unit in a syn-anti conformation. The weakly luminescent and water-soluble CuCP shows turn-on blue emission in the presence of histidine and histidine-rich peptides and proteins. The polymer can also stain histidine-rich proteins via gel electrophoresis. The limits of quantifications for histidine, glycine-histidine, serine-histidine, human serum albumin (HSA), bovine serum albumin, pepsin, trypsin, and lysozyme were found to be 300, 160, 600, 300, 600, 800, 120, and 290 nM, respectively. Utilizing the fluorescence turn-on property of CuCP, we measured HSA quantitatively in the urine samples. We also validated the present urinary HSA measurement assay with existing analytical techniques. Job's plot, 1H NMR, high-resolution mass spectrometry (HRMS), electron paramagnetic resonance (EPR), fluorescence, and UV-vis studies confirmed the ligand displacement from CuCP in the presence of histidine.


Subject(s)
Copper , Histidine , Peptides , Proteins , Water , Copper/chemistry , Copper/analysis , Histidine/chemistry , Histidine/analysis , Histidine/urine , Humans , Water/chemistry , Peptides/chemistry , Proteins/chemistry , Proteins/analysis , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Solubility , Polymers/chemistry , Cattle , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Animals
15.
Anal Chem ; 96(18): 6978-6985, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38652863

ABSTRACT

Drug-induced liver injury (DILI) is a common liver disease with a high rate of morbidity, and its pathogenesis is closely associated with the overproduction of highly reactive hypochlorite (ClO-) in the liver. However, bioluminescence imaging of endogenous hypochlorite in nontransgenic natural mice remains challenging. Herein, to address this issue, we report a strategy for imaging ClO- in living cells and DILI mice by harnessing a bioluminescent probe formylhydrazine luciferin (ClO-Luc) combined with firefly luciferase (fLuc) mRNA-loaded lipid nanoparticles (LNPs). LNPs could efficiently deliver fLuc mRNA into living cells and in vivo, expressing abundant luciferase in the cytoplasm in situ. In the presence of ClO-, probe ClO-Luc locked by formylhydrazine could release cage-free d-luciferin through oxidation and follow-up hydrolysis reactions, further allowing for bioluminescence imaging. Moreover, based on the luciferase-luciferin system, it was able to sensitively and selectively detect ClO- in vitro with a limit of detection of 0.59 µM and successfully monitor the endogenous hypochlorite generation in the DILI mouse model for the first time. We postulate that this work provides a new method to elucidate the roles of ClO- in related diseases via bioluminescence imaging.


Subject(s)
Chemical and Drug Induced Liver Injury , Hypochlorous Acid , Liposomes , Luciferases, Firefly , Luminescent Measurements , Nanoparticles , RNA, Messenger , Animals , Hypochlorous Acid/metabolism , Mice , Nanoparticles/chemistry , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/diagnostic imaging , RNA, Messenger/metabolism , RNA, Messenger/genetics , Luminescent Agents/chemistry , Humans , Lipids/chemistry , Optical Imaging
16.
Talanta ; 274: 126000, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38608630

ABSTRACT

Luminescent ß-diketonate-europium(III) complexes have been found a wide range of applications in time-gated luminescence (TGL) bioassays, but their poor water solubility is a main problem that limits their effective uses. In this work we propose a simple and general strategy to enhance the water solubility of luminescent ß-diketonate-europium(III) complexes that permits facile synthesis and purification. By introducing the fluorinated carboxylic acid group into the structures of ß-diketone ligands, two highly water-soluble and luminescent Eu3+ complexes, PBBHD-Eu3+ and CPBBHD-Eu3+, were designed and synthesized. An excellent solubility exceeding 20 mg/mL for PBBHD-Eu3+ was found in a pure aqueous buffer, while it also displayed strong and long-lived luminescence (quantum yield φ = 26%, lifetime τ = 0.49 ms). After the carboxyl groups of PBBHD-Eu3+ were activated, the PBBHD-Eu3+-labeled streptavidin-bovine serum albumin (SA-BSA) conjugate was prepared, and successfully used for the immunoassay of human α-fetoprotein (AFP) and the imaging of an environmental pathogen Giardia lamblia under TGL mode, which demonstrated the practicability of PBBHD-Eu3+ for highly sensitive TGL bioassays. The carboxyl groups of PBBHD can also be easily derivatized with other reactive chemical groups, which enables PBBHD-Eu3+ to meet diverse requirements of biolabeling technique, to provide new opportunities for developing functional europium(III) complex biolabels serving for TGL bioassays.


Subject(s)
Europium , Solubility , Water , Europium/chemistry , Water/chemistry , Humans , Luminescent Measurements/methods , Serum Albumin, Bovine/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Giardia lamblia/drug effects , Luminescence , Animals , Biological Assay/methods , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Streptavidin/chemistry , Time Factors , Cattle , Keto Acids/chemistry
17.
Luminescence ; 39(5): e4751, 2024 May.
Article in English | MEDLINE | ID: mdl-38666358

ABSTRACT

This study describes the luminous properties of Pb5(PO4)3Br doped with RE3+ (RE = Dy3+, Eu3+ and Tb3+) synthesised using the solid-state method. The synthesised phosphor was characterised using Fourier-transform infrared, X-ray diffraction, scanning electron microscopy and photoluminescence measurements. Dy3+-doped Pb5(PO4)3Br phosphor exhibited blue and yellow emissions at 480 and 573 nm, respectively, on excitation at 388 nm. Eu3+-doped Pb5(PO4)3Br phosphor exhibited orange and red emissions at 591 and 614 nm, respectively, on excitation at λex = 396 nm. Pb5(PO4)3Br:Tb3+ phosphor exhibited the strongest green emission at 547 nm on excitation at λex = 380 nm. Additionally, the effect of the concentration of rare-earth ions on the emission intensity of Pb5(PO4)3Br:RE3+ (RE3+ = Dy3+, Eu3+ and Tb3+) phosphors was investigated.


Subject(s)
Europium , Luminescence , Luminescent Agents , Europium/chemistry , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Terbium/chemistry , Phosphates/chemistry , Luminescent Measurements , X-Ray Diffraction , Lead/chemistry
18.
Anal Bioanal Chem ; 416(17): 3887-3905, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38592442

ABSTRACT

Photoluminescent materials (PLNs) are photoluminescent materials that can absorb external excitation light, store it, and slowly release it in the form of light in the dark to achieve long-term luminescence. Developing near-infrared (NIR) PLNs is critical to improving long-afterglow luminescent materials. Because they excite in vitro, NIR-PLNs have the potential to avoid interference from in vivo autofluorescence in biomedical applications. These materials are promising for biosensing and bioimaging applications by exploiting the near-infrared biological window. First, we discuss the biomedical applications of PLNs in the first near-infrared window (NIR-I, 700-900 nm), which have been widely developed and specifically introduce biosensors and imaging reagents. However, the light in this area still suffers from significant light scattering and tissue autofluorescence, which will affect the imaging quality. Over time, fluorescence imaging technology in the second near-infrared window (NIR-II, 1000-1700 nm) has also begun to develop rapidly. NIR-II fluorescence imaging has the advantages of low light scattering loss, high tissue penetration depth, high imaging resolution, and high signal-to-noise ratio, and it shows broad application prospects in biological analysis and medical diagnosis. This critical review collected and sorted articles from the past 5 years and introduced their respective fluorescence imaging technologies and backgrounds based on the definitions of NIR-I and NIR-II. We also analyzed the current advantages and dilemmas that remain to be solved. Herein, we also suggested specific approaches NIR-PLNs can use to improve the quality and be more applicable in cancer research.


Subject(s)
Biosensing Techniques , Nanoparticles , Neoplasms , Optical Imaging , Humans , Biosensing Techniques/methods , Neoplasms/diagnostic imaging , Nanoparticles/chemistry , Optical Imaging/methods , Animals , Luminescent Agents/chemistry , Infrared Rays
19.
Biosens Bioelectron ; 256: 116236, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38608494

ABSTRACT

Au nano-clusters (Au NCs) were promising electrochemiluminescence (ECL) nano-materials. However, the small size of Au NCs presented a challenge in terms of their immobilization during the construction of an ECL biosensing platform. This limitation significantly hindered the wider application of Au NCs in the ECL field. In this work, we successfully used the reducibility of Ti3C2 to fabricate in situ a self-enhanced nano-probe Ti3C2-TiO2-Au NCs. The strategy of in situ generation not only improved the immobilization of Au NCs on the probe but also eliminated the requirement of adding reducing agents during preparation. In addition, in situ generated TiO2 could serve as a co-reaction accelerator, shortening the electron transfer distance between S2O82- and Au NCs, thereby improving the utilization of intermediates and enhancing the ECL response of Au NCs. The constructed ECL sensing platform could achieve sensitive detection of polynucleotide kinase (PNK). At the same time, the 5'-end phosphate group of DNA phosphorylation could chelate with a large amount of Ti on the surface of Ti3C2, thereby achieving the goal of specific detection of PNK. The sensor based on self-enhanced ECL probes had a broad dynamic range spanning for PNK detection from 10.0 to 1.0 × 107 µU mL-1, with a limit of detection of 1.6 µU mL-1. Moreover, the ECL sensor showed satisfactory detection performance in HeLa cell lysate and serum. This study not only provided insights for addressing the issue of ECL luminescence efficiency in Au NCs but also presented novel concepts for ECL self-enhancement strategies.


Subject(s)
Biosensing Techniques , Gold , Limit of Detection , Luminescent Measurements , Polynucleotide 5'-Hydroxyl-Kinase , Titanium , Titanium/chemistry , Biosensing Techniques/methods , Humans , Luminescent Measurements/methods , Gold/chemistry , Polynucleotide 5'-Hydroxyl-Kinase/analysis , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Luminescent Agents/chemistry
20.
Chembiochem ; 25(9): e202400094, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38488304

ABSTRACT

Phosphorescent iridium(III) complexes are widely recognized for their unique properties in the excited triplet state, making them crucial for various applications including biological sensing and imaging. Most of these complexes display single phosphorescence emission from the lowest-lying triplet state after undergoing highly efficient intersystem crossing (ISC) and ultrafast internal conversion (IC) processes. However, in cases where these excited-state processes are restricted, the less common phenomenon of dual emission has been observed. This dual emission phenomenon presents an opportunity for developing biological probes and imaging agents with multiple emission bands of different wavelengths. Compared to intensity-based biosensing, where the existence and concentration of an analyte are indicated by the brightness of the probe, the emission profile response involves modifications in emission color. This enables quantification by utilizing the intensity ratio of different wavelengths, which is self-calibrating and unaffected by the probe concentration and excitation laser power. Moreover, dual-emissive probes have the potential to demonstrate distinct responses to multiple analytes at separate wavelengths, providing orthogonal detection capabilities. In this concept, we focus on iridium(III) complexes displaying fluorescence-phosphorescence or phosphorescence-phosphorescence dual emission, along with their applications as biological probes for sensing and imaging.


Subject(s)
Coordination Complexes , Iridium , Iridium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Humans , Biosensing Techniques/methods , Optical Imaging , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Animals , Luminescent Measurements , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...