Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.617
Filter
1.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38949658

ABSTRACT

Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis upon metabolic demands. Detection of these contact sites at the nanometer scale over time in living cells is challenging. We developed a tool kit for detecting contact sites based on fluorogen-activated bimolecular complementation at CONtact sites, FABCON, using a reversible, low-affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic regulation.


Subject(s)
Endoplasmic Reticulum , Lipid Droplets , Mitochondria , Lipid Droplets/metabolism , Humans , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Lipid Metabolism , HeLa Cells , HEK293 Cells , Luminescent Proteins/metabolism , Luminescent Proteins/genetics
2.
Methods Mol Biol ; 2814: 133-147, 2024.
Article in English | MEDLINE | ID: mdl-38954203

ABSTRACT

Activation processes at the plasma membrane have been studied with life-cell imaging using GFP fused to a protein that binds to a component of the activation process. In this way, PIP3 formation has been monitored with CRAC-GFP, Ras-GTP with RBD-Raf-GFP, and Rap-GTP with Ral-GDS-GFP. The fluorescent sensors translocate from the cytoplasm to the plasma membrane upon activation of the process. Although this translocation assay can provide very impressive images and movies, the method is not very sensitive, and amount of GFP-sensor at the plasma membrane is not linear with the amount of activator. The fluorescence in pixels at the cell boundary is partly coming from the GFP-sensor that is bound to the activated membrane and partly from unbound GFP-sensor in the cytosolic volume of that boundary pixel. The variable and unknown amount of cytosol in boundary pixels causes the low sensitivity and nonlinearity of the GFP-translocation assay. Here we describe a method in which the GFP-sensor is co-expressed with cytosolic-RFP. For each boundary pixels, the RFP fluorescence is used to determine the amount of cytosol of that pixel and is subtracted from the GFP fluorescence of that pixel yielding the amount of GFP-sensor that is specifically associated with the plasma membrane in that pixel. This GRminusRD method using GFP-sensor/RFP is at least tenfold more sensitive, more reproducible, and linear with activator compared to GFP-sensor alone.


Subject(s)
Cell Membrane , Green Fluorescent Proteins , Cell Membrane/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Humans , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Protein Transport , Microscopy, Fluorescence/methods , Cytosol/metabolism , Animals
3.
Sci Rep ; 14(1): 14990, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951511

ABSTRACT

The unfolded protein response (UPR) maintains proteostasis upon endoplasmic reticulum (ER) stress, and is initiated by a range of physiological and pathological processes. While there have been advances in developing fluorescent reporters for monitoring individual signaling pathways of the UPR, this approach may not capture a cell's overall UPR activity. Here we describe a novel sensor of UPR activity, sUPRa, which is designed to report the global UPR. sUPRa displays excellent response characteristics, outperforms reporters of individual UPR pathways in terms of sensitivity and kinetics, and responds to a range of different ER stress stimuli. Furthermore, sUPRa's dual promoter and fluorescent protein design ensures that both UPR-active and inactive cells are detected, and controls for reporter copy number. Using sUPRa, we reveal UPR activation in layer 2/3 pyramidal neurons of mouse cerebral cortex following a period of sleep deprivation. sUPRa affords new opportunities for quantifying physiological UPR activity with cellular resolution.


Subject(s)
Endoplasmic Reticulum Stress , Unfolded Protein Response , Animals , Mice , Genes, Reporter , Humans , Pyramidal Cells/metabolism , Signal Transduction , Luminescent Proteins/metabolism , Luminescent Proteins/genetics
4.
Nat Commun ; 15(1): 5279, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918382

ABSTRACT

Fluorescence imaging is widely used for the mesoscopic mapping of neuronal connectivity. However, neurite reconstruction is challenging, especially when neurons are densely labelled. Here, we report a strategy for the fully automated reconstruction of densely labelled neuronal circuits. Firstly, we establish stochastic super-multicolour labelling with up to seven different fluorescent proteins using the Tetbow method. With this method, each neuron is labelled with a unique combination of fluorescent proteins, which are then imaged and separated by linear unmixing. We also establish an automated neurite reconstruction pipeline based on the quantitative analysis of multiple dyes (QDyeFinder), which identifies neurite fragments with similar colour combinations. To classify colour combinations, we develop unsupervised clustering algorithm, dCrawler, in which data points in multi-dimensional space are clustered based on a given threshold distance. Our strategy allows the reconstruction of neurites for up to hundreds of neurons at the millimetre scale without using their physical continuity.


Subject(s)
Color , Neurites , Neurons , Animals , Neurons/metabolism , Neurites/metabolism , Algorithms , Cluster Analysis , Mice , Image Processing, Computer-Assisted/methods , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Staining and Labeling/methods , Optical Imaging/methods
5.
ACS Synth Biol ; 13(6): 1663-1668, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38836603

ABSTRACT

The cell-free system offers potential advantages in biosensor applications, but its limited time for protein synthesis poses a challenge in creating enough fluorescent signals to detect low limits of the analyte while providing a robust sensing module at the beginning. In this study, we harnessed split versions of fluorescent proteins, particularly split superfolder green fluorescent protein and mNeonGreen, to increase the number of reporter units made before the reaction ceased and enhance the detection limit in the cell-free system. A comparative analysis of the expression of 1-10 and 11th segments of beta strands in both whole-cell and cell-free platforms revealed distinct fluorescence patterns. Moreover, the integration of SynZip peptide linkers substantially improved complementation. The split protein reporter system could enable higher reporter output when sensing low analyte levels in the cell-free system, broadening the toolbox of the cell-free biosensor repertoire.


Subject(s)
Biosensing Techniques , Cell-Free System , Green Fluorescent Proteins , Protein Biosynthesis , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Biosensing Techniques/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism
6.
J Am Chem Soc ; 146(26): 17646-17658, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885641

ABSTRACT

Red fluorescent protein (RFP) variants are highly sought after for in vivo imaging since longer wavelengths improve depth and contrast in fluorescence imaging. However, the lower energy emission wavelength usually correlates with a lower fluorescent quantum yield compared to their green emitting counterparts. To guide the rational design of bright variants, we have theoretically assessed two variants (mScarlet and mRouge) which are reported to have very different brightness. Using an α-CASSCF QM/MM framework (chromophore and all protein residues within 6 Å of it in the QM region, for a total of more than 450 QM atoms), we identify key points on the ground and first excited state potential energy surfaces. The brighter variant mScarlet has a rigid scaffold, and the chromophore stays largely planar on the ground state. The dimmer variant mRouge shows more flexibility and can accommodate a pretwisted chromophore conformation which provides easier access to conical intersections. The main difference between the variants lies in the intersection seam regions, which appear largely inaccessible in mScarlet but partially accessible in mRouge. This observation is mainly related with changes in the cavity charge distribution, the hydrogen-bonding network involving the chromophore and a key ARG/THR mutation (which changes both charge and steric hindrance).


Subject(s)
Luminescent Proteins , Red Fluorescent Protein , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Quantum Theory , Models, Molecular , Hydrogen Bonding
7.
ACS Sens ; 9(6): 3394-3402, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38822813

ABSTRACT

The development of new or improved single fluorescent protein (FP)-based biosensors (SFPBs), particularly those with excitation and emission at near-infrared wavelengths, is important for the continued advancement of biological imaging applications. In an effort to accelerate the development of new SFPBs, we report modified transposons for the transposase-based creation of libraries of FPs randomly inserted into analyte binding domains, or vice versa. These modified transposons feature ends that are optimized to minimize the length of the linkers that connect the FP to the analyte binding domain. We rationalized that shorter linkers between the domains should result in more effective allosteric coupling between the analyte binding-dependent conformational change in the binding domain and the fluorescence modulation of the chromophore of the FP domain. As a proof of concept, we employed end-modified Mu transposons for the discovery of SFPB prototypes based on the insertion of two circularly permuted red FPs (mApple and FusionRed) into binding proteins for l-lactate and spermidine. Using an analogous approach, we discovered calcium ion (Ca2+)-specific SFPBs by random insertion of calmodulin (CaM)-RS20 into miRFP680, a particularly bright near-infrared (NIR) FP based on a biliverdin (BV)-binding fluorescent protein. Starting from an miRFP680-based Ca2+ biosensor prototype, we performed extensive directed evolution, including under BV-deficient conditions, to create highly optimized biosensors designated the NIR-GECO3 series. We have extensively characterized the NIR-GECO3 series and explored their utility for biological Ca2+ imaging. The methods described in this work will serve to accelerate SFPB development and open avenues for further exploration and optimization of SFPBs across a spectrum of biological applications.


Subject(s)
Biosensing Techniques , Calcium , DNA Transposable Elements , Luminescent Proteins , Biosensing Techniques/methods , Calcium/chemistry , DNA Transposable Elements/genetics , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Humans , Calmodulin/chemistry , Calmodulin/genetics
8.
Differentiation ; 138: 100791, 2024.
Article in English | MEDLINE | ID: mdl-38941819

ABSTRACT

A Wt1 conditional deletion, nuclear red fluorescent protein (RFP) reporter allele was generated in the mouse by gene targeting in embryonic stem cells. Upon Cre-mediated recombination, a deletion allele is generated that expresses RFP in a Wt1-specific pattern. RFP expression was detected in embryonic and adult tissues known to express Wt1, including the kidney, mesonephros, and testis. In addition, RFP expression and WT1 co-localization was detected in the adult uterine stroma and myometrium, suggesting a role in uterine function. Crosses with Wnt7a-Cre transgenic mice that express Cre in the Müllerian duct epithelium activate Wt1-directed RFP expression in the epithelium of the oviduct but not the stroma and myometrium of the uterus. This new mouse strain should be a useful resource for studies of Wt1 function and marking Wt1-expressing cells.


Subject(s)
Alleles , Luminescent Proteins , Mice, Transgenic , Red Fluorescent Protein , WT1 Proteins , Animals , Mice , WT1 Proteins/genetics , WT1 Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Female , Genes, Reporter , Male , Gene Deletion
9.
Commun Biol ; 7(1): 705, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851844

ABSTRACT

Genetically encoded Ca2+ indicators (GECIs) are versatile for live imaging of cellular activities. Besides the brightness and dynamic range of signal change of GECIs, Ca2+ affinity is another critical parameter for successful Ca2+ imaging, as the concentration range of Ca2+ dynamics differs from low nanomolar to sub-millimolar depending on the celltype and organism. However, ultrahigh-affinity GECIs, particularly the single fluorescent protein (1FP)-type, are lacking. Here, we report a simple strategy that increases Ca2+ affinity through the linker length optimization in topology mutants of existing 1FP-type GECIs. The resulting ultrahigh-affinity GECIs, CaMPARI-nano, BGECO-nano, and RCaMP-nano (Kd = 17-25 nM), enable unique biological applications, including the detection of low nanomolar Ca2+ dynamics, highlighting active signaling cells, and multi-functional imaging with other second messengers. The linker length optimization in topology mutants could be applied to other 1FP-type indicators of glutamate and potassium, rendering it a widely applicable technique for modulating indicator affinity.


Subject(s)
Calcium , Luminescent Proteins , Mutation , Calcium/metabolism , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Luminescent Proteins/chemistry , HEK293 Cells
10.
Elife ; 132024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847396

ABSTRACT

Laboratory experiments on a fluorescent protein in E. coli reveal how duplicate genes are rapidly inactivated by mutations during evolution.


Subject(s)
Escherichia coli , Escherichia coli/genetics , Mutation , Evolution, Molecular , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
11.
Nat Commun ; 15(1): 4963, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862535

ABSTRACT

Image-based lineage tracing enables tissue turnover kinetics and lineage potentials of different adult cell populations to be investigated. Previously, we reported a genetic mouse model system, Red2Onco, which ectopically expressed mutated oncogenes together with red fluorescent proteins (RFP). This system enabled the expansion kinetics and neighboring effects of oncogenic clones to be dissected. We now report Red2Flpe-SCON: a mosaic knockout system that uses multicolor reporters to label both mutant and wild-type cells. We develop the Red2Flpe mouse line for red clone-specific Flpe expression, as well as the FRT-based SCON (Short Conditional IntrON) method to facilitate tunable conditional mosaic knockouts in mice. We use the Red2Flpe-SCON method to study Sox2 mutant clonal analysis in the esophageal epithelium of adult mice which reveal that the stem cell gene, Sox2, is less essential for adult stem cell maintenance itself, but rather for stem cell proliferation and differentiation.


Subject(s)
Luminescent Proteins , Mice, Knockout , Red Fluorescent Protein , SOXB1 Transcription Factors , Animals , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Mice , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mosaicism , Cell Differentiation , Cell Proliferation/genetics , Esophagus/metabolism , Esophagus/pathology , Cell Lineage/genetics , Introns/genetics , Female , Male
12.
J Cell Biol ; 223(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38935076

ABSTRACT

Aureobasidium pullulans is a ubiquitous polymorphic black yeast with industrial and agricultural applications. It has recently gained attention amongst cell biologists for its unconventional mode of proliferation in which multinucleate yeast cells make multiple buds within a single cell cycle. Here, we combine a chemical transformation method with genome-targeted homologous recombination to yield ∼60 transformants/µg of DNA in just 3 days. This protocol is simple, inexpensive, and requires no specialized equipment. We also describe vectors with codon-optimized green and red fluorescent proteins for A. pullulans and use these tools to explore novel cell biology. Quantitative imaging of a strain expressing cytosolic and nuclear markers showed that although the nuclear number varies considerably among cells of similar volume, total nuclear volume scales with cell volume over an impressive 70-fold size range. The protocols and tools described here expand the toolkit for A. pullulans biologists and will help researchers address the many other puzzles posed by this polyextremotolerant and morphologically plastic organism.


Subject(s)
Aureobasidium , Genetic Techniques , Transformation, Genetic , Aureobasidium/cytology , Aureobasidium/genetics , Aureobasidium/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics , Genetic Vectors/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Homologous Recombination , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Red Fluorescent Protein
13.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928340

ABSTRACT

Papain-like protease PLpro, a domain within a large polyfunctional protein, nsp3, plays key roles in the life cycle of SARS-CoV-2, being responsible for the first events of cleavage of a polyprotein into individual proteins (nsp1-4) as well as for the suppression of cellular immunity. Here, we developed a new genetically encoded fluorescent sensor, named PLpro-ERNuc, for detection of PLpro activity in living cells using a translocation-based readout. The sensor was designed as follows. A fragment of nsp3 protein was used to direct the sensor on the cytoplasmic surface of the endoplasmic reticulum (ER) membrane, thus closely mimicking the natural target of PLpro. The fluorescent part included two bright fluorescent proteins-red mScarlet I and green mNeonGreen-separated by a linker with the PLpro cleavage site. A nuclear localization signal (NLS) was attached to ensure accumulation of mNeonGreen into the nucleus upon cleavage. We tested PLpro-ERNuc in a model of recombinant PLpro expressed in HeLa cells. The sensor demonstrated the expected cytoplasmic reticular network in the red and green channels in the absence of protease, and efficient translocation of the green signal into nuclei in the PLpro-expressing cells (14-fold increase in the nucleus/cytoplasm ratio). Then, we used PLpro-ERNuc in a model of Huh7.5 cells infected with the SARS-CoV-2 virus, where it showed robust ER-to-nucleus translocation of the green signal in the infected cells 24 h post infection. We believe that PLpro-ERNuc represents a useful tool for screening PLpro inhibitors as well as for monitoring virus spread in a culture.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , HeLa Cells , COVID-19/virology , COVID-19/diagnosis , COVID-19/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Coronavirus Papain-Like Proteases/metabolism , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Coronavirus 3C Proteases/metabolism , Protein Transport , Biosensing Techniques/methods
14.
Nat Commun ; 15(1): 5489, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942786

ABSTRACT

Lipid droplets (LDs) are dynamic lipid storage organelles. They are tightly linked to metabolism and can exert protective functions, making them important players in health and disease. Most LD studies in vivo rely on staining methods, providing only a snapshot. We therefore developed a LD-reporter mouse by labelling the endogenous LD coat protein perilipin 2 (PLIN2) with tdTomato, enabling staining-free fluorescent LD visualisation in living and fixed tissues and cells. Here we validate this model under standard and high-fat diet conditions and demonstrate that LDs are highly abundant in various cell types in the healthy brain, including neurons, astrocytes, ependymal cells, neural stem/progenitor cells and microglia. Furthermore, we also show that LDs are abundant during brain development and can be visualized using live imaging of embryonic slices. Taken together, our tdTom-Plin2 mouse serves as a novel tool to study LDs and their dynamics under both physiological and diseased conditions in all tissues expressing Plin2.


Subject(s)
Brain , Lipid Droplets , Perilipin-2 , Animals , Perilipin-2/metabolism , Perilipin-2/genetics , Lipid Droplets/metabolism , Brain/metabolism , Mice , Neurons/metabolism , Gene Knock-In Techniques , Mice, Transgenic , Female , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Male , Astrocytes/metabolism , Diet, High-Fat , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Microglia/metabolism
15.
J Vet Med Sci ; 86(7): 744-747, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38749739

ABSTRACT

The red fluorescent protein (rfp)-blasticidin deaminase (bsd) fusion gene was transfected into Babesia ovata by electroporation with the plasmid DNA and selected with 15 µg/mL of blasticidin S under the in vitro culture condition. The transfected parasite with episomal DNA was selected and cultured for further analysis based on the presence of the rfp-bsd fusion gene by PCR and expression of the fusion protein by immunofluorescence antibody test under fluorescence microscopy for 2 months after the transfection. The results are the first, to our knowledge, to demonstrate the expression and stability of the episomal rfp-bsd fusion gene under the control of actin promoter as a selectable marker for the transfection system in B. ovata.


Subject(s)
Babesia , Luminescent Proteins , Red Fluorescent Protein , Transfection , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Babesia/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Animals , Plasmids/genetics
16.
Genetics ; 227(3)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38752295

ABSTRACT

Cryptococcus neoformans is a fungal pathogen of the top critical priority recognized by the World Health Organization. This clinically important fungus also serves as a eukaryotic model organism. A variety of resources have been generated to facilitate investigation of the C. neoformans species complex, including congenic pairs, well-annotated genomes, genetic editing tools, and gene deletion sets. Here, we generated a set of strains with all major organelles fluorescently marked. We tested short organelle-specific targeting sequences and successfully labeled the following organelles by fusing the targeting sequences with a fluorescence protein: the plasma membrane, the nucleus, the peroxisome, and the mitochondrion. We used native cryptococcal Golgi and late endosomal proteins fused with a fluorescent protein to label these two organelles. These fluorescence markers were verified via colocalization using organelle-specific dyes. All the constructs for the fluorescent protein tags were integrated in an intergenic safe haven region. These organelle-marked strains were examined for growth and various phenotypes. We demonstrated that these tagged strains could be employed to track cryptococcal interaction with the host in phagocytosis assays. These strains also allowed us to discover remarkable differences in the dynamics of proteins targeted to different organelles during sexual reproduction. Additionally, we revealed that "dormant" spores transcribed and synthesized their own proteins and trafficked the proteins to the appropriate subcellular compartments, demonstrating that spores are metabolically active. We anticipate that these newly generated fluorescent markers will greatly facilitate further investigation of cryptococcal biology and pathogenesis.


Subject(s)
Cryptococcus neoformans , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Animals , Cryptococcosis/microbiology , Phagocytosis , Mice , Organelles/metabolism , Mitochondria/metabolism , Mitochondria/genetics
17.
Histochem Cell Biol ; 162(1-2): 41-52, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762823

ABSTRACT

During development and differentiation, histone modifications dynamically change locally and globally, associated with transcriptional regulation, DNA replication and repair, and chromosome condensation. The level of histone H4 Lys20 monomethylation (H4K20me1) increases during the G2 to M phases of the cell cycle and is enriched in facultative heterochromatin, such as inactive X chromosomes in cycling cells. To track the dynamic changes of H4K20me1 in living cells, we have developed a genetically encoded modification-specific intracellular antibody (mintbody) probe that specifically binds to the modification. Here, we report the generation of knock-in mice in which the coding sequence of the mCherry-tagged version of the H4K20me1-mintbody is inserted into the Rosa26 locus. The knock-in mice, which ubiquitously expressed the H4K20me1-mintbody, developed normally and were fertile, indicating that the expression of the probe does not disturb the cell growth, development, or differentiation. Various tissues isolated from the knock-in mice exhibited nuclear fluorescence without the need for fixation. The H4K20me1-mintbody was enriched in inactive X chromosomes in developing embryos and in XY bodies during spermatogenesis. The knock-in mice will be useful for the histochemical analysis of H4K20me1 in any cell types.


Subject(s)
Gene Knock-In Techniques , Histones , Luminescent Proteins , Animals , Mice , Histones/metabolism , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Antibodies/metabolism , Red Fluorescent Protein , Male , Mice, Inbred C57BL , Mice, Transgenic
18.
Methods Enzymol ; 697: 293-319, 2024.
Article in English | MEDLINE | ID: mdl-38816127

ABSTRACT

Assembly of de novo peptides designed from scratch is in a semi-rational manner and creates artificial supramolecular structures with unique properties. Considering that the functions of various proteins in living cells are highly regulated by their assemblies, building artificial assemblies within cells holds the potential to simulate the functions of natural protein assemblies and engineer cellular activities for controlled manipulation. How can we evaluate the self-assembly of designed peptides in cells? The most effective approach involves the genetic fusion of fluorescent proteins (FPs). Expressing a self-assembling peptide fused with an FP within cells allows for evaluating assemblies through fluorescence signal. When µm-scale assemblies such as condensates are formed, the peptide assemblies can be directly observed by imaging. For sub-µm-scale assemblies, fluorescence correlation spectroscopy analysis is more practical. Additionally, the fluorescence resonance energy transfer (FRET) signal between FPs is valuable evidence of proximity. The decrease in fluorescence anisotropy associated with homo-FRET reveals the properties of self-assembly. Furthermore, by combining two FPs, one acting as a donor and the other as an acceptor, the heteromeric interaction between two different components can be studied through the FRET signal. In this chapter, we provide detailed protocols, from designing and constructing plasmid DNA expressing the peptide-fused protein to analysis of self-assembly in living cells.


Subject(s)
Fluorescence Resonance Energy Transfer , Luminescent Proteins , Peptides , Recombinant Fusion Proteins , Fluorescence Resonance Energy Transfer/methods , Peptides/chemistry , Peptides/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Humans , Luminescent Proteins/genetics , Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/chemistry , Plasmids/genetics
19.
Mol Biol Cell ; 35(7): mr5, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38809589

ABSTRACT

Spatial and temporal tracking of fluorescent proteins (FPs) in live cells permits visualization of proteome remodeling in response to extracellular cues. Historically, protein dynamics during trafficking have been visualized using constitutively active FPs fused to proteins of interest. While powerful, such FPs label all cellular pools of a protein, potentially masking the dynamics of select subpopulations. To help study protein subpopulations, bioconjugate tags, including the fluorogen activation proteins (FAPs), were developed. FAPs are comprised of two components: a single-chain antibody (SCA) fused to the protein of interest and a malachite-green (MG) derivative, which fluoresces only when bound to the SCA. Importantly, the MG derivatives can be either cell-permeant or -impermeant, thus permitting isolated detection of SCA-tagged proteins at the cell surface and facilitating quantitative endocytic measures. To expand FAP use in yeast, we optimized the SCA for yeast expression, created FAP-tagging plasmids, and generated FAP-tagged organelle markers. To demonstrate FAP efficacy, we coupled the SCA to the yeast G-protein coupled receptor Ste3. We measured Ste3 endocytic dynamics in response to pheromone and characterized cis- and trans-acting regulators of Ste3. Our work significantly expands FAP technology for varied applications in S. cerevisiae.


Subject(s)
Protein Transport , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Single-Chain Antibodies/metabolism , Endocytosis/physiology , Fluorescent Dyes/metabolism , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Rosaniline Dyes
20.
ACS Synth Biol ; 13(6): 1842-1850, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38729919

ABSTRACT

In-cell self-assembly of natural viral capsids is an event that can be visualized under transmission electron microscopy (TEM) observations. By mimicking the self-assembly of natural viral capsids, various artificial protein- and peptide-based nanocages were developed; however, few studies have reported the in-cell self-assembly of such nanocages. Our group developed a ß-Annulus peptide that can form a nanocage called artificial viral capsid in vitro, but in-cell self-assembly of the capsid has not been achieved. Here, we designed an artificial viral capsid decorated with a fluorescent protein, StayGold, to visualize in-cell self-assembly. Fluorescence anisotropy measurements and fluorescence resonance energy transfer imaging, in addition to TEM observations of the cells and super-resolution microscopy, revealed that StayGold-conjugated ß-Annulus peptides self-assembled into the StayGold-decorated artificial viral capsid in a cell. Using these techniques, we achieved the in-cell self-assembly of an artificial viral capsid.


Subject(s)
Capsid Proteins , Capsid , Fluorescence Resonance Energy Transfer , Peptides , Peptides/chemistry , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid Proteins/genetics , Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Microscopy, Electron, Transmission , Fluorescence Polarization , Virus Assembly
SELECTION OF CITATIONS
SEARCH DETAIL
...