Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.053
Filter
1.
Endocrinology ; 165(10)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39253941

ABSTRACT

Reproductive function in mammals depends on the ability of progesterone (P4) to suppress pulsatile gonadotrophin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion in a homeostatic-negative feedback loop. Previous research identified that cells upstream from GnRH neurons expressing the nuclear progesterone receptor (PGR) are required for P4-negative feedback. However, the identity of these cells and the mechanism by which they reduce GnRH/LH pulsatile secretion is unknown. We aimed to address the hypothesis that PGR expressed by a neural population in the arcuate nucleus recently identified as the GnRH pulse generator, cells expressing kisspeptin, neurokinin B, and dynorphin (KNDy cells), mediate P4-negative feedback. To achieve this, we used female mice with the PGR gene conditionally deleted from kisspeptin cells (KPRKO mice) and observed a substantial decrease in the percentage of KNDy neurons coexpressing PGR messenger RNA (mRNA) (11% in KPRKO mice vs 86% in wild-type [WT] mice). However, KPRKO mice did not display changes in the frequency or amplitude of LH pulses in diestrus or estrus, nor in the ability of exogenous P4 to blunt a postcastration increase in LH. Further, mRNA expression of arcuate kisspeptin and dynorphin, which are excitatory and inhibitory to GnRH secretion, respectively, remained unaltered in KPRKO mice compared to WT controls. Together, these findings show that the near-complete loss of PGR signaling from KNDy cells does not affect negative feedback regulation of GnRH pulse generation in mice, suggesting that feedback through this receptor can occur via a small number of KNDy cells or a yet unidentified cell population.


Subject(s)
Arcuate Nucleus of Hypothalamus , Feedback, Physiological , Gonadotropin-Releasing Hormone , Kisspeptins , Luteinizing Hormone , Mice, Knockout , Progesterone , Receptors, Progesterone , Animals , Female , Kisspeptins/metabolism , Kisspeptins/genetics , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Luteinizing Hormone/metabolism , Mice , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/genetics , Arcuate Nucleus of Hypothalamus/metabolism , Progesterone/metabolism , Dynorphins/metabolism , Dynorphins/genetics , Neurons/metabolism , Neurokinin B/genetics , Neurokinin B/metabolism
2.
Front Biosci (Landmark Ed) ; 29(9): 313, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39344322

ABSTRACT

Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and ß-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (ß-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.


Subject(s)
Chorionic Gonadotropin , Luteinizing Hormone , Receptors, LH , Humans , Receptors, LH/metabolism , Allosteric Regulation , Chorionic Gonadotropin/metabolism , Luteinizing Hormone/metabolism , Signal Transduction , Animals
3.
Int J Mol Sci ; 25(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39337542

ABSTRACT

Sexual maturation in goats is a dynamic process regulated precisely by the hypothalamic-pituitary-gonadal axis and is essential for reproduction. The hypothalamus plays a crucial role in this process and is the control center of the reproductive activity. It is significant to study the molecular mechanisms in the hypothalamus regulating sexual maturation in goats. We analyzed the serum hormone profiles and hypothalamic mRNA expression profiles of female goats during sexual development (1 day old (neonatal, D1, n = 5), 2 months old (prepuberty, M2, n = 5), 4 months old (sexual maturity, M4, n = 5), and 6 months old (breeding period, M6, n = 5)). The results indicated that from D1 to M6, serum hormone levels, including FSH, LH, progesterone, estradiol, IGF1, and leptin, exhibited an initial increase followed by a decline, peaking at M4. Furthermore, we identified a total of 508 differentially expressed genes in the hypothalamus, with a total of four distinct expression patterns. Nuclear receptor subfamily 1, group D, member 1 (NR1D1), glucagon-like peptide 1 receptor (GLP1R), and gonadotropin-releasing hormone 1 (GnRH-1) may contribute to hormone secretion, energy metabolism, and signal transduction during goat sexual maturation via circadian rhythm regulation, ECM receptor interactions, neuroactive ligand-receptor interactions, and Wnt signaling pathways. This investigation offers novel insights into the molecular mechanisms governing the hypothalamic regulation of goat sexual maturation.


Subject(s)
Goats , Hypothalamus , Sexual Maturation , Transcriptome , Animals , Goats/genetics , Goats/growth & development , Hypothalamus/metabolism , Sexual Maturation/genetics , Female , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/genetics , Gene Expression Profiling , Luteinizing Hormone/blood , Luteinizing Hormone/metabolism
4.
Endocrinology ; 165(10)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39248143

ABSTRACT

Luteinizing hormone (LH), a heterodimeric glycoprotein produced by pituitary gonadotrope cells, regulates gonadal function. Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates LH synthesis and secretion. GnRH induces LHß subunit (Lhb) expression via the transcription factor, early growth response 1 (EGR1), acting on the Lhb promoter. In contrast, overexpression of zinc finger E-box binding homeobox 1 (ZEB1) represses LH production in mice, but the underlying mechanism was not previously elucidated. Here, we observed that ZEB1 inhibited GnRH-stimulated but not basal Lhb mRNA expression in homologous murine LßT2 cells. Moreover, ZEB1 blocked GnRH and/or EGR1 induction of murine Lhb but not human LHB promoter-reporter activity in these cells. Using chimeric reporters, we mapped the species-specific ZEB1 sensitivity to sequence differences, including in Z- and E-boxes, in the proximal Lhb/LHB promoters, immediately upstream of the transcription start sites. ZEB1 bound to the murine Lhb promoter with higher affinity than to the human LHB promoter in this region. To examine ZEB1's physiological role in LH synthesis, we characterized gonadotrope-specific Zeb1 knockout mice. Loss of ZEB1 in gonadotropes did not affect LH production or secretion. Collectively, the data suggest that ZEB1, when overexpressed, can inhibit GnRH/EGR1 induction of murine Lhb transcription but does not play a necessary role in LH synthesis in mice.


Subject(s)
Gonadotropin-Releasing Hormone , Luteinizing Hormone, beta Subunit , Luteinizing Hormone , Promoter Regions, Genetic , Zinc Finger E-box-Binding Homeobox 1 , Animals , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Mice , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/genetics , Luteinizing Hormone, beta Subunit/genetics , Luteinizing Hormone, beta Subunit/metabolism , Luteinizing Hormone/metabolism , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Humans , Transcription, Genetic , Mice, Knockout , Cell Line , Gene Expression Regulation , Male
5.
J Reprod Dev ; 70(5): 327-337, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39155080

ABSTRACT

In mammals, secretion of tonic (pulsatile) gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) is often suppressed during lactation. Suppression of GnRH/LH pulses in lactating dams is assumed to be caused by suckling stimuli and a chronic negative energy balance due to milk production. The present study aimed to investigate whether the central enkephalin-δ opioid receptor (DOR) signaling mediated the suppression of LH secretion by acute suckling stimuli and/or chronic negative energy balance due to milk production in rats during late lactation when dams were under a heavy energy demand. On postpartum day 16, the number of Penk (enkephalin mRNA)-expressing cells in the arcuate nucleus was significantly higher in lactating rats than in non-lactating control rats. Pulsatile LH secretion was suppressed in rats with chronic suckling or acute 1-h suckling stimuli 6 h after pup removal on day 16 of lactation. Central DOR antagonism significantly increased the mean LH concentrations and the baseline of LH pulses in rats with chronic suckling but not with acute suckling stimuli on day 16 of lactation. Besides, central κ opioid receptor (KOR) antagonism increased the amplitude of LH pulses in rats with the acute suckling stimuli on day 16 of lactation. These results suggest that central DOR signaling mediates the suppression of LH secretion caused by a negative energy balance in rats receiving chronic suckling during late lactation. On the other hand, central KOR signaling likely mediates acute suckling stimuli-induced suppression of LH secretion in rats during late lactation.


Subject(s)
Animals, Suckling , Lactation , Luteinizing Hormone , Receptors, Opioid, delta , Receptors, Opioid, kappa , Signal Transduction , Animals , Female , Receptors, Opioid, kappa/metabolism , Luteinizing Hormone/metabolism , Luteinizing Hormone/blood , Rats , Receptors, Opioid, delta/metabolism , Rats, Wistar , Enkephalins/metabolism , Narcotic Antagonists/pharmacology , Arcuate Nucleus of Hypothalamus/metabolism , Naltrexone/pharmacology , Naltrexone/analogs & derivatives
6.
Neurosci Lett ; 837: 137918, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39096756

ABSTRACT

Neurons co-expressing kisspeptin, neurokinin B, and dynorphin A (KNDy neurons), located in the arcuate nucleus (ARC) of the hypothalamus, are indicated to be the gonadotropin-releasing hormone (GnRH) pulse generator. Dynorphin A is reported to suppress GnRH pulse generator activity. Nalfurafine is a selective agonist of the κ-opioid receptor (KOR), a receptor for dynorphin A, clinically used as an anti-pruritic drug. This study aimed to evaluate the effects of nalfurafine on GnRH pulse generator activity and luteinizing hormone (LH) pulses using female goats. Nalfurafine (0, 2, 4, 8, or 16 µg/head) was intravenously injected into ovariectomized Shiba goats. The multiple unit activity (MUA) in the ARC area was recorded, and plasma LH concentrations were measured 2 and 48 h before and after injection, respectively. The MUA volley interval during 0-2 h after injection was significantly increased in the nalfurafine 8 and 16 µg groups compared with the vehicle group. In 0-2 h after injection, the number of LH pulses was significantly decreased in the nalfurafine 8 and 16 µg groups, and the mean and baseline LH were significantly decreased in all nalfurafine-treated groups (2, 4, 8, and 16 µg) compared with the vehicle group. These results suggest that nalfurafine inhibits the activity of the GnRH pulse generator in the ARC, thus suppressing pulsatile LH secretion. Therefore, nalfurafine could be used as a reproductive inhibitor in mammals.


Subject(s)
Arcuate Nucleus of Hypothalamus , Goats , Gonadotropin-Releasing Hormone , Morphinans , Receptors, Opioid, kappa , Spiro Compounds , Animals , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Female , Spiro Compounds/pharmacology , Spiro Compounds/administration & dosage , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/agonists , Morphinans/pharmacology , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Luteinizing Hormone/blood , Luteinizing Hormone/metabolism , Kisspeptins/metabolism , Dynorphins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurokinin B/metabolism
7.
Endocrinology ; 165(10)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39207217

ABSTRACT

Ovarian function is controlled by pituitary secretion of luteinizing hormone (LH) and follicle stimulating hormone (FSH), which in turn are governed by gonadotropin releasing hormone (GnRH) secreted from the brain. A fundamental principle of reproductive axis regulation is negative feedback signaling by gonadal sex steroids back to the brain to fine-tune GnRH and gonadotropin secretion. Endogenous negative feedback effects can be mimicked by exogenous steroid treatments, including androgens, in both sexes. Indeed, a growing number of clinical and animal studies indicate that high levels of exogenous androgens, in the typically male physiological range, can inhibit LH secretion in females, as occurs in males. However, the mechanisms by which male-level androgens inhibit GnRH and LH secretion still remain poorly understood, and this knowledge gap is particularly pronounced in transgender men (individuals designated female at birth but identifying as male). Indeed, many transgender men take long-term gender-affirming hormone therapy that mimics male-level testosterone levels. The impact of such gender-affirming testosterone on the reproductive axis, both at the ovarian and neuroendocrine level, is a long-understudied area that still requires further investigation. Importantly, the few concepts of androgen actions in females mostly come from studies of polycystic ovary syndrome, which does not recapitulate a similar androgen milieu or a pathophysiology of inhibited LH secretion as occurs in testosterone-treated transgender men. This review summarizes clinical evidence indicating that exogenous androgens can impair neuroendocrine reproductive function in both female individuals and transgender men and highlights emerging experimental data supporting this in recently developed transgender rodent models.


Subject(s)
Androgens , Neurosecretory Systems , Reproduction , Humans , Female , Male , Androgens/pharmacology , Neurosecretory Systems/drug effects , Neurosecretory Systems/metabolism , Neurosecretory Systems/physiology , Reproduction/drug effects , Reproduction/physiology , Animals , Transgender Persons , Luteinizing Hormone/metabolism , Gonadotropin-Releasing Hormone/metabolism , Ovary/drug effects , Ovary/metabolism , Ovary/physiology
8.
Elife ; 132024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007235

ABSTRACT

The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor long form (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determined the role of glutamatergic neurotransmission from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces luteinizing hormone (LH) release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LeprCre (LepRb-Cre) mice. We collected blood sequentially before and for 1 hr after intravenous clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of Fos immunoreactive neurons in the PMv. Next, females with deletion of Slc17a6 (Vglut2) in LepRb neurons (LeprΔVGlut2) showed delayed age of puberty, disrupted estrous cycles, increased gonadotropin-releasing hormone (GnRH) concentration in the axon terminals, and disrupted LH secretion, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LeprloxTB) with concomitant deletion of Slc17a6 (Vglut2flox) mice. Rescue of Lepr and deletion of Slc17a6 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LeprloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation, and became pregnant, while LeprloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic neurotransmission from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.


Subject(s)
Glutamic Acid , Receptors, Leptin , Sexual Maturation , Synaptic Transmission , Animals , Female , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Mice , Glutamic Acid/metabolism , Neurons/metabolism , Neurons/physiology , Reproduction , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Luteinizing Hormone/blood , Luteinizing Hormone/metabolism
9.
Prim Care ; 51(3): 467-481, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067972

ABSTRACT

In this article, we will review common pituitary disorders. There are 6 hormones secreted by the anterior pituitary gland: thyroid-stimulating hormone, adrenocorticotropic hormone, follicle-stimulating hormone, luteinizing hormone, growth hormone, and prolactin. The posterior pituitary gland stores and releases the hormones made in the hypothalamus, oxytocin and antidiuretic hormone, based on the body's needs. This article will discuss the role of these hormones, conditions and symptoms that occur with elevated or reduced hormone levels, as well as the evaluation and treatment of these pituitary disorders.


Subject(s)
Pituitary Diseases , Humans , Pituitary Diseases/diagnosis , Pituitary Diseases/therapy , Thyrotropin/blood , Follicle Stimulating Hormone/metabolism , Prolactin/metabolism , Primary Health Care , Luteinizing Hormone/metabolism , Adrenocorticotropic Hormone/metabolism
10.
PeerJ ; 12: e17691, 2024.
Article in English | MEDLINE | ID: mdl-38978752

ABSTRACT

Background: Oligospermia is one of the most common reasons for male infertility which is troubling numerous couples of child-bearing age. This investigation scrutinizes the implications and mechanistic underpinnings of ursolic acid's effect on busulfan-induced oligospermia in mouse models. Methods: A singular intraperitoneal injection of busulfan at a dosage of 30 mg/kg induced oligospermia. Two weeks subsequent to this induction, mice were subjected to various dosages of ursolic acid (10, 30, and 50 mg/kg body weight, respectively) on a daily basis for four consecutive weeks. Following this treatment period, a meticulous analysis of epididymal sperm parameters, encompassing concentration and motility, was conducted using a computer-assisted sperm analysis system. The histopathology of the mice testes was performed utilizing hematoxylin and eosin staining, and the cytoskeleton regeneration of the testicular tissues was analyzed via immunofluorescent staining. Serum hormone levels, including testosterone, luteinizing hormone, and follicle-stimulating hormone, as well as reactive oxygen species levels (inclusive of reactive oxygen species and malondialdehyde), were gauged employing specific enzyme-linked immunosorbent assay kits. Differentially expressed genes of testicular mRNA between the oligospermia-induced group and the various ursolic acid treatment groups were identified through RNA sequencing analysis. Results: The results revealed that a dosage of 50 mg/kg ursolic acid treatment could increase the concentration of epididymal sperm in oligospermia mice, promote the recovery of testicular morphology, regulate hormone levels and ameliorate oxidative damage. The mechanism research results indicated that ursolic acid increased the expression level of genes related to motor proteins in oligospermia mice.


Subject(s)
Busulfan , Oligospermia , Testis , Triterpenes , Ursolic Acid , Animals , Male , Triterpenes/pharmacology , Triterpenes/therapeutic use , Oligospermia/chemically induced , Oligospermia/drug therapy , Mice , Testis/drug effects , Testis/pathology , Testis/metabolism , Disease Models, Animal , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/pathology , Spermatozoa/metabolism , Reactive Oxygen Species/metabolism , Testosterone/blood , Follicle Stimulating Hormone/blood , Luteinizing Hormone/blood , Luteinizing Hormone/metabolism , Epididymis/drug effects , Epididymis/pathology , Epididymis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL