Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.546
Filter
1.
J Am Chem Soc ; 146(28): 19434-19448, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959476

ABSTRACT

Immuno-photodynamic therapy (IPDT) has emerged as a new modality for cancer treatment. Novel photosensitizers can help achieve the promise inherent in IPDT, namely, the complete eradication of a tumor without recurrence. We report here a small molecule photosensitizer conjugate, LuCXB. This IPDT agent integrates a celecoxib (cyclooxygenase-2 inhibitor) moiety with a near-infrared absorbing lutetium texaphyrin photocatalytic core. In aqueous environments, the two components of LuCXB are self-associated through inferred donor-acceptor interactions. A consequence of this intramolecular association is that upon photoirradiation with 730 nm light, LuCXB produces superoxide radicals (O2-•) via a type I photodynamic pathway; this provides a first line of defense against the tumor while promoting IPDT. For in vivo therapeutic applications, we prepared a CD133-targeting, aptamer-functionalized exosome-based nanophotosensitizer (Ex-apt@LuCXB) designed to target cancer stem cells. Ex-apt@LuCXB was found to display good photosensitivity, acceptable biocompatibility, and robust tumor targetability. Under conditions of photoirradiation, Ex-apt@LuCXB acts to amplify IPDT while exerting a significant antitumor effect in both liver and breast cancer mouse models. The observed therapeutic effects are attributed to a synergistic mechanism that combines antiangiogenesis and photoinduced cancer immunotherapy.


Subject(s)
Celecoxib , Lutetium , Photochemotherapy , Photosensitizing Agents , Porphyrins , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Animals , Humans , Porphyrins/chemistry , Porphyrins/pharmacology , Mice , Lutetium/chemistry , Celecoxib/chemistry , Celecoxib/pharmacology , Immunotherapy , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Female
2.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999044

ABSTRACT

BACKGROUND: FAP radiopharmaceuticals show promise for cancer diagnosis; however, their limited tumor residency hinders treatment. This study compared two FAPi derivatives, DOTA.SA.FAPi and DOTAGA.(SA.FAPi)2, labeled with gallium-68 and lutetium-177, aiming to determine an optimum combination for creating theranostic pairs. METHODS: The radiotracers were studied for lipophilicity, binding to human serum proteins, and binding to human cancer-associated fibroblasts (CAFs) in vitro, including saturation and internalization/externalization studies. PET/SPECT/CT and biodistribution studies were conducted in PC3 and U87MG xenografts for [68Ga]Ga-DOTA.SA.FAPi and [68Ga]Ga-DOTAGA.(SA.FAPi)2. [177Lu]Lu-DOTA.SA.FAPi and [177Lu]Lu-DOTAGA.(SA.FAPi)2, were evaluated in PC3 xenografts. Biodistribution studies of [68Ga]Ga-DOTA.SA.FAPi were performed in healthy male and female mice. RESULTS: All radiotracers exhibited strong binding to FAP. Their internalization rate was fast while only [177Lu]Lu-DOTAGA.(SA.FAPi)2 was retained longer in CAFs. [68Ga]Ga-DOTAGA.(SA.FAPi)2 and [177Lu]Lu-DOTAGA.(SA.FAPi)2 displayed elevated lipophilicity and affinity for human serum proteins compared to [68Ga]Ga-DOTA.SA.FAPi and [177Lu]Lu-DOTA.SA.FAPi. In vivo studies revealed slower washout of [68Ga]Ga-DOTAGA.(SA.FAPi)2 within 3 h compared to [68Ga]Ga-DOTA.SA.FAPi. The tumor-to-tissue ratios of [68Ga]Ga-DOTAGA.(SA.FAPi)2 versus [68Ga]Ga-DOTA.SA.FAPi did not exhibit any significant differences. [177Lu]Lu-DOTAGA.(SA.FAPi)2 maintained a significant tumor uptake even after 96 h p.i. compared to [177Lu]Lu-DOTA.SA.FAPi. CONCLUSIONS: Dimeric compounds hold promise for therapy, while monomers are better suited for diagnostics. Finding the right combination is essential for effective disease management.


Subject(s)
Endopeptidases , Gallium Radioisotopes , Lutetium , Radioisotopes , Radiopharmaceuticals , Lutetium/chemistry , Humans , Animals , Mice , Tissue Distribution , Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/pharmacology , Gallium Radioisotopes/chemistry , Cell Line, Tumor , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Gelatinases/antagonists & inhibitors , Gelatinases/metabolism , Heterocyclic Compounds, 1-Ring/chemistry , Female , Male , Theranostic Nanomedicine
4.
JCO Precis Oncol ; 8: e2400143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38976813

ABSTRACT

PURPOSE: Thrombocytopenia is a relatively common dose-limiting toxicity during peptide receptor radionuclide therapy (PRRT) in patients with NET. Although uncommon, some patients develop persistent cytopenia and eventually therapy-related myeloid neoplasm (t-MN), which has a dismal prognosis. As the indications for PRRT are expanding, it is important to investigate factors that may predict cytopenias during/after PRRT. We prospectively evaluated the prevalence of clonal hematopoiesis (CH) and cytopenia in patients with NET undergoing PRRT. MATERIALS AND METHODS: Patients with metastatic NET with plan to receive four cycles of lutetium-177 were enrolled. CH was evaluated before PRRT using a panel of 220 genes with a targeted depth of ≥1,000×. Patients were followed during PRRT and every 3 months thereafter. RESULTS: Of 37 patients enrolled, the median age was 68 years and 51.4% were male. Previous treatment exposures included alkylating agents in 30%, platinum agents in 8%, and external radiation in 13%. CH was detected in 35.1% using a variant allele frequency (VAF) cutoff of ≥2% and 45.9% with a VAF of ≥1%. The most common mutations were in age-related genes (DNMT3A, TET2). CH was not associated with anemia or neutropenia; however, it was associated with lower platelet count at baseline and more time spent in a thrombocytopenic state during/after PRRT. Five patients had bone marrow biopsies (BMBs) because of sustained hematologic dysfunction post-PRRT, and of those, diagnoses included clonal cytopenia of undetermined significance (CCUS) in three and idiopathic cytopenia of undetermined significance (ICUS) in two. CONCLUSION: CH is present in 35.1% of patients with NET and is associated with thrombocytopenia risk during PRRT. Future studies with long-term follow-up will delineate whether CH might be a predictor for higher risk of t-MN after PRRT.


Subject(s)
Clonal Hematopoiesis , Lutetium , Neuroendocrine Tumors , Thrombocytopenia , Humans , Male , Female , Aged , Thrombocytopenia/genetics , Thrombocytopenia/etiology , Neuroendocrine Tumors/genetics , Prospective Studies , Middle Aged , Lutetium/therapeutic use , Lutetium/adverse effects , Clonal Hematopoiesis/genetics , Aged, 80 and over , Adult , Radioisotopes/therapeutic use , Radioisotopes/adverse effects
5.
Theranostics ; 14(9): 3623-3633, 2024.
Article in English | MEDLINE | ID: mdl-38948055

ABSTRACT

Introduction: Prostate Specific Membrane Antigen Positron Emission Tomography (PSMA-PET) is routinely used for the staging of patients with prostate cancer, but data on response assessment are sparse and primarily stem from metastatic castration-resistant prostate cancer (mCRPC) patients treated with PSMA radioligand therapy. Still, follow-up PSMA-PET is employed in earlier disease stages in case of clinical suspicion of disease persistence, recurrence or progression to decide if localized or systemic treatment is indicated. Therefore, the prognostic value of PSMA-PET derived tumor volumes in earlier disease stages (i.e., hormone-sensitive prostate cancer (HSPC) and non-[177Lu]Lu-PSMA-617 (LuPSMA) therapy castration resistant prostate cancer (CRPC)) are evaluated in this manuscript. Methods: A total number of 73 patients (6 primary staging, 42 HSPC, 25 CRPC) underwent two (i.e., baseline and follow-up, median interval: 379 days) whole-body [68Ga]Ga-PSMA-11 PET/CT scans between Nov 2014 and Dec 2018. Analysis was restricted to non-LuPSMA therapy patients. PSMA-PETs were retrospectively analyzed and primary tumor, lymph node-, visceral-, and bone metastases were segmented. Body weight-adjusted organ-specific and total tumor volumes (PSMAvol: sum of PET volumes of all lesions) were measured for baseline and follow-up. PSMAvol response was calculated as the absolute difference of whole-body tumor volumes. High metastatic burden (>5 metastases), RECIP 1.0 and PSMA-PET Progression Criteria (PPP) were determined. Survival data were sourced from the cancer registry. Results: The average number of tumor lesions per patient on the initial PET examination was 10.3 (SD 28.4). At baseline, PSMAvol was strongly associated with OS (HR 3.92, p <0.001; n = 73). Likewise, response in PSMAvol was significantly associated with OS (HR 10.48, p < 0.005; n = 73). PPP achieved significance as well (HR 2.19, p <0.05, n = 73). Patients with hormone sensitive disease and poor PSMAvol response (upper quartile of PSMAvol change) in follow-up had shorter outcome (p < 0.05; n = 42). PSMAvol in bones was the most relevant parameter for OS prognostication at baseline and for response assessment (HR 31.11 p < 0.001; HR 32.27, p < 0.001; n = 73). Conclusion: PPP and response in PSMAvol were significantly associated with OS in the present heterogeneous cohort. Bone tumor volume was the relevant miTNM region for OS prognostication. Future prospective evaluation of the performance of organ specific PSMAvol in more homogeneous cohorts seems warranted.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Aged , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/pathology , Middle Aged , Follow-Up Studies , Gallium Radioisotopes , Retrospective Studies , Aged, 80 and over , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Glutamate Carboxypeptidase II/metabolism , Radiopharmaceuticals , Antigens, Surface/metabolism , Gallium Isotopes , Prognosis , Lutetium/therapeutic use , Positron-Emission Tomography/methods , Tumor Burden , Heterocyclic Compounds, 1-Ring/therapeutic use , Dipeptides/therapeutic use
6.
Theranostics ; 14(9): 3693-3707, 2024.
Article in English | MEDLINE | ID: mdl-38948062

ABSTRACT

Background: Immune checkpoint inhibitors (ICI) are routinely used in advanced clear cell renal cell carcinoma (ccRCC). However, a substantial group of patients does not respond to ICI therapy. Radiation is a promising approach to increase ICI response rates since it can generate anti-tumor immunity. Targeted radionuclide therapy (TRT) is a systemic radiation treatment, ideally suited for precision irradiation of metastasized cancer. Therefore, the aim of this study is to explore the potential of combined TRT, targeting carbonic anhydrase IX (CAIX) which is overexpressed in ccRCC, using [177Lu]Lu-DOTA-hG250, and ICI for the treatment of ccRCC. Methods: In this study, we evaluated the therapeutic and immunological action of [177Lu]Lu-DOTA-hG250 combined with aPD-1/a-CTLA-4 ICI. First, the biodistribution of [177Lu]Lu-DOTA-hG250 was investigated in BALB/cAnNRj mice bearing Renca-CAIX or CT26-CAIX tumors. Renca-CAIX and CT26-CAIX tumors are characterized by poor versus extensive T-cell infiltration and homogeneous versus heterogeneous PD-L1 expression, respectively. Tumor-absorbed radiation doses were estimated through dosimetry. Subsequently, [177Lu]Lu-DOTA-hG250 TRT efficacy with and without ICI was evaluated by monitoring tumor growth and survival. Therapy-induced changes in the tumor microenvironment were studied by collection of tumor tissue before and 5 or 8 days after treatment and analyzed by immunohistochemistry, flow cytometry, and RNA profiling. Results: Biodistribution studies showed high tumor uptake of [177Lu]Lu-DOTA-hG250 in both tumor models. Dose escalation therapy studies in Renca-CAIX tumor-bearing mice demonstrated dose-dependent anti-tumor efficacy of [177Lu]Lu-DOTA-hG250 and remarkable therapeutic synergy including complete remissions when a presumed subtherapeutic TRT dose (4 MBq, which had no significant efficacy as monotherapy) was combined with aPD-1+aCTLA-4. Similar results were obtained in the CT26-CAIX model for 4 MBq [177Lu]Lu-DOTA-hG250 + a-PD1. Ex vivo analyses of treated tumors revealed DNA damage, T-cell infiltration, and modulated immune signaling pathways in the TME after combination treatment. Conclusions: Subtherapeutic [177Lu]Lu-DOTA-hG250 combined with ICI showed superior therapeutic outcome and significantly altered the TME. Our results underline the importance of investigating this combination treatment for patients with advanced ccRCC in a clinical setting. Further investigations should focus on how the combination therapy should be optimally applied in the future.


Subject(s)
Carbonic Anhydrase IX , Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Animals , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/therapy , Carcinoma, Renal Cell/pathology , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Kidney Neoplasms/radiotherapy , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Humans , Cell Line, Tumor , Radioisotopes/therapeutic use , Radioisotopes/pharmacology , Radioisotopes/administration & dosage , Lutetium/therapeutic use , Female , Antigens, Neoplasm/metabolism , Tissue Distribution , Tumor Microenvironment/drug effects , Tumor Protein, Translationally-Controlled 1 , Xenograft Model Antitumor Assays , Combined Modality Therapy/methods , Mice, Inbred BALB C , Antibodies, Monoclonal
7.
Front Endocrinol (Lausanne) ; 15: 1385079, 2024.
Article in English | MEDLINE | ID: mdl-38948517

ABSTRACT

Background: 177Lu-oxodotreotide peptide receptor therapy (LuPRRT) is an efficient treatment for midgut neuroendocrine tumors (NETs) of variable radiological response. Several clinical, biological, and imaging parameters may be used to establish a relative disease prognosis but none is able to predict early efficacy or toxicities. We investigated expression levels for mRNA and miRNA involved in radiosensitivity and tumor progression searching for correlations related to patient outcome during LuPRRT therapy. Methods: Thirty-five patients received LuPRRT for G1/G2 midgut NETs between May 2019 and September 2021. Peripheral blood samples were collected prior to irradiation, before and 48 h after the second and the fourth LuPRRT, and at 6-month follow-up. Multiple regression analyses and Pearson correlations were performed to identify the miRNA/mRNA signature that will best predict response to LuPRRT. Results: Focusing on four mRNAs and three miRNAs, we identified a miRNA/mRNA signature enabling the early identification of responders to LuPRRT with significant reduced miRNA/mRNA expression after the first LuPRRT administration for patients with progressive disease at 1 year (p < 0.001). The relevance of this signature was reinforced by studying its evolution up to 6 months post-LuPRRT. Moreover, nadir absolute lymphocyte count within the first 2 months after the first LuPRRT administration was significantly related to low miRNA/mRNA expression level (p < 0.05) for patients with progressive disease. Conclusion: We present a pilot study exploring a miRNA/mRNA signature that correlates with early hematologic toxicity and therapeutic response 12 months following LuPRRT. This signature will be tested prospectively in a larger series of patients.


Subject(s)
Intestinal Neoplasms , MicroRNAs , Neuroendocrine Tumors , RNA, Messenger , Humans , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/blood , Neuroendocrine Tumors/therapy , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/pathology , Male , Female , MicroRNAs/blood , MicroRNAs/genetics , Middle Aged , Intestinal Neoplasms/blood , Intestinal Neoplasms/pathology , Intestinal Neoplasms/genetics , Intestinal Neoplasms/drug therapy , RNA, Messenger/genetics , RNA, Messenger/blood , Aged , Follow-Up Studies , Adult , Prognosis , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Somatostatin/analogs & derivatives , Somatostatin/therapeutic use , Receptors, Peptide/genetics , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/administration & dosage , Lutetium , Radioisotopes
8.
ACS Sens ; 9(7): 3707-3719, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38985951

ABSTRACT

Gas sensors based on ambipolar materials offer significant advantages in reducing the size of the analytical system and enhancing its efficiency. Here, bilayer heterojunction devices are constructed using different octafluorinated phthalocyanine complexes, with Zn and Co as metal centers, combined with a lutetium bisphthalocyanine complex (LuPc2). Stable p-type behavior is observed for the ZnF8Pc/LuPc2 device under both electron-donating (NH3) and -oxidizing (NO2 and O3) gaseous species, while the CoF8Pc/LuPc2 device exhibits n-type behavior under reducing gases and p-type behavior under oxidizing gases. The nature of majority of the charge carriers of Co-based devices varies depending on the nature of target gases, displaying an ambipolar behavior. Both heterojunction devices demonstrate stable and observable response toward all three toxic gases in the sub-ppm range. Remarkably, the Co-based device is highly sensitive toward ammonia with a limit of detection (LOD) of 200 ppb, whereas the Zn-based device demonstrates exceptional sensitivity toward oxidizing gases, with excellent LOD values of 4.9 and 0.75 ppb toward NO2 and O3, respectively, which makes it one of the most effective organic heterojunction sensors reported so far for oxidizing gases.


Subject(s)
Gases , Indoles , Zinc , Indoles/chemistry , Gases/analysis , Gases/chemistry , Zinc/chemistry , Zinc/analysis , Isoindoles , Limit of Detection , Cobalt/chemistry , Lutetium/chemistry , Ammonia/analysis , Nitrogen Dioxide/analysis , Nitrogen Dioxide/chemistry , Organometallic Compounds/chemistry , Air Pollutants/analysis
9.
J Nucl Med ; 65(8): 1264-1271, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38960712

ABSTRACT

Novel theranostic approaches using radiopharmaceuticals targeting prostate-specific membrane antigen (PSMA) have emerged for treating metastatic castration-resistant prostate cancer. The physical properties and commercial availability of 177Lu make it one of the most used radionuclides for radiopharmaceutical therapy (RPT). In this literature review, we aimed at comparing the dosimetry of the most used [177Lu]Lu-PSMA RPT compounds. Methods: This was a systematic review and metaanalysis of [177Lu]Lu-PSMA RPT (617, I&T, and J591) dosimetry in patients with prostate cancer. Absorbed doses in Gy/GBq for each organ at risk (kidney, parotid and submandibular glands, bone marrow, liver, and lacrimal glands) and for tumor lesions (bone and nonbone lesions) were extracted from included articles. These were used to estimate the pooled average absorbed dose of each agent in Gy/GBq and in Gy/cycle, normalized to the injected activity (per cycle) used in the VISION (7.4 GBq), SPLASH (6.8 GBq), and PROSTACT trials (5.8 GBq). Results: Twenty-nine published articles comprising 535 patients were included in the metaanalysis. The pooled doses (weighted average across studies) of [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T were 4.04 Gy/GBq (17 studies, 297 patients) and 4.70 Gy/GBq (10 studies, 153 patients) for the kidney (P = 0.10), 5.85 Gy/GBq (14 studies, 216 patients) and 2.62 Gy/GBq (5 studies, 86 patients) for the parotids (P < 0.01), 5.15 Gy/GBq (5 studies, 81 patients) and 4.35 Gy/GBq (1 study, 18 patients) for the submandibular glands (P = 0.56), 11.03 Gy/GBq (6 studies, 121 patients) and 19.23 Gy/GBq (3 studies, 53 patients) for the lacrimal glands (P = 0.20), 0.24 Gy/GBq (12 studies, 183 patients) and 0.19 Gy/GBq (4 studies, 68 patients) for the bone marrow (P = 0.31), and 1.11 Gy/GBq (9 studies, 154 patients) and 0.56 Gy/GBq (4 studies, 56 patients) for the liver (P = 0.05), respectively. Average tumor doses tended to be higher for [177Lu]Lu-PSMA-617 than for [177Lu]Lu-PSMA-I&T in soft tissue tumor lesions (4.19 vs. 2.94 Gy/GBq; P = 0.26). Dosimetry data of [177Lu]Lu-J591 were limited to one published study of 35 patients with reported absorbed doses of 1.41, 0.32, and 2.10 Gy/GBq to the kidney, bone marrow, and liver, respectively. Conclusion: In this metaanalysis, there was no significant difference in absorbed dose between [177Lu]Lu-PSMA-I&T and [177Lu]Lu-PSMA-617. There was a possible trend toward a higher kidney dose with [177Lu]Lu-PSMA-I&T and a higher tumor lesion dose with [177Lu]Lu-PSMA-617. It remains unknown whether this finding has any clinical impact. The dosimetry methodologies were strikingly heterogeneous among studies, emphasizing the need for standardization.


Subject(s)
Lutetium , Radiometry , Radiopharmaceuticals , Humans , Male , Radiopharmaceuticals/therapeutic use , Lutetium/therapeutic use , Prostatic Neoplasms/radiotherapy , Glutamate Carboxypeptidase II/metabolism , Radioisotopes/therapeutic use , Antigens, Surface/metabolism , Prostate-Specific Antigen
10.
Clin Nucl Med ; 49(7): e334-e337, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38831513

ABSTRACT

ABSTRACT: Fibroblast activation protein (FAP) is a new promising molecular target for theragnostic approach. FAP inhibitors (FAPIs) labeled with 177Lu could be potentially a therapeutic radiopharmaceutical. Here, we presented the experience of 4 cycles of 177Lu-FAPI in a 67-year-old man with an unresectable mediastinal sarcoma.


Subject(s)
Mediastinal Neoplasms , Sarcoma , Humans , Male , Mediastinal Neoplasms/radiotherapy , Mediastinal Neoplasms/diagnostic imaging , Aged , Sarcoma/radiotherapy , Sarcoma/diagnostic imaging , Neoplasm Metastasis , Lutetium
11.
Signal Transduct Target Ther ; 9(1): 142, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825657

ABSTRACT

Radiotherapy combined with immune checkpoint blockade holds great promise for synergistic antitumor efficacy. Targeted radionuclide therapy delivers radiation directly to tumor sites. LNC1004 is a fibroblast activation protein (FAP)-targeting radiopharmaceutical, conjugated with the albumin binder Evans Blue, which has demonstrated enhanced tumor uptake and retention in previous preclinical and clinical studies. Herein, we demonstrate that 68Ga/177Lu-labeled LNC1004 exhibits increased uptake and prolonged retention in MC38/NIH3T3-FAP and CT26/NIH3T3-FAP tumor xenografts. Radionuclide therapy with 177Lu-LNC1004 induced a transient upregulation of PD-L1 expression in tumor cells. The combination of 177Lu-LNC1004 and anti-PD-L1 immunotherapy led to complete eradication of all tumors in MC38/NIH3T3-FAP tumor-bearing mice, with mice showing 100% tumor rejection upon rechallenge. Immunohistochemistry, single-cell RNA sequencing (scRNA-seq), and TCR sequencing revealed that combination therapy reprogrammed the tumor microenvironment in mice to foster antitumor immunity by suppressing malignant progression and increasing cell-to-cell communication, CD8+ T-cell activation and expansion, M1 macrophage counts, antitumor activity of neutrophils, and T-cell receptor diversity. A preliminary clinical study demonstrated that 177Lu-LNC1004 was well-tolerated and effective in patients with refractory cancers. Further, scRNA-seq of peripheral blood mononuclear cells underscored the importance of addressing immune evasion through immune checkpoint blockade treatment. This was emphasized by the observed increase in antigen processing and presentation juxtaposed with T cell inactivation. In conclusion, our data supported the efficacy of immunotherapy combined with 177Lu-LNC1004 for cancer patients with FAP-positive tumors.


Subject(s)
Immune Checkpoint Inhibitors , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Humans , Membrane Proteins/genetics , Membrane Proteins/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Endopeptidases/genetics , NIH 3T3 Cells , Radiopharmaceuticals/therapeutic use , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Xenograft Model Antitumor Assays , Immunotherapy , Gelatinases/genetics , Gelatinases/immunology , Lutetium/pharmacology , Cell Line, Tumor
12.
Mol Pharm ; 21(7): 3407-3415, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38822792

ABSTRACT

Transarterial radioembolization (TARE) is a highly effective localized radionuclide therapy that has been successfully used to treat hepatocellular carcinoma (HCC). Extensive research has been conducted on the use of radioactive microspheres (MSs) in TARE, and the development of ideal radioactive MSs is crucial for clinical trials and patient treatment. This study presents the development of a radioactive MS for TARE of HCC. These MSs, referred to as 177Lu-MS@PLGA, consist of poly(lactic-co-glycolic acid) (PLGA) copolymer and radioactive silica MSs, labeled with 177Lu and then coated with PLGA. It has an extremely high level of radiostability. Cellular experiments have shown that it can cause DNA double-strand breaks, leading to cell death. In vivo radiostability of 177Lu-MS@PLGA is demonstrated by microSPECT/CT imaging. In addition, the antitumor study has shown that TARE of 177Lu-MS@PLGA can effectively restrain tumor growth without harmful side effects. Thus, 177Lu-MS@PLGA exhibits significant potential as a radioactive MS for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Embolization, Therapeutic , Liver Neoplasms , Lutetium , Microspheres , Polylactic Acid-Polyglycolic Acid Copolymer , Radioisotopes , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/radiotherapy , Liver Neoplasms/therapy , Liver Neoplasms/radiotherapy , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Animals , Humans , Mice , Lutetium/chemistry , Radioisotopes/chemistry , Radioisotopes/administration & dosage , Embolization, Therapeutic/methods , Cell Line, Tumor , Mice, Inbred BALB C , Mice, Nude , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/therapeutic use , Xenograft Model Antitumor Assays
13.
Mol Pharm ; 21(7): 3256-3267, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856975

ABSTRACT

Prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer cells can serve as a target for imaging and radioligand therapy (RLT). Previously, [68Ga]Ga-P16-093, containing a Ga(III) chelator, N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC), displayed excellent PSMA-targeting properties and showed a high tumor uptake and retention useful for diagnosis in prostate cancer patients. Recently, [177Lu]Lu-PSMA-617 has been approved by the U.S. food and drug administration (FDA) for the treatment of prostate cancer patients. Derivatives of PSMA-093 using AAZTA (6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid), as the chelator, were designed as alternative agents forming complexes with both diagnostic and therapeutic radiometals, such as gallium-68 (log K = 22.18) or lutetium-177 (log K = 21.85). The aim of this study is to evaluate AAZTA-Gly-O-(methylcarboxy)-Tyr-Phe-Lys-NH-CO-NH-Glu (designated as AZ-093, 1) leading to a gallium-68/lutetium-177 theranostic pair as potential PSMA targeting agents. Synthesis of the desired precursor, AZ-093, 1, was effectively accomplished. Labeling with either [68Ga]GaCl3 or [177Lu]LuCl3 in a sodium acetate buffer solution (pH 4-5) at 50 °C in 5 to 15 min produced either [68Ga]Ga-1 or [177Lu]Lu-1 with high yields and excellent radiochemical purities. Results of in vitro binding studies, cell uptake, and retention (using PSMA-positive prostate carcinoma cells line, 22Rv1-FOLH1-oe) were comparable to that of [68Ga]Ga-P16-093 and [177Lu]Lu-PSMA-617, respectively. Specific cellular uptake was determined with or without the competitive blocking agent (2 µM of "cold" PSMA-11). Cellular binding and internalization showed a time-dependent increase over 2 h at 37 °C in the PSMA-positive cells. The cell uptakes were completely blocked by the "cold" PSMA-11 suggesting that they are competing for the same PSMA binding sites. In the mouse model with implanted PSMA-positive tumor cells, both [68Ga]Ga-1 and [177Lu]Lu-1 displayed excellent uptake and retention in the tumor. Results indicate that [68Ga]Ga/[177Lu]Lu-1 (68Ga]Ga/[177Lu]Lu-AZ-093) is potentially useful as PSMA-targeting agent for both diagnosis and radiotherapy of prostate cancer.


Subject(s)
Antigens, Surface , Gallium Radioisotopes , Glutamate Carboxypeptidase II , Lutetium , Prostatic Neoplasms , Radiopharmaceuticals , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Lutetium/chemistry , Antigens, Surface/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/pharmacokinetics , Glutamate Carboxypeptidase II/metabolism , Glutamate Carboxypeptidase II/antagonists & inhibitors , Cell Line, Tumor , Radioisotopes/chemistry , Animals , Chelating Agents/chemistry , Prostate-Specific Antigen/metabolism , Tissue Distribution , Mice , Edetic Acid/analogs & derivatives , Edetic Acid/chemistry , Positron Emission Tomography Computed Tomography/methods
14.
J Nucl Med ; 65(7): 1057-1063, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38844358

ABSTRACT

The aim of this work is to evaluate our clinical real-world data obtained with 225Ac-PSMA-617 (AcPSMA), which were acquired under compassionate care regulations in patients with advanced-stage prostate cancer. The objective parameters that could be derived from this evaluation are compared with previous literature about AcPSMA and 177Lu-PSMA-617 (LuPSMA). Methods: The medical files of all patients who had received AcPSMA on an individual patient basis at the Heidelberg University Hospital since January 2014 were analyzed retrospectively. Previously published patients were excluded. The remaining patients were tailored into 2 subgroups with different treatment strategies: group 1 received AcPSMA as a deescalated monotherapy, and group 2 received LuPSMA plus AcPSMA as a cocktail regimen. Baseline characteristics, serum prostate-specific antigen (PSA) response, and overall survival were compared with the most appropriate historical controls. Results: Of 287 patients treated, 54 were excluded because of previous publication and 233 were evaluated, 104 of whom received AcPSMA monotherapy (median, 6 MBq). In this group, 55 patients (53%) presented with a best PSA response of at least 50%. The other 129 patients received a cocktail therapy of AcPSMA (median, 4 MBq) plus LuPSMA (4 GBq). In this group, a best PSA response of at least 50% was observed in 74 patients (57%). The median overall survival in the monogroup was 9 mo and in the cocktail group was 15 mo. If adjusted for prognostic baseline characteristics, the efficacy of both regimens was not significantly different. Conclusion: Deescalated treatment activities of AcPSMA or AcPSMA and LuPSMA cocktail regimens present better tolerability with regard to xerostomia than previous regimens of at least 100 kBq/kg while retaining high antitumor activity in poor-prognosis prostate cancer patients.


Subject(s)
Actinium , Dipeptides , Heterocyclic Compounds, 1-Ring , Lutetium , Humans , Male , Retrospective Studies , Dipeptides/therapeutic use , Lutetium/therapeutic use , Aged , Heterocyclic Compounds, 1-Ring/therapeutic use , Actinium/therapeutic use , Middle Aged , Prostatic Neoplasms/radiotherapy , Prostate-Specific Antigen/blood , Aged, 80 and over , Treatment Outcome , Radiopharmaceuticals/therapeutic use
15.
ACS Nano ; 18(26): 17209-17217, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904444

ABSTRACT

Efforts on bladder cancer treatment have been shifting from extensive surgery to organ preservation in the past decade. To this end, we herein develop a multifunctional nanoagent for bladder cancer downstaging and bladder-preserving therapy by integrating mucosa penetration, reduced off-target effects, and internal irradiation therapy into a nanodrug. Specifically, an iron oxide nanoparticle was used as a carrier that was coated with hyaluronic acid (HA) for facilitating mucosa penetration. Dibenzocyclooctyne (DBCO) was introduced into the HA coating layer to react through bioorthogonal reaction with azide as an artificial receptor of bladder cancer cells, to improve the cellular internalization of the nanoprobe labeled with 177Lu. Through magnetic resonance imaging, the targeted imaging of both nonmuscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) was realized after intravesical instillation of the multifunctional probe, both NMIBC and MIBC were found downstaged, and the metastasis was inhibited, which demonstrates the potential of the multifunctional nanoprobe for bladder preservation in bladder cancer treatment.


Subject(s)
Lutetium , Radioisotopes , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/pathology , Humans , Lutetium/chemistry , Radioisotopes/chemistry , Animals , Cell Line, Tumor , Magnetic Resonance Imaging , Mice , Hyaluronic Acid/chemistry
16.
Clin Nucl Med ; 49(8): 793-796, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38886924

ABSTRACT

ABSTRACT: The flare phenomenon is a transient increase in the number or intensity of lesions on bone scans after treatment, signifying curative effect. DOTA-ibandronic acid (DOTA-IBA) is a new prodrug that targets bone metastases and can be labeled with 177 Lu. Here, we report the case of a 58-year-old woman with bone metastasis, in whom the flare phenomenon was observed after 4 cycles of 177 Lu-DOTA-IBA treatment. No adverse effects were observed during the treatment and follow-up periods.


Subject(s)
Bone Neoplasms , Lung Neoplasms , Humans , Female , Middle Aged , Bone Neoplasms/secondary , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Lutetium/adverse effects , Organometallic Compounds , Radioisotopes
17.
J Nucl Med ; 65(8): 1257-1263, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38871387

ABSTRACT

Because of upregulated expression on cancer-associated fibroblasts, fibroblast activation protein (FAP) has emerged as an attractive biomarker for the imaging and therapy of solid tumors. Although many FAP ligands have already been developed for radiopharmaceutical therapies (RPTs), most suffer from inadequate tumor uptake, insufficient tumor residence times, or off-target accumulation in healthy tissues, suggesting a need for further improvements. Methods: A new FAP-targeted RPT with a novel ligand (FAP8-PEG3-IP-DOTA) was designed by combining the desirable features of several previous ligand-targeted RPTs. Uptake and retention of [111In]In or [177Lu]Lu-FAP8-PEG3-IP-DOTA were assessed in KB, HT29, MDA-MB-231, and 4T1 murine tumor models by radioimaging or ex vivo biodistribution analyses. Radiotherapeutic potencies and gross toxicities were also investigated by monitoring tumor growth, body weight, and tissue damage in tumor-bearing mice. Results: FAP8-PEG3-IP-DOTA exhibited high affinity (half-maximal inhibitory concentration, 1.6 nM) and good selectivity for FAP relative to its closest homologs, prolyl oligopeptidase (half-maximal inhibitory concentration, ∼14.0 nM) and dipeptidyl peptidase-IV (half-maximal inhibitory concentration, ∼860 nM). SPECT/CT scans exhibited high retention in 2 different solid tumor models and minimal uptake in healthy tissues. Quantitative biodistribution analyses revealed tumor-to-healthy-tissue ratios of more than 5 times for all major organs, and live animal studies demonstrated 65%-93% suppression of tumor growth in all 4 models tested, with minimal or no evidence of systemic toxicity. Conclusion: We conclude that [177Lu]Lu-FAP8-PEG3-IP-DOTA constitutes a promising and safe RPT candidate for FAPα-targeted radionuclide therapy of solid tumors.


Subject(s)
Endopeptidases , Gelatinases , Membrane Proteins , Radiopharmaceuticals , Serine Endopeptidases , Animals , Mice , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacokinetics , Gelatinases/metabolism , Humans , Cell Line, Tumor , Serine Endopeptidases/metabolism , Membrane Proteins/metabolism , Tissue Distribution , Female , Drug Design , Lutetium/therapeutic use , Neoplasms/radiotherapy , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/therapeutic use , Molecular Targeted Therapy , Radioisotopes
18.
J Nucl Med ; 65(8): 1272-1278, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38936975

ABSTRACT

Internal dosimetry supports safe and effective patient management during radionuclide therapy. Yet, it is associated with high clinical workload, costs, and patient burden, as patient scans at multiple time points (MTPs) must be acquired. Dosimetry based on imaging at a single time point (STP) has continuously gained popularity. However, MTP protocols, used as a reference to judge the validity of STP dosimetry, differ depending on local requirements and deviate from the unknown patient-specific ground truth pharmacokinetics. The aim of this study was to compare the error and optimum time point for different STP approaches using different reference MTP protocols. Methods: Whole-body SPECT/CT scans of 7 patients (7.4-8.9 GBq of [177Lu]Lu-PSMA-I&T) were scheduled at 24, 48, 72, and 168 h after injection. Sixty lesions, 14 kidneys, and 10 submandibular glands were delineated in the SPECT/CT data. Two curve models, that is, a mono- and a biexponential model, were fitted to the MTP data, in accordance with goodness-of-fit analysis (coefficients of variation, sum of squared errors). Three population-based STP approaches were compared: one method published by Hänscheid et al., one by Jackson et al., and one using population-based effective half-lives in the mono- or biexponential curve models. Percentage differences between STP and MTP dosimetry were evaluated. Results: Goodness-of-fit parameters show that a monoexponential function and a biexponential function with shared population-based parameters and physical tail are reasonable reference models. When comparing both reference models, we observed maximum differences of -44%, -19%, and -28% in the estimated absorbed doses for lesions, kidneys, and salivary glands, respectively. STP dosimetry with an average deviation of less than 10% from MTP dosimetry may be feasible; however, this deviation and the optimum imaging time point showed a dependence on the chosen reference protocol. Conclusion: STP dosimetry for [177Lu]Lu-PSMA therapy is promising to boost the integration of dosimetry into clinical routine. According to our patient cohort, 48 h after injection may be regarded as a compromise for STP dosimetry for lesions and at-risk organs. The results from this analysis show that a common gold standard for dosimetry is desirable to allow for reliable and comparable STP dosimetry.


Subject(s)
Lutetium , Radiometry , Single Photon Emission Computed Tomography Computed Tomography , Humans , Time Factors , Dipeptides/therapeutic use , Reproducibility of Results , Male , Radioisotopes/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacokinetics , Female , Prostate-Specific Antigen
19.
Appl Radiat Isot ; 210: 111378, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820867

ABSTRACT

Despite being time-consuming, SPECT/CT data is necessary for accurate dosimetry in patient-specific radiopharmaceutical therapy. We investigated how reducing the frame duration (FD) during SPECT acquisition can simplify the dosimetry workflow for [177Lu]Lu-PSMA radioligand therapy (RLT). We aimed to determine the impact of shortened acquisition times on dosimetric precision. Three SPECT scans with FD of 20, 10, and 5 second/frame (sec/fr) were obtained 48 h post-RLT from one metastatic castration-resistant prostate cancer (mCRPC) patient's pelvis. Planar images at 4, 48, and 72 h post-therapy were used to calculate time-integrated activities (TIAs). Using accurate activity calibrations and GATE Monte Carlo (MC) dosimetry, absorbed doses in tumor lesions and kidneys were estimated. Dosimetry precision was assessed by comparing shorter FD results to the 20 sec/fr reference using relative percentage difference (RPD). We observed consistent calibration factors (CFs) across different FDs. Using the same CF, we obtained marginal RPD deviations less than 4% for the right kidney and tumor lesions and less than 7% for the left kidney. By reducing FD, simulation time was slightly decreased. This study shows we can shorten SPECT acquisition time in RLT dosimetry by reducing FD without sacrificing dosimetry accuracy. These findings pave the way for streamlined personalized internal dosimetry workflows.


Subject(s)
Monte Carlo Method , Prostatic Neoplasms, Castration-Resistant , Radiometry , Radiopharmaceuticals , Tomography, Emission-Computed, Single-Photon , Humans , Radiopharmaceuticals/therapeutic use , Male , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Tomography, Emission-Computed, Single-Photon/methods , Radiometry/methods , Lutetium/therapeutic use , Calibration , Radiotherapy Dosage , Radioisotopes
20.
Anticancer Res ; 44(6): 2297-2305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821587

ABSTRACT

BACKGROUND/AIM: The current systematic review aimed to collect and analyze all available published and unpublished cases in which prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (177Lu-PSMA) was used to treat non-prostatic cancer. MATERIALS AND METHODS: Literature search and evidence acquisition through contacts with organizations that use 177Lu-PSMA were employed. PubMed/Medline, SCOPUS, and ScienceDirect searches were performed following PRISMA recommendations. The search strategy was to screen all articles describing 177Lu-PSMA radioligand therapy published to date with the key word "177Lu-PSMA". These articles were collected and screened for non-prostatic cancer cases. Quality assessment was performed using the GRADE criteria. RESULTS: A total of 713 articles were screened, and the search revealed 15 eligible records. Forty patients with a mean age of 51.2±18.5 years were treated with 177Lu-PSMA for non-prostatic cancer. Of them, 30 cases were published, and 10 were found in medical institution records. Cancers of the salivary glands were most often targeted (13/40), followed by various brain cancer types (8/40), and osteosarcoma (6/40). The authors used previously established protocols for castration-resistant prostate cancer with the dose per cycle as 6.0-7.4 GBq and the number of cycles between one and four. Toxicity was estimated as low, and 21 out of 28 patients with reported outcomes survived to the time of the publication. CONCLUSION: PSMA-targeted radioligand therapy was infrequently used to treat different non-prostatic cancer types in various target organs. These pioneering efforts indicate that 177Lu-PSMA can be used to treat non-prostatic cancer with PSMA expression. The toxicity of such treatment was low, and the outcome was relatively good.


Subject(s)
Lutetium , Humans , Lutetium/therapeutic use , Middle Aged , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/adverse effects , Male , Neoplasms/radiotherapy , Neoplasms/therapy , Dipeptides/therapeutic use , Female , Glutamate Carboxypeptidase II/metabolism , Aged , Radioisotopes/therapeutic use , Radioisotopes/adverse effects , Antigens, Surface/metabolism , Adult , Heterocyclic Compounds, 1-Ring/therapeutic use , Prostate-Specific Antigen
SELECTION OF CITATIONS
SEARCH DETAIL