Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Photochem Photobiol ; 96(4): 906-916, 2020 07.
Article in English | MEDLINE | ID: mdl-31907936

ABSTRACT

Moderate levels of a proinflammatory macrophages phenotype are indispensable and play an important role in the skeletal muscle repair process since this response depends on their secreted products concentration to influence and modulate muscle inflammation as well as the differentiation of myoblasts. This study investigated the effects of photobiomodulation (PBM) on undifferentiated and differentiation-induced C2C12 myoblasts cultivated in different concentrations of M1 phenotype macrophage-conditioned media of J774 cells (MCM1) also submitted to PBM using the same irradiation parameters. Irradiation was performed once with low-level laser (780 nm, 70 mW, 1 J) and was evaluated cell viability, proliferation and differentiation, nitric oxide (NO) synthesis and IL-6 and TNF-α protein levels 24 and 48 h after C2C12 irradiation. PBM treatment in undifferentiated myoblasts exhibited lower IL-6 levels in the presence of nonirradiated MCM1 at both concentrations. Myoblasts in proliferation condition cultivated with irradiated MCM1 showed lower IL-6 and TNF-α levels after 48 h in the presence of both concentrations evaluated. PBM induced a decrease in the synthesis of NO on undifferentiated and differentiation-induced myoblasts. PBM was able to reduce the level of proinflammatory protein and markers, which are important to allow the differentiation of myoblasts during the muscle repair process.


Subject(s)
Light , Macrophages/radiation effects , Myoblasts/radiation effects , Animals , Cell Line , Cell Proliferation/radiation effects , Culture Media, Conditioned , Macrophage Activation/radiation effects , Macrophages/cytology , Macrophages/metabolism , Mice , Nitric Oxide/biosynthesis
2.
Photobiomodul Photomed Laser Surg ; 37(5): 298-304, 2019 May.
Article in English | MEDLINE | ID: mdl-31084559

ABSTRACT

Objective: In this study, we evaluated the effectiveness of photodynamic therapy (PDT) for the treatment of experimental cutaneous leishmaniasis (CL) and the profile of macrophages activation markers. Background: Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania. CL is caused by Leishmania major in the old world and by Leishmania braziliensis in the Americas. Considering the targeted organs, PDT may constitute a valuable therapeutic intervention. Macrophages are the host cells of Leishmania in mammals and may be classified into type M1 or M2 depending on the pattern of activation. Methods: BALB/c mice were infected in the foot pad with 1 × 106 amastigotes of L. braziliensis and treated with 5-aminolevulinic acid (5-ALA), visible light, or 5-ALA-PDT. The ex vivo mRNA expression levels of interleukin-10, tumor necrosis factor-α (TNF-α), arginase-1, heme oxygenase ( Hmox), and induced nitric oxide synthase (iNOS) were quantities as markers of macrophage activation with distinct ability to kill intracellular parasite. Results: The parasite load decreased significantly in the group treated with PDT compared with the other groups. The iNOS relative mRNA was higher in the group treated with PDT and light only compared with the group without treatment, whereas iNOS/arginase ratio was significantly higher only in the PDT group. The expression of TNF-α was significantly higher in 5-ALA and light compared with PDT and control group. No significant difference was observed in the expression of the other markers evaluated. Conclusions: Both, light and 5-ALA-PDT were able to upregulate iNOS expression only; 5-ALA-PDT was able to reduce parasite burden. The increase in the iNOS levels suggests it might participate in the antimicrobial mechanisms triggered by 5-ALA-PDT; although parasite death mechanism was not completely clarified, the results presented in this study suggest that macrophage activation may contribute to parasite control.


Subject(s)
Aminolevulinic Acid/therapeutic use , Leishmaniasis, Cutaneous/therapy , Macrophage Activation/radiation effects , Photochemotherapy , Photosensitizing Agents/therapeutic use , Animals , Disease Models, Animal , Interleukin-10/metabolism , Leishmaniasis, Cutaneous/metabolism , Leishmaniasis, Cutaneous/pathology , Male , Mice , Mice, Inbred BALB C , Parasite Load , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL