Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.496
Filter
1.
Biomaterials ; 312: 122721, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39106817

ABSTRACT

Silver nanoparticles (AgNPs) are a potential antiviral agent due to their ability to disrupt the viral particle or alter the virus metabolism inside the host cell. In vitro, AgNPs exhibit antiviral activity against the most common human respiratory viruses. However, their capacity to modulate immune responses during respiratory viral infections has yet to be explored. This study demonstrates that administering AgNPs directly into the lungs prior to infection can reduce viral loads and therefore virus-induced cytokines in mice infected with influenza virus or murine pneumonia virus. The prophylactic effect was diminished in mice with depleted lymphoid cells. We showed that AgNPs-treatment resulted in the recruitment and activation of lymphocytes in the lungs, particularly natural killer (NK) cells. Mechanistically, AgNPs enhanced the ability of alveolar macrophages to promote both NK cell migration and IFN-γ production. By contrast, following infection, in mice treated with AgNPs, NK cells exhibited decreased activation, indicating that these nanoparticles can regulate the potentially deleterious activation of these cells. Overall, the data suggest that AgNPs may possess prophylactic antiviral properties by recruiting and controlling the activation of lymphoid cells through interaction with alveolar macrophages.


Subject(s)
Killer Cells, Natural , Lung , Metal Nanoparticles , Orthomyxoviridae Infections , Silver , Animals , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Lung/virology , Lung/pathology , Lung/drug effects , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Mice , Killer Cells, Natural/drug effects , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Mice, Inbred C57BL , Lymphocytes/drug effects , Lymphocytes/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Female , Lymphocyte Activation/drug effects
2.
Proc Natl Acad Sci U S A ; 121(40): e2406294121, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39312670

ABSTRACT

In the lower respiratory tract, the alveolar spaces are divided from the bloodstream and the external environment by only a few microns of interstitial tissue. Alveolar macrophages (AMs) defend this delicate mucosal surface from invading infections by regularly patrolling the site. AMs have three behavior modalities to achieve this goal: extending cell protrusions to probe and sample surrounding areas, squeezing the whole cell body between alveoli, and patrolling by moving the cell body around each alveolus. In this study, we found Rho GTPase, cell division control protein 42 (CDC42) expression significantly decreased after berry-flavored e-cigarette (e-cig) exposure. This shifted AM behavior from squeezing to probing. Changes in AM behavior led to a reduction in the clearance of inhaled bacteria, Pseudomonas aeruginosa. These findings shed light on pathways involved in AM migration and highlight the harmful impact of e-cig vaping on AM function.


Subject(s)
E-Cigarette Vapor , Electronic Nicotine Delivery Systems , Macrophages, Alveolar , Pseudomonas aeruginosa , Macrophages, Alveolar/metabolism , Animals , Pseudomonas aeruginosa/physiology , E-Cigarette Vapor/adverse effects , Vaping/adverse effects , cdc42 GTP-Binding Protein/metabolism , Mice , Male , Mice, Inbred C57BL
3.
Emerg Microbes Infect ; 13(1): 2402868, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39248230

ABSTRACT

The 2017/18 influenza season was characterized by unusual high numbers of severe infections and hospitalizations. Instead of influenza A viruses, this season was dominated by infections with influenza B viruses of the Yamagata lineage. While this IBV/Yam dominance was associated with a vaccine mismatch, a contribution of virus intrinsic features to the clinical severity of the infections was speculated. Here, we performed a molecular and phenotypic characterization of three IBV isolates from patients with severe flu symptoms in 2018 and compared it to an IBV/Yam isolate from 2016 using experimental models of increasing complexity, including human lung explants, lung organoids, and alveolar macrophages. Viral genome sequencing revealed the presence of clade but also isolate specific mutations in all viral genes, except NP, M1, and NEP. Comparative replication kinetics in different cell lines provided further evidence for improved replication fitness, tolerance towards higher temperatures, and the development of immune evasion mechanisms by the 2018 IBV isolates. Most importantly, immunohistochemistry of infected human lung explants revealed an impressively altered cell tropism, extending from AT2 to AT1 cells and macrophages. Finally, transcriptomics of infected human lung explants demonstrated significantly reduced amounts of type I and type III IFNs by the 2018 IBV isolate, supporting the existence of additional immune evasion mechanisms. Our results show that the severeness of the 2017/18 Flu season was not only the result of a vaccine mismatch but was also facilitated by improved adaptation of the circulating IBV strains to the environment of the human lower respiratory tract.


Subject(s)
Influenza B virus , Influenza, Human , Lung , Humans , Influenza B virus/genetics , Influenza B virus/physiology , Influenza B virus/classification , Influenza B virus/immunology , Influenza, Human/virology , Lung/virology , Virus Replication , Animals , Genome, Viral , Seasons , Immune Evasion , Adaptation, Physiological , Macrophages, Alveolar/virology , Macrophages, Alveolar/immunology , Viral Tropism , Phylogeny
4.
Allergol Immunopathol (Madr) ; 52(5): 73-79, 2024.
Article in English | MEDLINE | ID: mdl-39278854

ABSTRACT

This study examines the therapeutic effects of Shengmai Powder (SMP) on both in vitro and in vivo models of chronic obstructive pulmonary disease (COPD) and the underlying mechanisms. Cigarette smoke and cigarette extracts were used to create in vitro and in vivo models of COPD. ELISA was used to measure the levels of pro-inflammatory factors (IL-6, TNF-α, and IL-1ß) in mouse lung tissue and alveolar macrophages. Flow cytometry assessed the phagocytic capacity of alveolar macrophage. Western blotting was used to analyze the expression of RhoA, PPARγ, IκBα, p-IκBα, P65, and p-P65 in alveolar. The results show that SMP reversed the increased levels of pro-inflammatory factors (IL-6, TNF-α, and IL-1ß) in mouse lung tissue and alveolar macrophages induced by cigarette smoke and cigarette extract. SMP also restored the decreased fluorescence intensity and RhoA levels in alveolar macrophages caused by cigarette extract. Additionally, SMP increased PPARγ expression and decreased IκBα and P65 phosphorylation in alveolar macrophages exposed to cigarette extract. Also, the effects of SMP were reversed by PPARγ inhibitors. The study concluded that SMP regulates alveolar macrophage phagocytic function through the PPAR-γ/NF-κB pathway, thereby improving the chronic inflammatory state of COPD.


Subject(s)
Drug Combinations , Drugs, Chinese Herbal , Macrophages, Alveolar , PPAR gamma , Pulmonary Disease, Chronic Obstructive , Animals , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/immunology , PPAR gamma/metabolism , Drugs, Chinese Herbal/pharmacology , Mice , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Disease Models, Animal , Phagocytosis/drug effects , Humans , Male , Cytokines/metabolism , Powders , Signal Transduction/drug effects , NF-kappa B/metabolism
5.
Virologie (Montrouge) ; 28(4): 1-20, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39248668

ABSTRACT

While antiretroviral therapy (ART) has revolutionized the management of human immunodeficiency virus (HIV) and has enabled people living with HIV (PLWH) to achieve near-normal life expectancies, an HIV cure remains elusive due to the presence of HIV reservoirs. Furthermore, compared with individuals in the general population, PLWH support a higher burden of multimorbidity, including pulmonary diseases of both an infectious and non-infection nature, which may be a consequence of the formation of HIV reservoirs. Their gut, lymph nodes, brain, testes and lungs constitute important anatomic sites for the reservoirs. While CD4+ T cells, and particularly memory CD4+ T cells, are the best characterized cellular HIV reservoirs, tissue resident macrophages (TRM) and alveolar macrophages (AM) also harbor HIV infection. AM are the most abundant cells in bronchoalveolar (BAL) fluid in healthy conditions, and act as sentinels in the alveolar space by patrolling and clearing debris, microbes and surfactant recycling. Long-lived tissue-resident AM of embryonic origin have the capacity of self-renewal without replenishment from peripheral monocytes. As in other tissues, close cell-cell contacts in lungs also provide a milieu conducive for cell-to-cell spread of HIV infection and establishment of reservoirs. As lungs are in constant exposure to antigens from the external environment, this situation contributes to pro-inflammatory phenotype rendering pulmonary immune cells exhausted and senescent-an environment facilitating HIV persistence. Factors such as tobacco and e-cigarette smoking, lung microbiome dysbiosis and respiratory coinfections further drive antigenic stimulation and HIV replication. HIV replication, in turn, contributes to ongoing inflammation and clonal expansion. Herein, the potential role of AM in HIV persistence is discussed. Furthermore, their contribution towards pulmonary inflammation and immune dysregulation, which may in turn render PLWH susceptible to chronic lung disease, despite ART, is explored. Finally, strategies to eliminate HIV-infected AM are discussed.


Subject(s)
HIV Infections , Lung Diseases , Macrophages, Alveolar , Humans , HIV Infections/immunology , HIV Infections/virology , HIV Infections/complications , Macrophages, Alveolar/virology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/physiology , Lung Diseases/virology , Lung Diseases/immunology , Lung/virology , Lung/immunology , HIV-1/physiology , Disease Reservoirs/virology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology
6.
Virologie (Montrouge) ; 28(4): 255-276, 2024 Aug 01.
Article in French | MEDLINE | ID: mdl-39248670

ABSTRACT

While antiretroviral therapy (ART) has revolutionized the management of human immunodeficiency virus (HIV) and has enabled people living with HIV (PLWH) to achieve near-normal life expectancies, an HIV cure remains elusive due to the presence of HIV reservoirs. Furthermore, compared with individuals in the general population, PLWH support a higher burden of multimorbidity, including pulmonary diseases of both an infectious and non-infection nature, which may be a consequence of the formation of HIV reservoirs. Their gut, lymph nodes, brain, testes and lungs constitute important anatomic sites for the reservoirs. While CD4+ T-cells, and particularly memory CD4+ T-cells, are the best characterized cellular HIV reservoirs, tissue resident macrophages (TRM) and alveolar macrophages (AM) also harbor HIV infection. AM are the most abundant cells in bronchoalveolar (BAL) fluid in healthy conditions, and act as sentinels in the alveolar space by patrolling and clearing debris, microbes and surfactant recycling. Long-lived tissue-resident AM of embryonic origin have the capacity of self-renewal without replenishment from peripheral monocytes. As in other tissues, close cell-cell contacts in lungs also provide a milieu conducive for cell-to-cell spread of HIV infection and establishment of reservoirs. As lungs are in constant exposure to antigens from the external environment, this situation contributes to pro-inflammatory phenotype rendering pulmonary immune cells exhausted and senescent-an environment facilitating HIV persistence. Factors such as tobacco and e-cigarette smoking, lung microbiome dysbiosis and respiratory co-infections further drive antigenic stimulation and HIV replication. HIV replication, in turn, contributes to ongoing inflammation and clonal expansion. Herein, the potential role of AM in HIV persistence is discussed. Furthermore, their contribution towards pulmonary inflammation and immune dysregulation, which may in turn render PLWH susceptible to chronic lung disease, despite ART, is explored. Finally, strategies to eliminate HIV-infected AM are discussed.


Subject(s)
HIV Infections , Lung Diseases , Macrophages, Alveolar , Humans , HIV Infections/immunology , HIV Infections/virology , HIV Infections/complications , HIV Infections/drug therapy , Macrophages, Alveolar/virology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/physiology , Lung Diseases/virology , Lung Diseases/immunology , HIV-1/physiology , Lung/virology , Lung/immunology , Disease Reservoirs/virology
7.
FASEB J ; 38(17): e70027, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39221615

ABSTRACT

The complex pathogenesis of lung ischemia-reperfusion injury (LIRI) was examined in a murine model, focusing on the role of pyroptosis and its exacerbation of lung injury. We specifically examined the levels and cellular localization of pyroptosis within the lung, which revealed alveolar macrophages as the primary site. The inhibition of pyroptosis by VX-765 reduced the severity of lung injury, underscoring its significant role in LIRI. Furthermore, the therapeutic potential of ß-hydroxybutyrate (ß-OHB) in ameliorating LIRI was examined. Modulation of ß-OHB levels was evaluated by ketone ester supplementation and 3-hydroxybutyrate dehydrogenase 1 (BDH-1) gene knockout, along with the manipulation of the SIRT1-FOXO3 signaling pathway using EX-527 and pCMV-SIRT1 plasmid transfection. This revealed that ß-OHB exerts lung-protective and anti-pyroptotic effects, which were mediated through the upregulation of SIRT1 and the enhancement of FOXO3 deacetylation, leading to decreased pyroptosis markers and lung injury. In addition, ß-OHB treatment of MH-S cells in vitro showed a concentration-dependent improvement in pyroptosis, linking its therapeutic benefits to specific cell mechanisms. Overall, this study highlights the significance of alveolar macrophage pyroptosis in the exacerbation of LIRI and indicates the potential of ß-OHB in mitigating injury by modulating the SIRT1-FOXO3 signaling pathway.


Subject(s)
3-Hydroxybutyric Acid , Forkhead Box Protein O3 , Macrophages, Alveolar , Mice, Inbred C57BL , Pyroptosis , Reperfusion Injury , Signal Transduction , Sirtuin 1 , Animals , Forkhead Box Protein O3/metabolism , Pyroptosis/drug effects , Sirtuin 1/metabolism , Mice , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/drug effects , Signal Transduction/drug effects , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Male , 3-Hydroxybutyric Acid/pharmacology , Lung/metabolism , Lung/pathology , Carbazoles/pharmacology , Lung Injury/metabolism , Lung Injury/drug therapy
8.
Toxicology ; 508: 153920, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39137830

ABSTRACT

Mycotoxins have strong immunotoxicity and can induce oxidative stress and mitochondrial dynamics imbalance. Mitochondrial antiviral signaling protein (MAVS) in the RIG-I like receptor (RLR) pathway of innate immunity is located on mitochondria, and whether it is affected by mycotoxins has not been reported yet. This experiment used porcine alveolar macrophages (PAM) to evaluate the antagonism of three isomers of chlorogenic acid (chlorogenic acid, isochlorogenic acid A, and neochlorogenic acid) against combined mycotoxins (Aflatoxin B1, Deoxynivalenol, and Ochratoxin A) induced mitochondrial damage and their effects on the RLR pathway, providing assistance for further elucidating the mechanism of mycotoxin immunotoxicity. Western blotting, enzyme linked immunosorbent assay (ELISA), and flow cytometry were used to detect relevant indicators. All three types of chlorogenic acid treatment can antagonize the cytotoxicity induced by combined mycotoxins, especially isochlorogenic acid A, which can protect cells from mycotoxins damage by maintaining mitochondrial dynamic homeostasis and improving innate immune function related to the RLR pathway.


Subject(s)
Chlorogenic Acid , Immunity, Innate , Macrophages, Alveolar , Mitochondrial Dynamics , Mycotoxins , Trichothecenes , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/analogs & derivatives , Mycotoxins/toxicity , Swine , Mitochondrial Dynamics/drug effects , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Trichothecenes/toxicity , Immunity, Innate/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Ochratoxins/toxicity , Aflatoxin B1/toxicity , Cells, Cultured , Signal Transduction/drug effects , Cell Survival/drug effects , Oxidative Stress/drug effects
9.
Nature ; 633(8029): 417-425, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39198650

ABSTRACT

Severe defects in human IFNγ immunity predispose individuals to both Bacillus Calmette-Guérin disease and tuberculosis, whereas milder defects predispose only to tuberculosis1. Here we report two adults with recurrent pulmonary tuberculosis who are homozygous for a private loss-of-function TNF variant. Neither has any other clinical phenotype and both mount normal clinical and biological inflammatory responses. Their leukocytes, including monocytes and monocyte-derived macrophages (MDMs) do not produce TNF, even after stimulation with IFNγ. Blood leukocyte subset development is normal in these patients. However, an impairment in the respiratory burst was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)-matured MDMs and alveolar macrophage-like (AML) cells2 from both patients with TNF deficiency, TNF- or TNFR1-deficient induced pluripotent stem (iPS)-cell-derived GM-CSF-matured macrophages, and healthy control MDMs and AML cells differentiated with TNF blockers in vitro, and in lung macrophages treated with TNF blockers ex vivo. The stimulation of TNF-deficient iPS-cell-derived macrophages with TNF rescued the respiratory burst. These findings contrast with those for patients with inherited complete deficiency of the respiratory burst across all phagocytes, who are prone to multiple infections, including both Bacillus Calmette-Guérin disease and tuberculosis3. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but is surprisingly redundant otherwise, including for inflammation and immunity to weakly virulent mycobacteria and many other infectious agents.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Induced Pluripotent Stem Cells , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Male , Adult , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/cytology , Granulocyte-Macrophage Colony-Stimulating Factor/deficiency , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Female , Respiratory Burst , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/genetics , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Interferon-gamma/immunology , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor Inhibitors/pharmacology , Homozygote , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Mycobacterium tuberculosis/immunology
10.
J Nanobiotechnology ; 22(1): 476, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135064

ABSTRACT

BACKGROUND: Current needle-based vaccination for respiratory viruses is ineffective at producing sufficient, long-lasting local immunity in the elderly. Direct pulmonary delivery to the resident local pulmonary immune cells can create long-term mucosal responses. However, criteria for drug vehicle design rules that can overcome age-specific changes in immune cell functions have yet to be established. RESULTS: Here, in vivo charge-based nanoparticle (NP) uptake was compared in mice of two age groups (2- and 16-months) within the four notable pulmonary antigen presenting cell (APC) populations: alveolar macrophages (AM), interstitial macrophages (IM), CD103+ dendritic cells (DCs), and CD11b+ DCs. Both macrophage populations exhibited preferential uptake of anionic nanoparticles but showed inverse rates of phagocytosis between the AM and IM populations across age. DC populations demonstrated preferential uptake of cationic nanoparticles, which remarkably did not significantly change in the aged group. Further characterization of cell phenotypes post-NP internalization demonstrated unique surface marker expression and activation levels for each APC population, showcasing heightened DC inflammatory response to NP delivery in the aged group. CONCLUSION: The age of mice demonstrated significant preferences in the charge-based NP uptake in APCs that differed greatly between macrophages and DCs. Carefully balance of the targeting and activation of specific types of pulmonary APCs will be critical to produce efficient, age-based vaccines for the growing elderly population.


Subject(s)
Antigen-Presenting Cells , Dendritic Cells , Lung , Mice, Inbred C57BL , Nanoparticles , Phagocytosis , Animals , Nanoparticles/chemistry , Mice , Lung/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Antigen-Presenting Cells/immunology , Macrophages, Alveolar/metabolism , Polyethylene Glycols/chemistry , Aging , Female , Age Factors
11.
Front Immunol ; 15: 1425466, 2024.
Article in English | MEDLINE | ID: mdl-39100672

ABSTRACT

Introduction: Genetic mutations in critical nodes of pulmonary epithelial function are linked to the pathogenesis of pulmonary fibrosis (PF) and other interstitial lung diseases. The slow progression of these pathologies is often intermitted and accelerated by acute exacerbations, complex non-resolving cycles of inflammation and parenchymal damage, resulting in lung function decline and death. Excess monocyte mobilization during the initial phase of an acute exacerbation, and their long-term persistence in the lung, is linked to poor disease outcome. Methods: The present work leverages a clinical idiopathic PF dataset and a murine model of acute inflammatory exacerbations triggered by mutation in the alveolar type-2 cell-restricted Surfactant Protein-C [SP-C] gene to spatially and phenotypically define monocyte/macrophage changes in the fibrosing lung. Results: SP-C mutation triggered heterogeneous CD68+ macrophage activation, with highly active peri-injured cells relative to those sampled from fully remodeled and healthy regions. Ingenuity pathway analysis of sorted CD11b-SigF+CD11c+ alveolar macrophages defined asynchronous activation of extracellular matrix re-organization, cellular mobilization, and Apolipoprotein E (Apoe) signaling in the fibrosing lung. Cell-cell communication analysis of single cell sequencing datasets predicted pro-fibrogenic signaling (fibronectin/Fn1, osteopontin/Spp1, and Tgfb1) emanating from Trem2/TREM2 + interstitial macrophages. These cells also produced a distinct lipid signature from alveolar macrophages and monocytes, characterized by Apoe expression. Mono- and di-allelic genetic deletion of ApoE in SP-C mutant mice had limited impact on inflammation and mortality up to 42 day after injury. Discussion: Together, these results provide a detailed spatio-temporal picture of resident, interstitial, and monocyte-derived macrophages during SP-C induced inflammatory exacerbations and end-stage clinical PF, and propose ApoE as a biomarker to identify activated macrophages involved in tissue remodeling.


Subject(s)
Pulmonary Fibrosis , Animals , Mice , Humans , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , Phenotype , Disease Models, Animal , Pulmonary Surfactant-Associated Protein C/genetics , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mutation , Macrophage Activation/genetics , Macrophage Activation/immunology , Apolipoproteins E/genetics , Male , Inflammation/immunology , Disease Progression , Macrophages/immunology , Macrophages/metabolism , Lung/pathology , Lung/immunology , Lung/metabolism , Mice, Inbred C57BL , Female , Monocytes/immunology , Monocytes/metabolism
12.
Respir Res ; 25(1): 322, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182076

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an inflammatory airway disease characterized by emphysema and chronic bronchitis and a leading cause of mortality worldwide. COPD is commonly associated with several comorbid diseases which contribute to exacerbated patient outcomes. Cigarette smoke (CS) is the most prominent risk factor for COPD development and progression and is known to be detrimental to numerous effector functions of lung resident immune cells, including phagocytosis and cytokine production. However, how CS mediates the various pathologies distant from the lung in COPD, and whether CS has a similar biological effect on systemic immune cells remains unknown. METHODS: C57BL/6 mice were exposed to 8 weeks of CS as an experimental model of COPD. Bone marrow cells were isolated from both CS-exposed and room air (RA) control mice and differentiated to bone marrow-derived macrophages (BMDMs). Airspace macrophages (AMs) were isolated from the same CS-exposed and RA mice and bulk RNA-Seq performed. The functional role of differentially expressed genes was assessed through gene ontology analyses. Ingenuity Pathway Analysis was used to determine the activation states of canonical pathways and upstream regulators enriched in differentially expressed genes in both cell types, and to compare the differences between the two cell types. RESULTS: CS induced transcriptomic changes in BMDMs, including an upregulation of genes in sirtuin signalling and oxidative phosphorylation pathways and a downregulation of genes involved in histone and lysine methylation. In contrast, CS induced decreased expression of genes involved in pathogen response, phagosome formation, and immune cell trafficking in AMs. Little overlap was observed in differentially expressed protein-coding genes in BMDMs compared to AMs and their associated pathways, highlighting the distinct effects of CS on immune cells in different compartments. CONCLUSIONS: CS exposure can induce transcriptomic remodelling in BMDMs which is distinct to that of AMs. Our study highlights the ability of CS exposure to affect immune cell populations distal to the lung and warrants further investigation into the functional effects of these changes and the ensuing role in driving multimorbid disease.


Subject(s)
Gene Expression Profiling , Mice, Inbred C57BL , Animals , Mice , Gene Expression Profiling/methods , Transcriptome , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/pathology , Cells, Cultured , Macrophages/metabolism , Macrophages/drug effects , Male , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/drug effects , Smoke/adverse effects
13.
Front Immunol ; 15: 1434011, 2024.
Article in English | MEDLINE | ID: mdl-39144143

ABSTRACT

Background: Gamma-delta (γδ) T cells are a major immune cell subset in pigs. Approximately 50% of circulating T cells are γδ T cells in young pigs and up to 30% in adult sows. Despite this abundance, the functions of porcine γδ T cells are mostly unidentified. In humans and mice, activated γδ T cells exhibit broad innate cytotoxic activity against a wide variety of stressed, infected, and cancerous cells through death receptor/ligand-dependent and perforin/granzyme-dependent pathways. However, so far, it is unknown whether porcine γδ T cells have the ability to perform cytotoxic functions. Methods: In this study, we conducted a comprehensive phenotypic characterization of porcine γδ T cells isolated from blood, lung, and nasal mucosa. To further analyze the cytolytic potential of γδ T cells, in vitro cytotoxicity assays were performed using purified γδ T cells as effector cells and virus-exposed or mock-treated primary porcine alveolar macrophages as target cells. Results: Our results show that only CD2+ γδ T cells express cytotoxic markers (CD16, NKp46, perforin) with higher perforin and NKp46 expression in γδ T cells isolated from lung and nasal mucosa. Moreover, we found that γδ T cells can exhibit cytotoxic functions in a cell-cell contact and degranulation-dependent manner. However, porcine γδ T cells did not seem to specifically target Porcine Reproductive and Respiratory Syndrome Virus or swine Influenza A Virus-infected macrophages, which may be due to viral escape mechanisms. Conclusion: Porcine γδ T cells express cytotoxic markers and can exhibit cytotoxic activity in vitro. The specific mechanisms by which porcine γδ T cells recognize target cells are not fully understood but may involve the detection of cellular stress signals.


Subject(s)
Cytotoxicity, Immunologic , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/physiology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Porcine Reproductive and Respiratory Syndrome/immunology , T-Lymphocytes, Cytotoxic/immunology , Biomarkers , Orthomyxoviridae Infections/immunology , Perforin/metabolism , Perforin/immunology , Intraepithelial Lymphocytes/immunology , Cells, Cultured
14.
Nat Commun ; 15(1): 6737, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112475

ABSTRACT

Sepsis is a critical global health concern linked to high mortality rates, often due to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). While the gut-lung axis involvement in ALI is recognized, direct migration of gut immune cells to the lung remains unclear. Our study reveals sepsis-induced migration of γδ T17 cells from the small intestine to the lung, triggering an IL-17A-dominated inflammatory response in mice. Wnt signaling activation in alveolar macrophages drives CCL1 upregulation, facilitating γδ T17 cell migration. CD44+ Ly6C- IL-7Rhigh CD8low cells are the primary migratory subtype exacerbating ALI. Esketamine attenuates ALI by inhibiting pulmonary Wnt/ß-catenin signaling-mediated migration. This work underscores the pivotal role of direct gut-to-lung memory γδ T17 cell migration in septic ALI and clarifies the importance of localized IL-17A elevation in the lung.


Subject(s)
Acute Lung Injury , Cell Movement , Interleukin-17 , Lung , Mice, Inbred C57BL , Sepsis , Animals , Sepsis/immunology , Sepsis/complications , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Mice , Interleukin-17/metabolism , Interleukin-17/immunology , Lung/immunology , Lung/pathology , Male , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Wnt Signaling Pathway/immunology , Macrophages, Alveolar/immunology , Intestine, Small/immunology , Intestine, Small/pathology , Intraepithelial Lymphocytes/immunology , Disease Models, Animal , Antigens, Ly/metabolism , Immunologic Memory
15.
Part Fibre Toxicol ; 21(1): 32, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39135079

ABSTRACT

BACKGROUND: Alveolar macrophages (AMs) have been predicted to affect the pulmonary clearance of nanomaterials; however, their qualitative and quantitative roles are poorly understood. In this study, carbon black nanoparticles (CBNPs) were instilled into the lungs of Wistar rats at 30, 100, and 300 µg/rat. The concentrations of particles in organs, including the lung, lung-associated lymph nodes (LALN), liver, spleen, and kidney, were evaluated at days 0 (immediately after instillation), 1, 7, 28, 60, and 90 post-instillation. RESULTS: The results indicated a multimodal pulmonary clearance pattern for CBNPs: slow clearance until day 28, fast clearance from days 28 to 60, and slow clearance from days 60 to 90. To determine the mechanism of this unique clearance pattern, CBNPs were instilled into AM-depleted rats using clodronate liposomes (CLO). At 28 days after instillation, the CBNP levels in the lungs treated with CLO showed about 31% higher reduction than in normal rats. In addition, the concentration of CBNPs in LALN treated with CLO significantly increased on day 28, whereas in normal rats, no detectable levels were observed. CONCLUSIONS: This result highlights that the prolonged retention of poorly soluble NPs in the lung until day 28 is mediated by the phagocytosis of AMs, and the fast clearance between days 28-60 is due to the turnover time of AMs, estimated around 1-2 months after birth. Similarly, new generations of AMs mediate the slow phase between days 60 and 90. However, further studies are needed to understand the multimodal clearance mechanism and the modulation of pulmonary clearance of poorly soluble NPs.


Subject(s)
Lung , Macrophages, Alveolar , Nanoparticles , Rats, Wistar , Soot , Animals , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/drug effects , Soot/toxicity , Soot/chemistry , Lung/metabolism , Lung/drug effects , Male , Tissue Distribution , Rats , Particle Size , Clodronic Acid/administration & dosage , Metabolic Clearance Rate
16.
Cell Mol Life Sci ; 81(1): 351, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147987

ABSTRACT

Deciphering the initial steps of SARS-CoV-2 infection, that influence COVID-19 outcomes, is challenging because animal models do not always reproduce human biological processes and in vitro systems do not recapitulate the histoarchitecture and cellular composition of respiratory tissues. To address this, we developed an innovative ex vivo model of whole human lung infection with SARS-CoV-2, leveraging a lung transplantation technique. Through single-cell RNA-seq, we identified that alveolar and monocyte-derived macrophages (AMs and MoMacs) were initial targets of the virus. Exposure of isolated lung AMs, MoMacs, classical monocytes and non-classical monocytes (ncMos) to SARS-CoV-2 variants revealed that while all subsets responded, MoMacs produced higher levels of inflammatory cytokines than AMs, and ncMos contributed the least. A Wuhan lineage appeared to be more potent than a D614G virus, in a dose-dependent manner. Amidst the ambiguity in the literature regarding the initial SARS-CoV-2 cell target, our study reveals that AMs and MoMacs are dominant primary entry points for the virus, and suggests that their responses may conduct subsequent injury, depending on their abundance, the viral strain and dose. Interfering on virus interaction with lung macrophages should be considered in prophylactic strategies.


Subject(s)
COVID-19 , Cytokines , Lung , Macrophages, Alveolar , Macrophages , SARS-CoV-2 , Humans , COVID-19/virology , COVID-19/immunology , SARS-CoV-2/physiology , Lung/virology , Lung/immunology , Lung/pathology , Macrophages/virology , Macrophages/metabolism , Macrophages/immunology , Macrophages, Alveolar/virology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Cytokines/metabolism , Monocytes/virology , Monocytes/metabolism , Monocytes/immunology , Male , Female , Single-Cell Analysis , Middle Aged
17.
Respir Res ; 25(1): 315, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160551

ABSTRACT

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is a frequent cause of morbidity and mortality. Dysregulated and enhanced immune-inflammatory responses have been described in COPD. Recent data showed impaired immune responses and, in particular, of interferon (IFNs) signaling pathway in these patients. AIM: To evaluate in peripheral lung of COPD patients, the expression of some of the less investigated key components of the innate immune responses leading to IFN productions including: IFN-receptors (IFNAR1/IFNAR2), IRF-3 and MDA-5. Correlations with clinical traits and with the inflammatory cell profile have been assessed. METHODS: Lung specimens were collected from 58 subjects undergoing thoracic surgery: 22 COPD patients, 21 smokers with normal lung function (SC) and 15 non-smoker controls (nSC). The expression of IFNAR1, IFNAR2, IRF-3 and MDA-5, of eosinophils and activated NK cells (NKp46+) were quantified in the peripheral lung by immunohistochemistry. RESULTS: A significant increase of IRF-3 + alveolar macrophages were observed in COPD and SC compared with nSC subjects. However, in COPD patients, the lower the levels of IRF-3 + alveolar macrophages the lower the FEV1 and the higher the exacerbation rate. The presence of chronic bronchitis (CB) was also associated with low levels of IRF-3 + alveolar macrophages. NKp46 + cells, but not eosinophils, were increased in COPD patients compared to nSC patients (p < 0.0001). CONCLUSIONS: Smoking is associated with higher levels of innate immune response as showed by higher levels of IRF-3 + alveolar macrophages and NKp46 + cells. In COPD, exacerbation rates, severe airflow obstruction and CB were associated with lower levels of IRF-3 expression, suggesting that innate immune responses characterize specific clinical traits of the disease.


Subject(s)
Interferon Regulatory Factor-3 , Macrophages, Alveolar , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Male , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/biosynthesis , Female , Middle Aged , Aged , Immunity, Innate
18.
Discov Med ; 36(187): 1600-1609, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39190375

ABSTRACT

BACKGROUND: Macrophages are activated in ventilator-induced lung injury (VILI), accompanied by macrophage pyroptosis. Remimazolam (Re) plays a role in inhibiting macrophage activation. In this study, we aimed to investigate the mechanism of Re in VILI. METHODS: A VILI model (20 mL/kg mechanical ventilation) was created using C57BL/6 mice. Alveolar macrophages were isolated from bronchoalveolar lavage fluid (BALF) and received mechanical stretching to simulate the mechanical ventilation in vitro. VILI model mice were treated with Re (16 mg/kg) to assess the alveolar structure, wet/dry (W/D) weight ratio, endothelial barrier antigen (EBA) permeability index, BALF protein content, inflammatory factors, macrophage pyroptosis, pyroptosis-related factors, and translocator protein (TSPO) level using a series of biological experiments. Whether Re alleviated macrophage pyroptosis by regulating TSPO was determined by rescue experiments. RESULTS: Re alleviated VILI, as evidenced by improvement of abnormal morphology of lung tissues during VILI and decreases in the lung W/D weight ratio, lung EBA permeability index, and BALF protein content. Re attenuated pulmonary inflammation and macrophage pyroptosis during VILI via down-regulation of inflammatory factors (myeloperoxidase, malondialchehyche, 8-hydroxy-2 deoxyguanosine, interleukin-6, tumor necrosis factor-α, macrophage inflammatory protein-2, interleukin-1ß, and interleukin-18), and pyroptosis factors (cleaved gasdermin D (GSDMD)/GSDMD value, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), and caspase-1). Re activated TSPO in macrophages. TSPO overexpression rescued the cell stretch-inhibited macrophage viability and cell stretch-induced macrophage pyroptosis. CONCLUSION: Re alleviates VILI by activating TSPO to inhibit macrophage pyroptosis.


Subject(s)
Mice, Inbred C57BL , Pyroptosis , Ventilator-Induced Lung Injury , Animals , Ventilator-Induced Lung Injury/pathology , Ventilator-Induced Lung Injury/metabolism , Ventilator-Induced Lung Injury/drug therapy , Ventilator-Induced Lung Injury/prevention & control , Pyroptosis/drug effects , Mice , Male , Receptors, GABA/metabolism , Disease Models, Animal , Bronchoalveolar Lavage Fluid/chemistry , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/pathology
19.
Histochem Cell Biol ; 162(5): 415-428, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39134731

ABSTRACT

Sepsis has a high mortality rate and leads to multi-organ failure, including lung injury. Inactive rhomboid protease family protein (iRhom2) has been identified as accountable for the release of TNF-α, a crucial mediator in the development of sepsis. This study aimed to evaluate the role of iRhom2 in sepsis and sepsis-induced acute lung injury (ALI). TNF-α and IL-6 secretion in vitro by peritoneal macrophages from wild-type (WT) and iRhom2 knoukout (KO) mice was assessed by enzyme-linked immunosorbent assay. Cecal ligation and puncture (CLP)-induced murine sepsis model was used for in vivo experiments. To evaluate the role of iRhom2 deficiency on survival during sepsis, both WT and iRhom2 KO mice were monitored for 8 consecutive days following the CLP. For histologic and biochemical examination, the mice were killed 18 h after CLP. iRhom2 deficiency improved the survival of mice after CLP. iRhom2 deficiency decreased CD68+ macrophage infiltration in lung tissues. Multiplex immunohistochemistry revealed that the proportion of Ki-67+ CD68+ macrophages was significantly lower in iRhom2 KO mice than that in WT mice after CLP. Moreover, CLP-induced release of TNF-α and IL-6 in the serum were significantly inhibited by iRhom2 deficiency. iRhom2 deficiency reduced NF-kB p65 and IκBα phosphorylation after CLP. iRhom2 deficiency reduces sepsis-related mortality associated with attenuated macrophage infiltration and proliferation in early lung injury. iRhom2 may play a pivotal role in the pathogenesis of sepsis and early stage of sepsis-induced ALI. Thus, iRhom2 may be a potential therapeutic target for the management of sepsis and sepsis-induced ALI.


Subject(s)
Mice, Inbred C57BL , Mice, Knockout , Sepsis , Animals , Sepsis/metabolism , Sepsis/pathology , Mice , Male , Carrier Proteins/metabolism , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Macrophages/metabolism , Macrophages/pathology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology
20.
Redox Biol ; 75: 103296, 2024 09.
Article in English | MEDLINE | ID: mdl-39098263

ABSTRACT

The lung macrophages play a crucial role in health and disease. Sexual dimorphism significantly impacts the phenotype and function of tissue-resident macrophages. The primary mechanisms responsible for sexually dimorphic outcomes in bronchopulmonary dysplasia (BPD) remain unidentified. We tested the hypothesis that biological sex plays a crucial role in the transcriptional state of alveolar macrophages, using neonatal murine hyperoxia-induced lung injury as a relevant model for human BPD. The effects of neonatal hyperoxia exposure (95 % FiO2, PND1-5: saccular stage) on the lung myeloid cells acutely after injury and during normoxic recovery were measured. Alveolar macrophages (AM) from room air- and hyperoxia exposed from male and female neonatal murine lungs were subjected to bulk-RNA Sequencing. AMs are significantly depleted in the hyperoxia-exposed lung acutely after injury, with subsequent recovery in both sexes. The transcriptome of the alveolar macrophages is impacted by neonatal hyperoxia exposure and by sex as a biological variable. Pathways related to DNA damage and interferon-signaling were positively enriched in female AMs. Metabolic pathways related to glucose and carbohydrate metabolism were positively enriched in the male AMs, while oxidative phosphorylation was negatively enriched. These pathways were shared with monocytes and airway macrophages from intubated male and female human premature neonates.


Subject(s)
Animals, Newborn , Hyperoxia , Macrophages, Alveolar , Female , Animals , Male , Macrophages, Alveolar/metabolism , Mice , Hyperoxia/metabolism , Humans , Transcriptome , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/pathology , Bronchopulmonary Dysplasia/etiology , Sex Characteristics , Sex Factors , Disease Models, Animal , Infant, Newborn , Lung/metabolism , Lung/pathology , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/etiology
SELECTION OF CITATIONS
SEARCH DETAIL