Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.067
1.
FASEB J ; 38(11): e23720, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38837708

Recessive Stargardt disease (STGD1) is an inherited juvenile maculopathy caused by mutations in the ABCA4 gene, for which there is no suitable treatment. Loss of functional ABCA4 in the retinal pigment epithelium (RPE) alone, without contribution from photoreceptor cells, was shown to induce STGD1 pathology. Here, we identified cathepsin D (CatD), the primary RPE lysosomal protease, as a key molecular player contributing to endo-lysosomal dysfunction in STGD1 using a newly developed "disease-in-a-dish" RPE model from confirmed STGD1 patients. Induced pluripotent stem cell (iPSC)-derived RPE originating from three STGD1 patients exhibited elevated lysosomal pH, as previously reported in Abca4-/- mice. CatD protein maturation and activity were impaired in RPE from STGD1 patients and Abca4-/- mice. Consequently, STGD1 RPE cells have reduced photoreceptor outer segment degradation and abnormal accumulation of α-synuclein, the natural substrate of CatD. Furthermore, dysfunctional ABCA4 in STGD1 RPE cells results in intracellular accumulation of autofluorescent material and phosphatidylethanolamine (PE). The altered distribution of PE associated with the internal membranes of STGD1 RPE cells presumably compromises LC3-associated phagocytosis, contributing to delayed endo-lysosomal degradation activity. Drug-mediated re-acidification of lysosomes in the RPE of STGD1 restores CatD functional activity and reduces the accumulation of immature CatD protein loads. This preclinical study validates the contribution of CatD deficiencies to STGD1 pathology and provides evidence for an efficacious therapeutic approach targeting RPE cells. Our findings support a cell-autonomous RPE-driven pathology, informing future research aimed at targeting RPE cells to treat ABCA4-mediated retinopathies.


ATP-Binding Cassette Transporters , Cathepsin D , Lysosomes , Retinal Pigment Epithelium , Stargardt Disease , Cathepsin D/metabolism , Cathepsin D/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Stargardt Disease/metabolism , Stargardt Disease/pathology , Stargardt Disease/genetics , Animals , Humans , Mice , Lysosomes/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Induced Pluripotent Stem Cells/metabolism , Mice, Knockout , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics
2.
Cell Death Dis ; 15(6): 385, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824126

Drusen, the yellow deposits under the retina, are composed of lipids and proteins, and represent a hallmark of age-related macular degeneration (AMD). Lipid droplets are also reported in the retinal pigment epithelium (RPE) from AMD donor eyes. However, the mechanisms underlying these disease phenotypes remain elusive. Previously, we showed that Pgc-1α repression, combined with a high-fat diet (HFD), induce drastic AMD-like phenotypes in mice. We also reported increased PGC-1α acetylation and subsequent deactivation in the RPE derived from AMD donor eyes. Here, through a series of in vivo and in vitro experiments, we sought to investigate the molecular mechanisms by which PGC-1α repression could influence RPE and retinal function. We show that PGC-1α plays an important role in RPE and retinal lipid metabolism and function. In mice, repression of Pgc-1α alone induced RPE and retinal degeneration and drusen-like deposits. In vitro inhibition of PGC1A by CRISPR-Cas9 gene editing in human RPE (ARPE19- PGC1A KO) affected the expression of genes responsible for lipid metabolism, fatty acid ß-oxidation (FAO), fatty acid transport, low-density lipoprotein (LDL) uptake, cholesterol esterification, cholesterol biosynthesis, and cholesterol efflux. Moreover, inhibition of PGC1A in RPE cells caused lipid droplet accumulation and lipid peroxidation. ARPE19-PGC1A KO cells also showed reduced mitochondrial biosynthesis, impaired mitochondrial dynamics and activity, reduced antioxidant enzymes, decreased mitochondrial membrane potential, loss of cardiolipin, and increased susceptibility to oxidative stress. Our data demonstrate the crucial role of PGC-1α in regulating lipid metabolism. They provide new insights into the mechanisms involved in lipid and drusen accumulation in the RPE and retina during aging and AMD, which may pave the way for developing novel therapeutic strategies targeting PGC-1α.


Lipid Droplets , Lipid Metabolism , Macular Degeneration , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Animals , Humans , Mice , Lipid Droplets/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Male , Oxidative Stress
3.
Sci Transl Med ; 16(750): eadi4125, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38838135

Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.


Interleukin-1 Receptor-Associated Kinases , Mice, Knockout , Oxidative Stress , Retinal Degeneration , Retinal Pigment Epithelium , Animals , Humans , Male , Mice , Cellular Senescence , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology
4.
Bioorg Chem ; 147: 107405, 2024 Jun.
Article En | MEDLINE | ID: mdl-38696843

The prolonged intravitreal administration of anti-vascular endothelial growth factor (VEGF) drugs is prone to inducing aberrant retinal vascular development and causing damage to retinal neurons. Hence, we have taken an alternative approach by designing and synthesizing a series of cyclic peptides targeting CC motif chemokine receptor 3 (CCR3). Based on the binding mode of the N-terminal region in CCR3 protein to CCL11, we used computer-aided identification of key amino acid sequence, conformational restriction through different cyclization methods, designed and synthesized a series of target cyclic peptides, and screened the preferred compound IB-2 through affinity. IB-2 exhibits excellent anti-angiogenic activity in HRECs. The apoptosis level of 661W cells demonstrated a significant decrease with the escalating concentration of IB-2. This suggests that IB-2 may have a protective effect on photoreceptor cells. In vivo experiments have shown that IB-2 significantly reduces retinal vascular leakage and choroidal neovascularization (CNV) area in a laser-induced mouse model of CNV. These findings indicate the potential of IB-2 as a safe and effective therapeutic agent for AMD, warranting further development.


Macular Degeneration , Peptides, Cyclic , Receptors, CCR3 , Animals , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Mice , Receptors, CCR3/antagonists & inhibitors , Receptors, CCR3/metabolism , Humans , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship , Mice, Inbred C57BL , Dose-Response Relationship, Drug , Apoptosis/drug effects , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/pathology , Choroidal Neovascularization/metabolism , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Angiogenesis
5.
Clin Exp Med ; 24(1): 98, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727918

The role of mast cells in physiologic and pathological processes extends far beyond the allergy processes: they are involved in wound healing, chronic inflammation, and tumor growth. This short article emphasizes the role played by mast cells in age-related macular degeneration (AMD). Mast cells can induce angiogenesis and are present around Bruch's membrane during the early and late stages of choroidal neovascularization in AMD. Proteolytic enzymes released by mast cells lead to thinning of the choroid in AMD as well as degradation of vascular basement membranes and Bruch's membrane, which in turn could result in retinal pigment epithelial death and choriocapillaris degeneration in geographical atrophy and exudative AMD.


Choroid , Macular Degeneration , Mast Cells , Humans , Choroid/pathology , Macular Degeneration/pathology , Macular Degeneration/metabolism , Choroidal Neovascularization/pathology , Choroidal Neovascularization/metabolism , Bruch Membrane/pathology , Bruch Membrane/metabolism
6.
Aging (Albany NY) ; 16(9): 8044-8069, 2024 May 10.
Article En | MEDLINE | ID: mdl-38742956

Age-related macular degeneration (AMD) is a condition causing progressive central vision loss. Growing evidence suggests a link between cellular senescence and AMD. However, the exact mechanism by which cellular senescence leads to AMD remains unclear. Employing machine learning, we established an AMD diagnostic model. Through unsupervised clustering, two distinct AMD subtypes were identified. GO, KEGG, and GSVA analyses explored the diverse biological functions associated with the two subtypes. By WGCNA, we constructed a coexpression network of differential genes between the subtypes, revealing the regulatory role of hub genes at the level of transcription factors and miRNAs. We identified 5 genes associated with inflammation for the construction of the AMD diagnostic model. Additionally, we observed that the level of cellular senescence and pathways related to programmed cell death (PCD), such as ferroptosis, necroptosis, and pyroptosis, exhibited higher expression levels in subtype B than A. Immune microenvironments also differed between the subtypes, indicating potentially distinct pathogenic mechanisms and therapeutic targets. In summary, by leveraging cellular senescence-associated gene expression, we developed an AMD diagnostic model. Furthermore, we identified two subtypes with varying expression patterns of senescence genes, revealing their differential roles in programmed cell death, disease progression, and immune microenvironments within AMD.


Cellular Senescence , Computational Biology , Macular Degeneration , Cellular Senescence/genetics , Macular Degeneration/genetics , Macular Degeneration/diagnosis , Macular Degeneration/pathology , Humans , Gene Regulatory Networks , Gene Expression Profiling , Machine Learning , MicroRNAs/genetics , MicroRNAs/metabolism
7.
Sci Rep ; 14(1): 12145, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802406

Age-related macular degeneration (AMD) is a leading cause of blindness worldwide, with a complex pathophysiology and phenotypic diversity. Here, we apply Similarity Network Fusion (SNF) to cluster AMD patients into putative metabolomics-derived endotypes. Using a discovery cohort of 163 AMD patients from Boston, US, and a validation cohort of 214 patients from Coimbra, Portugal, we identified four distinct metabolomics-derived endotypes with varying retinal structural and functional characteristics, confirmed across both cohorts. Patients clustered into Endotype 1 exhibited a milder form of AMD and were characterized by low levels of amino acids in specific metabolic pathways. Meanwhile, patients clustered into both Endotype 3 and 4 were associated with more severe AMD and exhibited low levels of fatty acid metabolites and elevated levels of sphingomyelins and fatty acid metabolites, respectively. These preliminary findings indicate that metabolomics-derived endotyping may offer a refined strategy for categorizing AMD patients based on their specific pathophysiological underpinnings, rather than relying solely on traditional observational clinical indicators.


Macular Degeneration , Metabolomics , Humans , Macular Degeneration/metabolism , Macular Degeneration/pathology , Metabolomics/methods , Male , Female , Aged , Aged, 80 and over , Cohort Studies , Portugal , Middle Aged , Metabolome
8.
J Clin Invest ; 134(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38690727

Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.


Complement Activation , Complement System Proteins , Macular Degeneration , Humans , Macular Degeneration/immunology , Macular Degeneration/pathology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Complement Activation/immunology , Animals , Eye/immunology , Eye/pathology
9.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732004

Age-related macular degeneration (AMD) is an age-related disorder that is a global public health problem. The non-enzymatic Maillard reaction results in the formation of advanced glycation end products (AGEs). Accumulation of AGEs in drusen plays a key role in AMD. AGE-reducing drugs may contribute to the prevention and treatment of AGE-related disease. Fructosamine oxidase (FAOD) acts on fructosyl lysine and fructosyl valine. Based upon the published results of fructosamine 3-kinase (FN3K) and FAOD obtained in cataract and presbyopia, we studied ex vivo FAOD treatment as a non-invasive AMD therapy. On glycolaldehyde-treated porcine retinas, FAOD significantly reduced AGE autofluorescence (p = 0.001). FAOD treatment results in a breakdown of AGEs, as evidenced using UV fluorescence, near-infrared microspectroscopy on stained tissue sections of human retina, and gel permeation chromatography. Drusen are accumulations of AGEs that build up between Bruch's membrane and the retinal pigment epithelium. On microscopy slides of human retina affected by AMD, a significant reduction in drusen surface to 45 ± 21% was observed following FAOD treatment. Enzymatic digestion followed by mass spectrometry of fructose- and glucose-based AGEs (produced in vitro) revealed a broader spectrum of substrates for FAOD, as compared to FN3K, including the following: fructosyllysine, carboxymethyllysine, carboxyethyllysine, and imidazolone. In contrast to FN3K digestion, agmatine (4-aminobutyl-guanidine) was formed following FAOD treatment in vitro. The present study highlights the therapeutic potential of FAOD in AMD by repairing glycation-induced damage.


Glycation End Products, Advanced , Macular Degeneration , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Macular Degeneration/pathology , Humans , Glycation End Products, Advanced/metabolism , Animals , Swine , Retina/metabolism , Retina/drug effects , Retina/pathology , Amino Acid Oxidoreductases
10.
Front Immunol ; 15: 1366841, 2024.
Article En | MEDLINE | ID: mdl-38711521

Introduction: Age-related macular degeneration (AMD) is a prevalent, chronic and progressive retinal degenerative disease characterized by an inflammatory response mediated by activated microglia accumulating in the retina. In this study, we demonstrate the therapeutically effects and the underlying mechanisms of microglial repopulation in the laser-induced choroidal neovascularization (CNV) model of exudative AMD. Methods: The CSF1R inhibitor PLX3397 was used to establish a treatment paradigm for microglial repopulation in the retina. Neovascular leakage and neovascular area were examined by fundus fluorescein angiography (FFA) and immunostaining of whole-mount RPE-choroid-sclera complexes in CNV mice receiving PLX3397. Altered cellular senescence was measured by beta-galactosidase (SA-ß-gal) activity and p16INK4a expression. The effect and mechanisms of repopulated microglia on leukocyte infiltration and the inflammatory response in CNV lesions were analyzed. Results: We showed that ten days of the CSF1R inhibitor PLX3397 treatment followed by 11 days of drug withdrawal was sufficient to stimulate rapid repopulation of the retina with new microglia. Microglial repopulation attenuated pathological choroid neovascularization and dampened cellular senescence in CNV lesions. Repopulating microglia exhibited lower levels of activation markers, enhanced phagocytic function and produced fewer cytokines involved in the immune response, thereby ameliorating leukocyte infiltration and attenuating the inflammatory response in CNV lesions. Discussion: The microglial repopulation described herein are therefore a promising strategy for restricting inflammation and choroidal neovascularization, which are important players in the pathophysiology of AMD.


Aminopyridines , Choroidal Neovascularization , Disease Models, Animal , Microglia , Animals , Choroidal Neovascularization/etiology , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Microglia/metabolism , Microglia/drug effects , Mice , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Mice, Inbred C57BL , Macular Degeneration/pathology , Macular Degeneration/metabolism , Macular Degeneration/drug therapy , Inflammation , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Pyrroles/pharmacology , Pyrroles/therapeutic use , Cellular Senescence/drug effects
11.
Sci Rep ; 14(1): 10044, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698112

Clinical studies using suspensions or sheets of human pluripotent cell-derived retinal pigment epithelial cells (hiPSC-RPE) have been conducted globally for diseases such as age-related macular degeneration. Despite being minimally invasive, cell suspension transplantation faces challenges in targeted cell delivery and frequent cell leakage. Conversely, although the RPE sheet ensures targeted delivery with correct cell polarity, it requires invasive surgery, and graft preparation is time-consuming. We previously reported hiPSC-RPE strips as a form of quick cell aggregate that allows for reliable cell delivery to the target area with minimal invasiveness. In this study, we used a microsecond pulse laser to create a local RPE ablation model in cynomolgus monkey eyes. The hiPSC-RPE strips were transplanted into the RPE-ablated and intact sites. The hiPSC-RPE strip stably survived in all transplanted monkey eyes. The expansion area of the RPE from the engrafted strip was larger at the RPE injury site than at the intact site with no tumorigenic growth. Histological observation showed a monolayer expansion of the transplanted RPE cells with the expression of MERTK apically and collagen type 4 basally. The hiPSC-RPE strip is considered a beneficial transplantation option for RPE cell therapy.


Induced Pluripotent Stem Cells , Macaca fascicularis , Retinal Pigment Epithelium , Animals , Retinal Pigment Epithelium/transplantation , Retinal Pigment Epithelium/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Macular Degeneration/pathology
12.
Nat Commun ; 15(1): 3780, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710714

Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.


Choroidal Neovascularization , Dependovirus , Genetic Therapy , Genetic Vectors , Retinal Pigment Epithelium , Animals , Dependovirus/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Genetic Therapy/methods , Mice , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/virology , Choroidal Neovascularization/therapy , Choroidal Neovascularization/genetics , Rabbits , Humans , Gene Transfer Techniques , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/pathology , Disease Models, Animal , Capsid Proteins/genetics , Capsid Proteins/metabolism , Transduction, Genetic , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Mice, Inbred C57BL , Retina/metabolism , Retina/virology , Male , HEK293 Cells
13.
Neurobiol Aging ; 140: 41-59, 2024 Aug.
Article En | MEDLINE | ID: mdl-38723422

Aging is the main risk factor for age-related macular degeneration (AMD), a retinal neurodegenerative disease that leads to irreversible blindness, particularly in people over 60 years old. Retinal pigmented epithelium (RPE) atrophy is an AMD hallmark. Genome-wide chromatin accessibility, DNA methylation, and gene expression studies of AMD and control RPE demonstrate epigenomic/transcriptomic changes occur during AMD onset and progression. However, mechanisms by which molecular alterations of normal aging impair RPE function and contribute to AMD pathogenesis are unclear. Here, we specifically interrogate the RPE translatome with advanced age and across sexes in a novel RPE reporter mouse model. We find differential age- and sex- associated transcript expression with overrepresentation of pathways related to inflammation in the RPE. Concordant with impaired RPE function, the phenotypic changes in the aged translatome suggest that aged RPE becomes immunologically active, in both males and females, with some sex-specific signatures, which supports the need for sex representation for in vivo studies.


Aging , Macular Degeneration , Retinal Pigment Epithelium , Sex Characteristics , Animals , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Female , Male , Aging/genetics , Aging/physiology , Aging/pathology , Macular Degeneration/genetics , Macular Degeneration/pathology , Macular Degeneration/etiology , Transcriptome , Disease Models, Animal , Gene Expression , Inflammation , Mice , Mice, Inbred C57BL
14.
Immunohorizons ; 8(5): 363-370, 2024 May 01.
Article En | MEDLINE | ID: mdl-38775688

Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1ß protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1ß mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1ß.


Choroidal Neovascularization , Indenes , Inflammasomes , Interleukin-1beta , Microglia , Monocytes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Mice , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Microglia/metabolism , Monocytes/metabolism , Mice, Knockout , Sulfones/pharmacology , Mice, Inbred C57BL , Furans/pharmacology , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Macrophages/metabolism , Macrophages/immunology , Sulfonamides/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Choroid/metabolism , Choroid/pathology , Disease Models, Animal , Lasers/adverse effects , Macular Degeneration/pathology , Macular Degeneration/metabolism , Macular Degeneration/genetics
15.
Sci Rep ; 14(1): 11681, 2024 05 22.
Article En | MEDLINE | ID: mdl-38778065

This multicentre retrospective study evaluated the 1-year outcomes and safety profile of faricimab in treatment-naïve patients with neovascular age-related macular degeneration (nAMD). Fifty-five patients (57 eyes) underwent loading therapy comprising three monthly faricimab injections. If dryness was achieved by the third month, subsequent treat-and-extend (TAE) follow-up continued at a minimum 8-week interval thereafter. If wet macula persisted at the third month, a fourth dose was administered, followed by the TAE regimen. After 1 year, improvements in visual acuity (0.44 ± 0.46 [baseline] to 0.34 ± 0.48; p < 0.01) and central foveal thickness (326 ± 149 [baseline] to 195 ± 82 µm; p < 0.0001) were significant. Dry macula, characterised by the absence of intraretinal or subretinal fluid, was achieved in 65% of cases. Treatment intervals varied, ranging from 8 to 16 weeks, with 44% of eyes extending to a 16-week interval, followed by 33% at 8 weeks, 16% at 12 weeks, 5% at 14 weeks, and 2% at 10 weeks. Notably, 50% of the polypoidal choroidal vasculopathy patients exhibited complete regression of polypoidal lesions between 12 and 15 months. Faricimab treatment in nAMD patients induced significant improvements in central vision and retinal morphology. Two cases of retinal pigment epithelial tears and one case of iritis were reported as ocular complications.


Visual Acuity , Humans , Male , Female , Aged , Japan , Retrospective Studies , Aged, 80 and over , Visual Acuity/drug effects , Treatment Outcome , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/adverse effects , Angiogenesis Inhibitors/administration & dosage , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Intravitreal Injections , Middle Aged , Tomography, Optical Coherence
16.
J Biol Chem ; 300(5): 107291, 2024 May.
Article En | MEDLINE | ID: mdl-38636661

Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.


Ceramides , Receptors, Adiponectin , Retina , Animals , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/genetics , Mice , Ceramides/metabolism , Retina/metabolism , Retina/pathology , Mice, Knockout , Fatty Acids, Unsaturated/metabolism , Retinal Pigment Epithelium/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics
17.
Free Radic Biol Med ; 219: 17-30, 2024 Jul.
Article En | MEDLINE | ID: mdl-38579938

Non-exudative age-related macular degeneration (NE-AMD) is the leading blindness cause in the elderly. Clinical and experimental evidence supports that early alterations in macular retinal pigment epithelium (RPE) mitochondria play a key role in NE-AMD-induced damage. Mitochondrial dynamics (biogenesis, fusion, fission, and mitophagy), which is under the central control of AMP-activated kinase (AMPK), in turn, determines mitochondrial quality. We have developed a NE-AMD model in C57BL/6J mice induced by unilateral superior cervical ganglionectomy (SCGx), which progressively reproduces the disease hallmarks circumscribed to the temporal region of the RPE/outer retina that exhibits several characteristics of the human macula. In this work we have studied RPE mitochondrial structure, dynamics, function, and AMPK role on these parameters' regulation at the nasal and temporal RPE from control eyes and at an early stage of experimental NE-AMD (i.e., 4 weeks post-SCGx). Although RPE mitochondrial mass was preserved, their function, which was higher at the temporal than at the nasal RPE in control eyes, was significantly decreased at 4 weeks post-SCGx at the same region. Mitochondria were bigger, more elongated, and with denser cristae at the temporal RPE from control eyes. Exclusively at the temporal RPE, SCGx severely affected mitochondrial morphology and dynamics, together with the levels of phosphorylated AMPK (p-AMPK). AMPK activation with metformin restored RPE p-AMPK levels, and mitochondrial dynamics, structure, and function at 4 weeks post-SCGx, as well as visual function and RPE/outer retina structure at 10 weeks post-SCGx. These results demonstrate a key role of the temporal RPE mitochondrial homeostasis as an early target for NE-AMD-induced damage, and that pharmacological AMPK activation could preserve mitochondrial morphology, dynamics, and function, and, consequently, avoid the functional and structural damage induced by NE-AMD.


AMP-Activated Protein Kinases , Disease Models, Animal , Macular Degeneration , Mice, Inbred C57BL , Mitochondria , Mitochondrial Dynamics , Retinal Pigment Epithelium , Animals , Mitochondria/metabolism , Mitochondria/pathology , Mice , Macular Degeneration/pathology , Macular Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , AMP-Activated Protein Kinases/metabolism , Humans , Metformin/pharmacology
18.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38673745

Age-related macular degeneration (AMD) is a chronic disease that usually develops in older people. Pathogenetic changes in this disease include anatomical and functional complexes. Harmful factors damage the retina and macula. These changes may lead to partial or total loss of vision. The disease can occur in two clinical forms: dry (the progression is slow and gentle) and exudative (wet-progression is acute and severe), which usually starts in the dry form; however, the coexistence of both forms is possible. The etiology of AMD is not fully understood, and the precise mechanisms of the development of this illness are still unknown. Extensive genetic studies have shown that AMD is a multi-factorial disease and that genetic determinants, along with external and internal environmental and metabolic-functional factors, are important risk factors. This article reviews the role of glutathione (GSH) enzymes engaged in maintaining the reduced form and polymorphism in glutathione S-transferase theta-1 (GSTT1) and glutathione S-transferase mu-1 (GSTM1) in the development of AMD. We only chose papers that confirmed the influence of the parameters on the development of AMD. Because GSH is the most important antioxidant in the eye, it is important to know the influence of the enzymes and genetic background to ensure an optimal level of glutathione concentration. Numerous studies have been conducted on how the glutathione system works till today. This paper presents the current state of knowledge about the changes in GSH, GST, GR, and GPx in AMD. GST studies clearly show increased activity in ill people, but for GPx, the results relating to activity are not so clear. Depending on the research, the results also suggest higher and lower GPx activity in patients with AMD. The analysis of polymorphisms in GST genes confirmed that mutations lead to weaker antioxidant barriers and may contribute to the development of AMD; unfortunately, a meta-analysis and some research did not confirm that connection. Unspecific results of many of the parameters that make up the glutathione system show many unknowns. It is so important to conduct further research to understand the exact mechanism of defense functions of glutathione against oxidative stress in the human eye.


Glutathione Transferase , Glutathione , Macular Degeneration , Humans , Macular Degeneration/metabolism , Macular Degeneration/genetics , Macular Degeneration/pathology , Glutathione/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Animals , Oxidative Stress
19.
PLoS One ; 19(4): e0301377, 2024.
Article En | MEDLINE | ID: mdl-38558077

BACKGROUND: Falls in older adults are a significant public health concern, and age-related macular degeneration (AMD) and glaucoma have been identified as potential visual risk factors. This study was designed to assess equilibrium function, fall risk, and fall-related self-efficacy (an individual's belief in their capacity to act in ways necessary to reach specific goals) in patients with AMD and glaucoma. METHODS: This observational study was performed at the Otorhinolaryngology Department of Shinseikai Toyama Hospital. The cohort comprised 60 participants (AMD; n = 30; median age, 76.0 years; and glaucoma; n = 30; median age, 64.5 years). Visual acuity and visual fields were assessed using the decimal best-corrected visual acuity and Humphrey visual field tests, respectively. The evaluation metrics included pathological eye movement analysis, bedside head impulse test, single-leg upright test, eye-tracking test, optokinetic nystagmus, and posturography. Furthermore, we administered questionnaires for fall risk determinants including the Dizziness Handicap Inventory, Activities-Specific Balance Confidence Scale, Falls Efficacy Scale-International, and Hospital Anxiety and Depression Scale. The collected data were analyzed using descriptive statistics, and Spearman's correlation analysis was employed to examine the interrelations among the equilibrium function, fall risk, and other pertinent variables. RESULTS: Most participants exhibited standard outcomes in equilibrium function evaluations. Visual acuity and field deficits had a minimal impact on subjective dizziness manifestations, degree of disability, and fall-related self-efficacy. Both groups predominantly showed high self-efficacy. No significant correlation was observed between visual acuity or field deficits and body equilibrium function or fall risk. However, greater peripheral visual field impairment was associated with a tendency for sensory reweighting from visual to somatosensory. CONCLUSION: Self-efficacy was higher and fall risk was relatively lower among patients with mild-to-moderate visual impairment, with a tendency for sensory reweighting from visual to somatosensory in those with greater peripheral visual field impairment. Further studies are required to validate these findings.


Glaucoma , Macular Degeneration , Humans , Aged , Middle Aged , Dizziness/complications , Visual Acuity , Visual Fields , Glaucoma/complications , Scotoma , Macular Degeneration/pathology
20.
BMC Ophthalmol ; 24(1): 177, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632537

BACKGROUND: Kidney and eye diseases may be closely linked. Tears of the retinal pigment epithelium (RPE) have been reported to be related to kidney diseases, such as IgA nephropathy and light-chain deposition disease. However, pigment epithelium tears associated with membranous nephropathy have not been reported or systematically analysed. CASE PRESENTATION: A 68-year-old man presented with decreased right eye visual acuity. Optical coherence tomography (OCT) revealed cystic macular edema, localized serous detachment of the retina and loss of the outer retinal structure in the right eye and retinal pigment epithelium detachment (PED) combined with serous detachment of the retina in the left eye. Fundus fluorescein angiography (FFA) and indocyanine green angiography (ICGA) revealed giant RPE tears in the right eye and exudative age-related macular degeneration in the left eye. The patient also suffered from severe membranous nephropathy-autoimmune glomerulonephritis. Renal biopsy immunofluorescence revealed a roughly granular pattern, with immunoglobulin G (IgA), immunoglobulin G (IgG), IgM, complement C3(Components 3), λ light chain and κ light chain subepithelial staining. CONCLUSIONS: It is hypothesized that severe membranous nephropathy caused immune complex deposition on the surface of Bruch membrane, resulting in weakened adhesion between the RPE and Bruch membrane and impaired RPE pump function, combined with age-related macular degeneration, leading to giant RPE tears in the right eye. Close attention should be given to the ocular condition of patients with membranous nephropathy to facilitate timely treatment and avoid serious consequences.


Glomerulonephritis, Membranous , Macular Degeneration , Retinal Detachment , Retinal Perforations , Male , Humans , Aged , Retinal Pigment Epithelium/pathology , Glomerulonephritis, Membranous/complications , Glomerulonephritis, Membranous/pathology , Macular Degeneration/pathology , Fluorescein Angiography/methods , Retinal Perforations/etiology , Retinal Detachment/etiology , Tomography, Optical Coherence/methods , Epithelium , Immunoglobulin G
...