Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.245
Filter
1.
Theranostics ; 14(9): 3739-3759, 2024.
Article in English | MEDLINE | ID: mdl-38948054

ABSTRACT

Background: The repair of osteoporotic bone defects remains challenging due to excessive reactive oxygen species (ROS), persistent inflammation, and an imbalance between osteogenesis and osteoclastogenesis. Methods: Here, an injectable H2-releasing hydrogel (magnesium@polyethylene glycol-poly(lactic-co-glycolic acid), Mg@PEG-PLGA) was developed to remodel the challenging bone environment and accelerate the repair of osteoporotic bone defects. Results: This Mg@PEG-PLGA gel shows excellent injectability, shape adaptability, and phase-transition ability, can fill irregular bone defect areas via minimally invasive injection, and can transform into a porous scaffold in situ to provide mechanical support. With the appropriate release of H2 and magnesium ions, the 2Mg@PEG-PLGA gel (loaded with 2 mg of Mg) displayed significant immunomodulatory effects through reducing intracellular ROS, guiding macrophage polarization toward the M2 phenotype, and inhibiting the IκB/NF-κB signaling pathway. Moreover, in vitro experiments showed that the 2Mg@PEG-PLGA gel inhibited osteoclastogenesis while promoting osteogenesis. Most notably, in animal experiments, the 2Mg@PEG-PLGA gel significantly promoted the repair of osteoporotic bone defects in vivo by scavenging ROS and inhibiting inflammation and osteoclastogenesis. Conclusions: Overall, our study provides critical insight into the design and development of H2-releasing magnesium-based hydrogels as potential implants for repairing osteoporotic bone defects.


Subject(s)
Bone Regeneration , Hydrogels , Hydrogen , Magnesium , Osteogenesis , Osteoporosis , Polyethylene Glycols , Reactive Oxygen Species , Animals , Magnesium/chemistry , Magnesium/administration & dosage , Reactive Oxygen Species/metabolism , Mice , Polyethylene Glycols/chemistry , Hydrogels/chemistry , Osteoporosis/drug therapy , Osteogenesis/drug effects , Hydrogen/pharmacology , Hydrogen/administration & dosage , Hydrogen/chemistry , RAW 264.7 Cells , Bone Regeneration/drug effects , Immunomodulation/drug effects , Tissue Scaffolds/chemistry , Macrophages/drug effects , Macrophages/metabolism , Polyesters
2.
J Environ Manage ; 363: 121392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850904

ABSTRACT

Lignin hydrothermal silica-carbon material served as a backbone for MgCl2 activation to prepare lignin-based silicon/magnesia biochar (ALB/Si-Mg) for Cd2+, Pb2+, Cu2+, and Zn2+ removal from water and soil environment. Characterization studies revealed a 1017.71-fold increase in the specific surface area of ALB/Si-Mg compared to the original lignin biochar (ALB), producing abundant oxygen functional groups (OC-O, Si-O, Mg-O), and mineral matter (Mg2SiO4 and MgO). Crucially, batch adsorption experiments demonstrated that the adsorption capacity of ALB/Si-Mg for Cd2+, Pb2+, Cu2+, and Zn2+ was 848.17, 665.07, 151.84, and 245.78 mg/g, which were 29.09-140.45 times of the ALB. Soil remediation experiments showed that applying ALB/Si-Mg increased soil effective silicon (109.04%-450.2%) and soil exchangeable magnesium (276.41%-878.66%), enhanced plant photosynthesis, and notably reduced the bioavailability of heavy metals in soil as well as the content of heavy metals in Pakchoi, thereby promoting Pakchoi growth and development. The presence of oxygen-containing functional groups on ALB/Si-Mg, along with Mg2SiO4 and MgO nanoparticles, enhanced the adsorption capacity for heavy metals through the promotion of heavy metal precipitation, ion exchange, and complexation mechanisms. This study establishes the groundwork for the coupling of silica and magnesium elements in biochar and the remediation of composite heavy metal environmental pollution.


Subject(s)
Charcoal , Environmental Restoration and Remediation , Lignin , Metals, Heavy , Silicon Dioxide , Metals, Heavy/chemistry , Charcoal/chemistry , Silicon Dioxide/chemistry , Lignin/chemistry , Adsorption , Environmental Restoration and Remediation/methods , Magnesium/chemistry , Soil/chemistry , Soil Pollutants/chemistry
3.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892430

ABSTRACT

Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.


Subject(s)
Biocompatible Materials , Magnesium , Magnesium/chemistry , Animals , Biocompatible Materials/chemistry , Humans , Research Design , Materials Testing , Corrosion , Prostheses and Implants
4.
J Appl Biomater Funct Mater ; 22: 22808000241251564, 2024.
Article in English | MEDLINE | ID: mdl-38912599

ABSTRACT

OBJECTIVES: This study aims to investigate the effect of coating time on the formation of hydroxyapatite (HA) coating layer on ZK60 substrate and understand the biodegradation behavior of the coated alloy for biodegradable implant applications. METHODS: Biodegradable ZK60 alloy was coated by HA layer for different times of 0.5, 1, 2, and 4 h by chemical conversion method. After coating, all the coated specimens were used for immersion test in Hanks' solution to understand the effect of coating time on the degradation behavior of the alloy. The degradation rate of the coated alloy was evaluated by Mg2+ ion quantification and pH change during immersion test. The microstructure of the coating layer was examined by scanning electron microscope (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) before and after immersion to understand the degradation behavior of the coated alloy. RESULTS: HA coating layers were formed successfully on surface of ZK60 specimens after 0.5, 1, 2, and 4 h with different microstructure. Optimal coating quality was observed at 1 or 2 h, characterized by well-formed and uniform HA layers. However, extending the coating duration to 4 h led to the formation of cracks within the HA layer, accompanied by Mg(OH)2. Specimens coated for 1 and 2 h exhibited the lowest degradation rates, while specimens coated for 0.5 and 4 h showed the highest degradation rates. Furthermore, analysis of degradation products revealed the predominance of calcium phosphates formed on the surface of specimens coated for 1 and 2 h. Conversely, specimens coated for 0.5 and 4 h exhibited Mg(OH)2 as the primary degradation product, suggesting a less effective corrosion barrier under these conditions. CONCLUSION: The HA layer formed after 2 h demonstrated as the most effective coating layer for enhancing the corrosion resistance of the ZK60 alloy for biomedical applications.


Subject(s)
Alloys , Coated Materials, Biocompatible , Durapatite , Durapatite/chemistry , Alloys/chemistry , Coated Materials, Biocompatible/chemistry , Materials Testing , Corrosion , Magnesium/chemistry
5.
Radiat Prot Dosimetry ; 200(10): 919-937, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38851183

ABSTRACT

The features of the glow curves of LiF:Mg,Ti are dependent on many parameters of irradiation, storage, ionisation density and readout. These are presented herein with emphasis on their complexity. Successful applications require some understanding of the great diversity of the glow curves. Glow curve analysis/deconvolution in order to better understand the mechanisms is a 'tricky business' even with Tm-Tstop analysis. In the theoretical framework of spatially correlated trapping and luminescent centres, a mechanism is described which simulates the behaviour of composite peak 5 at different cooling rates and following photon bleaching at 3.65 eV.


Subject(s)
Fluorides , Lithium Compounds , Magnesium , Thermoluminescent Dosimetry , Titanium , Lithium Compounds/chemistry , Magnesium/chemistry , Fluorides/radiation effects , Fluorides/chemistry , Thermoluminescent Dosimetry/instrumentation , Thermoluminescent Dosimetry/methods , Titanium/chemistry , Luminescence , Photons
6.
Langmuir ; 40(25): 12939-12953, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38861462

ABSTRACT

In this study, magnetic inulin/Mg-Zn-Al layered double hydroxide (MILDH) was synthesized for the adsorption of ciprofloxacin. The application of various analytical techniques confirmed the successful formation of MILDH. For the optimization of controllable factors, Taguchi design was applied and optimum values were obtained as equilibrium time─100 min, adsorbent dose─20 mg, and ciprofloxacin concentration─30 mg/L. The highest capacity of the material was recorded as 196.19 mg/g at 298 K. Langmuir model (R2 = 0.9669-0.9832) fitted best as compared to the Freundlich model (R2 = 0.9588-0.9657), concluded the monolayer adsorption of ciprofloxacin on MILDH. Statistical physics model M 2 was found to fit best to measured data (R2 = 0.9982-0.9989), indicating that the binding of ciprofloxacin took place on two types of receptor sites (n1 and n2). The multidocking mechanism with horizontal position was suggested on the first receptor site (n1 < 1), while multimolecular adsorption of ciprofloxacin lying vertically on the second receptor site (n2 > 1) at all temperatures. The adsorption energies (E1 = 22.79-27.20 kJ/mol; E2 = 18.00-19.46 kJ/mol) illustrated that the adsorption of ciprofloxacin onto MILDH occurred through physical forces. Best fitting of the fractal-like pseudo-first-order kinetic model (R2 = 0.9982-0.9992) indicated that the adsorption of ciprofloxacin happened on the MILDH surface having different energies. X-ray photoelectron spectroscopy analysis further confirmed the adsorption mechanism of ciprofloxacin onto MILDH.


Subject(s)
Ciprofloxacin , Inulin , Zinc , Ciprofloxacin/chemistry , Adsorption , Inulin/chemistry , Zinc/chemistry , Hydroxides/chemistry , Magnesium/chemistry , Aluminum/chemistry , Kinetics , Surface Properties
7.
ACS Appl Mater Interfaces ; 16(24): 30685-30702, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38859670

ABSTRACT

Macrophages play a pivotal role in the crosstalk between the immune and skeletal systems, while Mg-based biomaterials demonstrate immunomodulatory capabilities in this procedure. However, the mechanism of how Mg2+ promotes osteogenesis through the interplay of bone marrow-derived mesenchymal stem cells (BMSCs) and macrophages remains undescribed. Here, we demonstrated that a Mg-cross-linked alginate hydrogel exerted a dual enhancement of BMSCs osteogenic differentiation through the ligand-receptor pairing of the OSM/miR-370-3p-gp130 axis. On the one hand, Mg2+, released from the Mg-cross-linked hydrogel, stimulates bone marrow-derived macrophages to produce and secrete more OSM. On the other hand, Mg2+ lowers the miR-370-3p level in BMSCs and in turn, reverses its suppression on gp130. Then, the OSM binds to the gp130 heterodimer receptor and activates intracellular osteogenic programs in BMSCs. Taken together, this study reveals a novel cross-talk pattern between the skeletal and immune systems under Mg2+ stimulation. This study not only brings new insights into the immunomodulatory properties of Mg-based biomaterials for orthopedic applications but also enriches the miRNA regulatory network and provides a promising target to facilitate bone regeneration in large bone defects.


Subject(s)
Alginates , Bone Regeneration , Hydrogels , Macrophages , Magnesium , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Signal Transduction , Hydrogels/chemistry , Hydrogels/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Bone Regeneration/drug effects , Alginates/chemistry , Signal Transduction/drug effects , Macrophages/metabolism , Macrophages/drug effects , Osteogenesis/drug effects , Magnesium/chemistry , Magnesium/pharmacology , Mice , Cytokine Receptor gp130/metabolism , Cytokine Receptor gp130/genetics , Cell Differentiation/drug effects
8.
AAPS PharmSciTech ; 25(6): 147, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937406

ABSTRACT

Only few excipients are known to be suitable as pelletization aids. In this study, the potential use of croscarmellose sodium (CCS) as pelletization aid was investigated. Furthermore, the impact of cations on extrusion-spheronization (ES) of CCS was studied and different grades of CCS were tested. The influence of different cations on the swelling of CCS was investigated by laser diffraction. Mixtures of CCS with lactose monohydrate as filler with or without the inclusion of different cations were produced. The mixtures were investigated by mixer torque rheometry and consequently extruded and spheronized. Resulting pellets were analyzed by dynamic image analysis. In addition, mixtures of different CCS grades with dibasic calcium phosphate anhydrous (DP) and a mixture with praziquantel (PZQ) as filler were investigated. Calcium and magnesium cations caused a decrease of the swelling of CCS and influenced the use of CCS as pelletization aid since they needed to be included for successful ES. Aluminum, however, led to an aggregation of the CCS particles and to failure of extrusion. The inclusion of cations decreased the uptake of water by the mixtures which also reduced the liquid-to-solid-ratio (L/S) for successful ES. This was shown to be dependent on the amount of divalent cations in the mixture. With DP or PZQ as filler, no addition of cations was necessary for a successful production of pellets, however the optimal L/S for ES was dependent on the CCS grade used. In conclusion, CCS can be used as a pelletization aid.


Subject(s)
Excipients , Particle Size , Excipients/chemistry , Drug Compounding/methods , Calcium Phosphates/chemistry , Lactose/chemistry , Chemistry, Pharmaceutical/methods , Cations/chemistry , Praziquantel/chemistry , Magnesium/chemistry
9.
J Inorg Biochem ; 258: 112635, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852294

ABSTRACT

Morin (MRN), an intriguing bioflavonol, has received increasing interest for its antioxidant properties, as have its metal complexes (Mz+-MRN). Understanding their antioxidant behavior is critical to assess their pharmaceutical, nutraceutical potential, and therapeutic impact in the design of advanced antioxidant drugs. To this end, knowing the speciation of different H+-MRN and Mz+-MRN is pivotal to understand and compare their antioxidant ability. In this work, the protonation constant values of MRN under physiological ionic strength and temperature conditions (I = 0.15 mol L-1 and t = 37 °C), determined by UV-vis spectrophotometric titrations, are introduced. Thus, a reliable speciation model on H+-MRN species in aqueous solution is presented, which exhibits five stable forms depending on pH, supplemented by quantum-mechanical calculations useful to determine the proton affinities of each functional group and corresponding deprotonation order. Furthermore, potentiometry and UV-vis spectrophotometry have been exploited to determine the thermodynamic interaction parameters of MRN with different metal cations (Mg2+, Mn2+, Zn2+, Al3+). The antioxidant ability of H+-MRN and Mz+-MRN has been evaluated by the 2,2'-diphenyl-1-benzopyran-4-one (DPPH) method, and the Zn2+-MRN system has proven to afford the most potent antioxidant effect. Ab initio molecular dynamics simulations of Mz+-MRN species at all possible chelation sites and under explicit water solvation allowed for the fine characterization not only of the metal chelation modalities of MRN in explicit water, but also of the role played by the local water environment around the metal cations. Those microscopic patterns reveal to be informative on the different antioxidant capabilities recorded experimentally.


Subject(s)
Antioxidants , Coordination Complexes , Flavonoids , Zinc , Flavonoids/chemistry , Antioxidants/chemistry , Coordination Complexes/chemistry , Zinc/chemistry , Magnesium/chemistry , Aluminum/chemistry , Manganese/chemistry , Thermodynamics , Flavones
10.
J Mater Sci Mater Med ; 35(1): 37, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916635

ABSTRACT

The current clinical application of glaucoma drainage devices is made of non-degradable materials. These non-degradable drainage devices often trigger inflammatory responses and scar proliferation, possibly leading to surgical failure. We developed a biodegradable material hydroxyapatite-coated magnesium (HA-Mg) as a glaucoma drainage device. Twelve New Zealand white rabbits were randomly assigned to three groups: HA-Mg drainage plate group (6 right eyes), trabeculectomy group (6 right eyes), and control group (12 left eyes). Results showed that all HA-Mg drainage plates were completely degraded ~4 months postoperatively. At the 5th month postoperatively, there was no statistical difference in the corneal endothelium density between the HA-Mg drainage plate group and the control group (p = 0.857). The intraocular pressure (IOP) level in the HA-Mg drainage plate implantation group was lower than in the other two groups. The trypan blue dye still drained from the anterior chamber to the subconjunctiva 5 months after HA-Mg drainage plate implantation. HE staining revealed the scleral linear aqueous humor drainage channel and anterior synechia were observed after drainage plate completely degraded, with no obvious infiltration with the inflammatory cells. This study showed the safety and efficacy of HA-Mg glaucoma drainage plate in controlling IOP after implantation into the anterior chamber of rabbit eyes.


Subject(s)
Anterior Chamber , Glaucoma Drainage Implants , Glaucoma , Intraocular Pressure , Magnesium , Animals , Rabbits , Anterior Chamber/surgery , Glaucoma/surgery , Magnesium/chemistry , Durapatite/chemistry , Trabeculectomy/methods
11.
ACS Appl Mater Interfaces ; 16(25): 32566-32577, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38867413

ABSTRACT

In this work, the hydroxyapatite (HA) microspheres are utilized as carriers for 8-hydroxyquinoline (8-HQ) inhibitors with a sodium alginate-silver nitrate layer (Ag-SA) added to confer chloride-responsive properties. These 8-HQ@Ag-SA-HA microspheres are subsequently integrated into poly(lactic acid) (PLA) coatings to produce biocompatible coatings. The resulting 8-HQ@Ag-SA-HA microsphere exhibits a spherical structure with a diameter of 3.16 µm. Thermogravimetric analysis indicates that the encapsulated 8-HQ inhibitors are approximately 11.83 wt %. Furthermore, the incorporation of these microspheres fills the micropores within the PLA coating, leading to a denser coating surface, enhanced wettability (contact angle value = 88°), and improved adhesion strength, thereby reinforcing the physical barrier effect. Corrosion tests reveal that the coatings exhibit increased resistance to corrosion in simulated body fluid (SBF) solutions. The released 8-HQ inhibitors in response to chloride ions form a protective layer of Mg(HQ)2, providing the coatings with self-healing properties and ensuring their durability in the SBF environment. Additionally, the cell test demonstrates a significant presence of MG-63 cells, accompanied by a low hemolysis rate of 3.81%, confirming the exceptional biocompatibility of the coatings. These findings offer valuable insights into the development of stimuli-responsive biocompatible coatings for effectively protecting Mg alloys.


Subject(s)
Alloys , Chlorides , Coated Materials, Biocompatible , Magnesium , Alloys/chemistry , Alloys/pharmacology , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Magnesium/chemistry , Magnesium/pharmacology , Chlorides/chemistry , Durapatite/chemistry , Durapatite/pharmacology , Corrosion , Microspheres , Alginates/chemistry , Polyesters/chemistry
12.
Methods Enzymol ; 699: 25-57, 2024.
Article in English | MEDLINE | ID: mdl-38942506

ABSTRACT

Magnesium ions (Mg2+) are crucial in class II terpene cyclases that utilize substrates with diphosphate groups. Interestingly, these enzymes catalyze reactions without cleaving the diphosphate group, instead initiating the reaction through protonation. In our recent research, we discovered a novel class II sesquiterpene cyclase in Streptomyces showdoensis. Notably, we determined its crystal structure and identified Mg2+ within its active site. This finding has shed light on the previously elusive question of Mg2+ binding in class II terpene cyclases. In this chapter, we outline our methods for discovering this novel enzyme, including steps for its purification, crystallization, and kinetic analysis.


Subject(s)
Magnesium , Sesquiterpenes , Streptomyces , Magnesium/metabolism , Magnesium/chemistry , Sesquiterpenes/metabolism , Sesquiterpenes/chemistry , Streptomyces/enzymology , Binding Sites , Kinetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray/methods , Structure-Activity Relationship , Crystallization/methods , Carbon-Carbon Lyases
13.
Micron ; 184: 103661, 2024 09.
Article in English | MEDLINE | ID: mdl-38833994

ABSTRACT

The silver/magnesium doped hydroxyapatite (AgMgHAp, Ca10-x-yAgxMgy(PO4)6(OH)2, xAg=0.05 and yMg=0.02) nanocomposites coatings were deposited on Si substrate using the dip coating technique. The resulting coatings were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR-ATR) spectroscopy, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The EDS analysis highlighted the presence of the constitutive elements of the silver/magnesium doped hydroxyapatite (AgMgHAp) nanocomposites coatings. The surface microtexture of the AgMgHAp was assessed by atomic force microscopy (AFM) technique. The AFM data suggested the obtaining of a uniform deposited layer comprised of equally distributed nanoconglomerates. FT-IR studies highlighted the presence of vibrational modes associated with the phosphate and hydroxyl groups. No bands associated with silver or magnesium were observed. The XPS analysis highlighted the presence of the constituent elements of hydroxyapatite (Ca 2p, P 2 s, O 1 s), as well as dopants (Ag 3d, Mg 1 s and Mg 2p). The antifungal evaluation of AgMgHAp coatings was carried out using the Candida albicans ATCC 10231 fungal strain. The results of the antifungal assay revealed that the AgMgHAp coatings exhibited a strong inhibitory antifungal activity. Furthermore, the data highlighted that the AgMgHAp inhibited the development of biofilm on their surface. The results revealed that the antifungal activity of the coating varied based on the duration of incubation. On the other hand, the data also showed that AgMgHAp nanocomposites coatings inhibited the fungal cell adhesion and development from the early stages of the incubation. In addition to morphological analysis, we additionally take advantage of AFM images to investigate and explore the domain of fractal and multifractal analysis applied to the films under evaluation. Our studies indicates that nanocomposite coatings made from AgMgHAp demonstrate strong antifungal properties. Our studies indicates that nanocomposite coatings made from AgMgHAp demonstrate strong antifungal properties. These results suggest the potential of AgMgHAp nanocomposite coatings as a promising solution for developing innovative antifungal devices in biomedical applications.


Subject(s)
Antifungal Agents , Durapatite , Magnesium , Microscopy, Atomic Force , Nanocomposites , Silver , Durapatite/chemistry , Durapatite/pharmacology , Antifungal Agents/pharmacology , Silver/pharmacology , Silver/chemistry , Nanocomposites/chemistry , Magnesium/chemistry , Magnesium/pharmacology , Spectroscopy, Fourier Transform Infrared , Candida albicans/drug effects , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Microbial Sensitivity Tests , Spectrometry, X-Ray Emission , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Surface Properties
14.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928293

ABSTRACT

Zr-50Ti alloys are promising biomaterials due to their excellent mechanical properties and low magnetic susceptibility. However, Zr-50Ti alloys do not inherently bond well with bone. This study aims to enhance the bioactivity and bonding strength of Zr-50Ti alloys for orthopedic implant materials. Initially, the surface of Zr-50Ti alloys was treated with a sulfuric acid solution to create a microporous structure, increasing surface roughness and area. Subsequently, low crystalline calcium phosphate (L-CaP) precipitation was controlled by adding Mg2+ and/or CO32- ions in modified simulated body fluid (m-SBF). The treated Zr-50Ti alloys were then subjected to cold isostatic pressing to force m-SBF into the micropores, followed by incubation to allow L-CaP formation. The apatite-forming process was tested in simulated body fluid (SBF). The results demonstrated that the incorporation of Mg2+ and/or CO32- ions enabled the L-CaP to cover the entire surface of Zr-50Ti alloys within only one day. After short-term soaking in SBF, the L-CaP layer, modulated by Mg2+ and/or CO32- ions, formed a uniform hydroxyapatite (HA) coating on the surface of the Zr-50Ti alloys, showing potential for optimized bone integration. After soaking in SBF for 14 days, the bonding strength between the apatite layer and alloy has the potential to meet the orthopedic application requirement of 22 MPa. This study demonstrates an effective method to enhance the bioactivity and bonding strength of Zr-50Ti alloys for orthopedic applications.


Subject(s)
Alloys , Body Fluids , Calcium Phosphates , Surface Properties , Zirconium , Alloys/chemistry , Zirconium/chemistry , Body Fluids/chemistry , Calcium Phosphates/chemistry , Titanium/chemistry , Biocompatible Materials/chemistry , Materials Testing , Magnesium/chemistry , Durapatite/chemistry
15.
Sci Rep ; 14(1): 12877, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38834648

ABSTRACT

This study reports the antibacterial and antibiofilm activities of Magnesium ferrite nanoparticles (MgFe2O4) against gram-positive and gram-negative bacteria. The photocatalytic degradation of Carbol Fuchsin (CF) dye (a class of dyestuffs that are resistant to biodegradation) under the influence of UV-light irradiation is also studied. The crystalline magnesium ferrite (MgFe2O4) nanoparticles were synthesized using the co-precipitation method. The morphology of the resulting nanocomposite was examined using scanning electron microscopy (SEM), while transmission electron microscopy (TEM) was employed for further characterization of particle morphology and size. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were utilized to analyze the crystalline structure, chemical composition, and surface area, respectively. Optical properties were evaluated using UV-Vis spectroscopy. The UV-assisted photocatalytic performance of MgFe2O4 nanoparticles was assessed by studying the decolorization of Carbol fuchsin (CF) azo dye. The crystallite size of the MgFe2O4 nanoparticles at the (311) plane, the most prominent peak, was determined to be 28.5 nm. The photocatalytic degradation of 10 ppm CF using 15 mg of MgFe2O4 nanoparticles resulted in a significant 96% reduction after 135 min at ambient temperature (25 °C) and a pH value of 9. Additionally, MgFe2O4 nanoparticles exhibited potent antibacterial activity against E. coli and S. aureus in a dose dependent manner with maximum utilized concentration of 30 µg/ml. Specifically, MgFe2O4 nanoparticles demonstrated substantial antibacterial activity via disk diffusion and microbroth dilution tests with zones of inhibition and minimum inhibitory concentrations (MIC) for E. coli (26.0 mm, 1.25 µg/ml) and S. aureus (23.0 mm, 2.5 µg/ml), respectively. Moreover, 10.0 µg/ml of MgFe2O4 nanoparticles elicited marked percent reduction in biofilm formation by E. coli (89%) followed by S. aureus (78.5%) after treatment. In conclusion, MgFe2O4 nanoparticles demonstrated efficient dye removal capabilities along with significant antimicrobial and antibiofilm activity against gram-positive and gram-negative bacterial strains suggesting their potential as promising antimicrobial and detoxifying agents.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ferric Compounds , Magnetite Nanoparticles , Biofilms/drug effects , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Catalysis , Magnetite Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Escherichia coli/drug effects , Ultraviolet Rays , Staphylococcus aureus/drug effects , Magnesium/chemistry , Magnesium/pharmacology , Spectroscopy, Fourier Transform Infrared
16.
J Nanobiotechnology ; 22(1): 368, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918787

ABSTRACT

Active artificial bone substitutes are crucial in bone repair and reconstruction. Calcium phosphate bone cement (CPC) is known for its biocompatibility, degradability, and ability to fill various shaped bone defects. However, its low osteoinductive capacity limits bone regeneration applications. Effectively integrating osteoinductive magnesium ions with CPC remains a challenge. Herein, we developed magnesium malate-modified CPC (MCPC). Incorporating 5% magnesium malate significantly enhances the compressive strength of CPC to (6.18 ± 0.49) MPa, reduces setting time and improves disintegration resistance. In vitro, MCPC steadily releases magnesium ions, promoting the proliferation of MC3T3-E1 cells without causing significant apoptosis, proving its biocompatibility. Molecularly, magnesium malate prompts macrophages to release prostaglandin E2 (PGE2) and synergistically stimulates dorsal root ganglion (DRG) neurons to synthesize and release calcitonin gene-related peptide (CGRP). The CGRP released by DRG neurons enhances the expression of the key osteogenic transcription factor Runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells, promoting osteogenesis. In vivo experiments using minipig vertebral bone defect model showed MCPC significantly increases the bone volume fraction, bone density, new bone formation, and proportion of mature bone in the defect area compared to CPC. Additionally, MCPC group exhibited significantly higher levels of osteogenesis and angiogenesis markers compared to CPC group, with no inflammation or necrosis observed in the hearts, livers, or kidneys, indicating its good biocompatibility. In conclusion, MCPC participates in the repair of bone defects in the complex post-fracture microenvironment through interactions among macrophages, DRG neurons, and osteoblasts. This demonstrates its significant potential for clinical application in bone defect repair.


Subject(s)
Bone Cements , Calcitonin Gene-Related Peptide , Calcium Phosphates , Osteogenesis , Swine, Miniature , Animals , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Bone Cements/pharmacology , Bone Cements/chemistry , Mice , Swine , Calcitonin Gene-Related Peptide/metabolism , Osteogenesis/drug effects , Bone Regeneration/drug effects , Spine/surgery , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Cell Line , Magnesium/pharmacology , Magnesium/chemistry
17.
J Long Term Eff Med Implants ; 34(4): 83-94, 2024.
Article in English | MEDLINE | ID: mdl-38842236

ABSTRACT

Powder-mixed electrical discharge machining (PMEDM) enhances the effectiveness of the electric discharge machining process. It has been used on the Mg alloy AZ91D to address biodegradation concerns in implants. By combining nano-conductive powder particles with the dielectric fluid, PMEDM creates a functional surface. Process parameters like pulse on time, pulse off time, peak current, and powder concentration are examined to optimize material removal rate (MRR), surface roughness (SR), and white layer thickness (WLT). The optimization of input parameters was completed using the Taguchi L9 technique and further analyzed using ANOVA technique that illustrates Ton and pulse-off time as more significant process parameters for powder mixed electric discharge machining as compared with electric potential and peak current. The optimal surface roughness value is found to be 2.215 µm at 3A pulse current and 15 µs Toff time which suggest the material to be suitable for implants.


Subject(s)
Absorbable Implants , Alloys , Magnesium , Surface Properties , Magnesium/chemistry , Materials Testing , Powders
18.
J Nanobiotechnology ; 22(1): 314, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840113

ABSTRACT

Osteoporosis is the most common bone metabolic disease that affects the health of middle-aged and elderly people, which is hallmarked by imbalanced bone remodeling and a deteriorating immune microenvironment. Magnesium and calcium are pivotal matrix components that participate in the bone formation process, especially in the immune microenvironment regulation and bone remodeling stages. Nevertheless, how to potently deliver magnesium and calcium to bone tissue remains a challenge. Here, we have constructed a multifunctional nanoplatform composed of calcium-based upconversion nanoparticles and magnesium organic frameworks (CM-NH2-PAA-Ald, denoted as CMPA), which features bone-targeting and pH-responsive properties, effectively regulating the inflammatory microenvironment and promoting the coordination of osteogenic functions for treating osteoporosis. The nanoplatform can efficaciously target bone tissue and gradually degrade in response to the acidic microenvironment of osteoporosis to release magnesium and calcium ions. This study validates that CMPA possessing favorable biocompatibility can suppress inflammation and facilitate osteogenesis to treat osteoporosis. Importantly, high-throughput sequencing results demonstrate that the nanoplatform exerts a good inflammatory regulation effect through inhibition of the nuclear factor kappa-B signaling pathway, thereby normalizing the osteoporotic microenvironment. This collaborative therapeutic strategy that focuses on improving bone microenvironment and promoting osteogenesis provides new insight for the treatment of metabolic diseases such as osteoporosis.


Subject(s)
Calcium , Magnesium , Nanoparticles , Osteogenesis , Osteoporosis , Osteogenesis/drug effects , Osteoporosis/drug therapy , Magnesium/pharmacology , Magnesium/chemistry , Calcium/metabolism , Animals , Nanoparticles/chemistry , Mice , Inflammation/drug therapy , Bone and Bones/drug effects , Bone and Bones/metabolism , Humans , Cellular Microenvironment/drug effects , Female , NF-kappa B/metabolism
19.
Environ Geochem Health ; 46(7): 239, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849593

ABSTRACT

The Ras Elma region, situated to the south of the city of Taza in northern Morocco, boasts abundant travertine formations that continue to develop, albeit selectively in specific sheltered sites. This development is influenced by various parameters, including the role of water chemistry. This article presents a spatio-temporal analysis of various hydrochemical parameters, including conductivity, pH, temperature, magnesium, calcium, and others. It's worth noting that the water from the Ras Elma Vauclusian spring, a key driver of travertinization in the region, is sourced from water infiltrating through faults and flowing into Lake Tompraire, known as Dayat Chikker near the Bab Boudir area. The findings suggest that the water in Ras Elma has turned aggressive, as revealed by the examination of the calcaro-carbonic equilibrium. CaCO3 precipitation occurs predominantly in the summer, significantly impacting the formation of travertines, particularly those of the spring and dam types. However, valley-type travertines exhibit more extensive development compared to the other two types.


Subject(s)
Temperature , Morocco , Environmental Monitoring , Hydrogen-Ion Concentration , Calcium/analysis , Natural Springs/chemistry , Magnesium/analysis , Magnesium/chemistry , Seasons , Calcium Carbonate/chemistry , Lakes/chemistry
20.
J Am Chem Soc ; 146(23): 16062-16075, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38802319

ABSTRACT

Liquid-jet photoemission spectroscopy (LJ-PES) allows for a direct probing of electronic structure in aqueous solutions. We show the applicability of the approach to biomolecules in a complex environment, exploring site-specific information on the interaction of adenosine triphosphate in the aqueous phase (ATP(aq)) with magnesium (Mg2+(aq)), highlighting the synergy brought about by the simultaneous analysis of different regions in the photoelectron spectrum. In particular, we demonstrate intermolecular Coulombic decay (ICD) spectroscopy as a new and powerful addition to the arsenal of techniques for biomolecular structure investigation. We apply LJ-PES assisted by electronic-structure calculations to study ATP(aq) solutions with and without dissolved Mg2+. Valence photoelectron data reveal spectral changes in the phosphate and adenine features of ATP(aq) due to interactions with the divalent cation. Chemical shifts in Mg 2p, Mg 2s, P 2p, and P 2s core-level spectra as a function of the Mg2+/ATP concentration ratio are correlated to the formation of [Mg(ATP) 2]6-(aq), [MgATP]2-(aq), and [Mg2ATP](aq) complexes, demonstrating the element sensitivity of the technique to Mg2+-phosphate interactions. The most direct probe of the intermolecular interactions between ATP(aq) and Mg2+(aq) is delivered by the emerging ICD electrons following ionization of Mg 1s electrons. ICD spectra are shown to sensitively probe ligand exchange in the Mg2+-ATP(aq) coordination environment. In addition, we report and compare P 2s data from ATP(aq) and adenosine mono- and diphosphate (AMP(aq) and ADP(aq), respectively) solutions, probing the electronic structure of the phosphate chain and the local environment of individual phosphate units in ATP(aq). Our results provide a comprehensive view of the electronic structure of ATP(aq) and Mg2+-ATP(aq) complexes relevant to phosphorylation and dephosphorylation reactions that are central to bioenergetics in living organisms.


Subject(s)
Adenosine Triphosphate , Magnesium , Photoelectron Spectroscopy , Magnesium/chemistry , Adenosine Triphosphate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...