Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.614
Filter
1.
BMC Plant Biol ; 24(1): 627, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961369

ABSTRACT

BACKGROUND: Anthocyanins are important contributors to coloration across a wide phylogenetic range of plants. Biological functions of anthocyanins span from reproduction to protection against biotic and abiotic stressors. Owing to a clearly visible phenotype of mutants, the anthocyanin biosynthesis and its sophisticated regulation have been studied in numerous plant species. Genes encoding the anthocyanin biosynthesis enzymes are regulated by a transcription factor complex comprising MYB, bHLH and WD40 proteins. RESULTS: A systematic comparison of anthocyanin-pigmented vs. non-pigmented varieties was performed within numerous plant species covering the taxonomic diversity of flowering plants. The literature was screened for cases in which genetic factors causing anthocyanin loss were reported. Additionally, transcriptomic data sets from four previous studies were reanalyzed to determine the genes possibly responsible for color variation based on their expression pattern. The contribution of different structural and regulatory genes to the intraspecific pigmentation differences was quantified. Differences concerning transcription factors are by far the most frequent explanation for pigmentation differences observed between two varieties of the same species. Among the transcription factors in the analyzed cases, MYB genes are significantly more prone to account for pigmentation differences compared to bHLH or WD40 genes. Among the structural genes, DFR genes are most often associated with anthocyanin loss. CONCLUSIONS: These findings support previous assumptions about the susceptibility of transcriptional regulation to evolutionary changes and its importance for the evolution of novel coloration phenotypes. Our findings underline the particular significance of MYBs and their apparent prevalent role in the specificity of the MBW complex.


Subject(s)
Anthocyanins , Pigmentation , Anthocyanins/metabolism , Anthocyanins/genetics , Pigmentation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Magnoliopsida/genetics , Phenotype , Phylogeny
2.
BMC Biol ; 22(1): 140, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38915079

ABSTRACT

BACKGROUND: Horizontal gene transfer (HGT) events have rarely been reported in gymnosperms. Gnetum is a gymnosperm genus comprising 25‒35 species sympatric with angiosperms in West African, South American, and Southeast Asian rainforests. Only a single acquisition of an angiosperm mitochondrial intron has been documented to date in Asian Gnetum mitogenomes. We wanted to develop a more comprehensive understanding of frequency and fragment length distribution of such events as well as their evolutionary history in this genus. RESULTS: We sequenced and assembled mitogenomes from five Asian Gnetum species. These genomes vary remarkably in size and foreign DNA content. We identified 15 mitochondrion-derived and five plastid-derived (MTPT) foreign genes. Our phylogenetic analyses strongly indicate that these foreign genes were transferred from diverse eudicots-mostly from the Rubiaceae genus Coptosapelta and ten genera of Malpighiales. This indicates that Asian Gnetum has experienced multiple independent HGT events. Patterns of sequence evolution strongly suggest DNA-mediated transfer between mitochondria as the primary mechanism giving rise to these HGT events. Most Asian Gnetum species are lianas and often entwined with sympatric angiosperms. We therefore propose that close apposition of Gnetum and angiosperm stems presents opportunities for interspecific cell-to-cell contact through friction and wounding, leading to HGT. CONCLUSIONS: Our study reveals that multiple HGT events have resulted in massive amounts of angiosperm mitochondrial DNA integrated into Asian Gnetum mitogenomes. Gnetum and its neighboring angiosperms are often entwined with each other, possibly accounting for frequent HGT between these two phylogenetically remote lineages.


Subject(s)
Gene Transfer, Horizontal , Genome, Mitochondrial , Gnetum , Phylogeny , Gnetum/genetics , DNA, Plant/genetics , Evolution, Molecular , Magnoliopsida/genetics
3.
Planta ; 260(1): 25, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861219

ABSTRACT

MAIN CONCLUSION: In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.


Subject(s)
Chlorophyll , Light , Magnoliopsida , Temperature , Chlorophyll/metabolism , Magnoliopsida/metabolism , Magnoliopsida/growth & development , Magnoliopsida/physiology , Magnoliopsida/genetics , Water/metabolism , Oxygen/metabolism , Photosynthesis , Plant Leaves/metabolism , Plant Leaves/radiation effects , Environment , Altitude
5.
New Phytol ; 243(3): 951-965, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38752314

ABSTRACT

The coordinated interspecific variation in leaf traits and leaf lifespan is known as the leaf economic spectrum (LES). The limitation of CO2 diffusion to chloroplasts within the lamina is significant in C3 photosynthesis, resulting in a shortage of CO2 for Rubisco. Although Rubisco CO2/O2 specificity (SC/O) should be adaptively adjusted in response to the interspecific variation in CO2 concentrations [CO2] associated with Rubisco, SC/O variations across species along the LES remain unknown. We investigated the coordination among leaf traits, including SC/O, CO2 conductance, leaf protein content, and leaf mass area, across 23 woody C3 species coexisting on an oceanic island through phylogenetic correlation analyses. A high SC/O indicates a high CO2 specificity of Rubisco. SC/O was negatively correlated with [CO2] at Rubisco and total CO2 conductance within lamina, while it was positively correlated with leaf protein across species, regardless of phylogenetic constraint. A simulation analysis shows that the optimal SC/O for maximizing photosynthesis depends on both [CO2] at Rubisco sites and leaf protein per unit leaf area. SC/O is a key parameter along the LES axis and is crucial for maximizing photosynthesis across species and the adaptation of woody plants.


Subject(s)
Carbon Dioxide , Magnoliopsida , Photosynthesis , Phylogeny , Plant Leaves , Ribulose-Bisphosphate Carboxylase , Species Specificity , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Carbon Dioxide/metabolism , Plant Leaves/metabolism , Magnoliopsida/genetics , Magnoliopsida/physiology , Pacific Islands , Wood
6.
Nat Commun ; 15(1): 4262, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802387

ABSTRACT

Root nodule symbiosis (RNS) is a complex trait that enables plants to access atmospheric nitrogen converted into usable forms through a mutualistic relationship with soil bacteria. Pinpointing the evolutionary origins of RNS is critical for understanding its genetic basis, but building this evolutionary context is complicated by data limitations and the intermittent presence of RNS in a single clade of ca. 30,000 species of flowering plants, i.e., the nitrogen-fixing clade (NFC). We developed the most extensive de novo phylogeny for the NFC and an RNS trait database to reconstruct the evolution of RNS. Our analysis identifies evolutionary rate heterogeneity associated with a two-step process: An ancestral precursor state transitioned to a more labile state from which RNS was rapidly gained at multiple points in the NFC. We illustrate how a two-step process could explain multiple independent gains and losses of RNS, contrary to recent hypotheses suggesting one gain and numerous losses, and suggest a broader phylogenetic and genetic scope may be required for genome-phenome mapping.


Subject(s)
Nitrogen Fixation , Phylogeny , Root Nodules, Plant , Symbiosis , Symbiosis/genetics , Nitrogen Fixation/genetics , Root Nodules, Plant/microbiology , Root Nodules, Plant/genetics , Evolution, Molecular , Biological Evolution , Plant Roots/microbiology , Plant Roots/genetics , Magnoliopsida/genetics , Magnoliopsida/microbiology
7.
Curr Opin Plant Biol ; 80: 102550, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762927

ABSTRACT

A fascinating component of floral morphological diversity is the evolution of novel floral organ identities. Perhaps the best-understood example of this is the evolutionary sterilization of stamens to yield staminodes, which have evolved independently numerous times across angiosperms and display a considerable range of morphologies. We are only beginning to understand how modifications of the ancestral stamen developmental program have produced staminodes, but investigating this phenomenon has the potential to help us understand both the origin of floral novelty and the evolution of genetic networks more broadly.


Subject(s)
Biological Evolution , Flowers , Flowers/growth & development , Flowers/genetics , Magnoliopsida/genetics , Magnoliopsida/growth & development , Gene Expression Regulation, Plant
8.
PLoS Biol ; 22(5): e3002608, 2024 May.
Article in English | MEDLINE | ID: mdl-38713727

ABSTRACT

Algae and plants carry 2 organelles of endosymbiotic origin that have been co-evolving in their host cells for more than a billion years. The biology of plastids and mitochondria can differ significantly across major lineages and organelle changes likely accompanied the adaptation to new ecological niches such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic (Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in plastid and mitochondrial biology across 1 billion years of evolution. Taking into account 331,571 protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-bearing eukaryotes. The 1,906 and 825 protein families are predicted to operate in plastids and mitochondria, respectively. Tracing the evolutionary history of these protein families through evolutionary time uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses of gained orthogroups identifies molecular changes of organelle biology that connect to the diversification of major lineages and facilitated major transitions from chlorophytes en route to the global greening and origin of angiosperms.


Subject(s)
Magnoliopsida , Mitochondrial Proteins , Phylogeny , Plastids , Plastids/metabolism , Plastids/genetics , Magnoliopsida/genetics , Magnoliopsida/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Evolution, Molecular , Biological Evolution , Mitochondria/metabolism , Mitochondria/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Proteome/metabolism , Symbiosis/genetics , Organelles/metabolism , Organelles/genetics
9.
Nat Commun ; 15(1): 4392, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789437

ABSTRACT

Plant-herbivore interactions reciprocally influence species' evolutionary trajectories. These interactions have led to many physical and chemical defenses across the plant kingdom. Some plants have even evolved indirect defense strategies to outsource their protection to ant bodyguards by bribing them with a sugary reward (nectar). Identifying the evolutionary processes underpinning these indirect defenses provide insight into the evolution of plant-animal interactions. Using a cross-kingdom, phylogenetic approach, we examined the convergent evolution of ant-guarding nectaries across ferns and flowering plants. Here, we discover that nectaries originated in ferns and flowering plants concurrently during the Cretaceous, coinciding with the rise of plant associations in ants. While nectaries in flowering plants evolved steadily through time, ferns showed a pronounced lag of nearly 100 My between their origin and subsequent diversification in the Cenozoic. Importantly, we find that as ferns transitioned from the forest floor into the canopy, they secondarily recruited ant bodyguards from existing ant-angiosperm relationships.


Subject(s)
Ants , Biological Evolution , Ferns , Magnoliopsida , Phylogeny , Plant Nectar , Ants/physiology , Animals , Ferns/physiology , Magnoliopsida/physiology , Magnoliopsida/genetics , Herbivory/physiology
10.
Plant J ; 119(1): 28-55, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38565299

ABSTRACT

Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.


Subject(s)
Magnoliopsida , Monoterpenes , Monoterpenes/metabolism , Magnoliopsida/metabolism , Magnoliopsida/genetics , Magnoliopsida/enzymology , Plant Proteins/metabolism , Plant Proteins/genetics , Intramolecular Lyases
11.
Plant Cell ; 36(7): 2709-2728, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38657101

ABSTRACT

Lignin production marked a milestone in vascular plant evolution, and the emergence of syringyl (S) lignin is lineage specific. S-lignin biosynthesis in angiosperms, mediated by ferulate 5-hydroxylase (F5H, CYP84A1), has been considered a recent evolutionary event. F5H uniquely requires the cytochrome b5 protein CB5D as an obligatory redox partner for catalysis. However, it remains unclear how CB5D functionality originated and whether it coevolved with F5H. We reveal here the ancient evolution of CB5D-type function supporting F5H-catalyzed S-lignin biosynthesis. CB5D emerged in charophyte algae, the closest relatives of land plants, and is conserved and proliferated in embryophytes, especially in angiosperms, suggesting functional diversification of the CB5 family before terrestrialization. A sequence motif containing acidic amino residues in Helix 5 of the CB5 heme-binding domain contributes to the retention of CB5D function in land plants but not in algae. Notably, CB5s in the S-lignin-producing lycophyte Selaginella lack these residues, resulting in no CB5D-type function. An independently evolved S-lignin biosynthetic F5H (CYP788A1) in Selaginella relies on NADPH-dependent cytochrome P450 reductase as sole redox partner, distinct from angiosperms. These results suggest that angiosperm F5Hs coopted the ancient CB5D, forming a modern cytochrome P450 monooxygenase system for aromatic ring meta-hydroxylation, enabling the reemergence of S-lignin biosynthesis in angiosperms.


Subject(s)
Cytochromes b5 , Lignin , Plant Proteins , Lignin/biosynthesis , Lignin/metabolism , Cytochromes b5/genetics , Cytochromes b5/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Evolution, Molecular , Magnoliopsida/genetics , Magnoliopsida/metabolism , Embryophyta/genetics , Charophyceae/genetics , Charophyceae/metabolism
12.
Trends Genet ; 40(6): 465-466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664114

ABSTRACT

The ability to tolerate and recover from desiccation is an adaptation that permitted primitive plants to colonize land, and it persists in select species today. Zhang et al. dissected desiccation tolerance in moss species, and traced a key regulator through evolution to identify a conserved mechanism of water sensing in angiosperms.


Subject(s)
Desiccation , Adaptation, Physiological/genetics , Biological Evolution , Magnoliopsida/genetics , Magnoliopsida/physiology , Plants/genetics , Water/metabolism , Evolution, Molecular
13.
Curr Biol ; 34(8): R308-R312, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38653196

ABSTRACT

Flowering plants, also known as angiosperms, emerged approximately 150 to 200 million years ago. Since then, they have undergone rapid and extensive expansion, now encompassing around 90% of all land plant species. The remarkable diversification of this group has been a subject of in-depth investigations, and several evolutionary innovations have been proposed to account for their success. In this primer, we will specifically focus on one such innovation: the advent of seeds containing endosperm.


Subject(s)
Biological Evolution , Magnoliopsida , Reproduction , Magnoliopsida/physiology , Magnoliopsida/genetics , Reproduction/physiology , Endosperm/physiology , Seeds/physiology
14.
Nature ; 629(8013): 843-850, 2024 May.
Article in English | MEDLINE | ID: mdl-38658746

ABSTRACT

Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.


Subject(s)
Evolution, Molecular , Genes, Plant , Genomics , Magnoliopsida , Phylogeny , Fossils , Genes, Plant/genetics , Magnoliopsida/genetics , Magnoliopsida/classification , Nuclear Proteins/genetics
15.
Funct Plant Biol ; 512024 04.
Article in English | MEDLINE | ID: mdl-38687848

ABSTRACT

Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.


Subject(s)
Flowers , Pollination , Flowers/genetics , Flowers/growth & development , Magnoliopsida/genetics , Magnoliopsida/physiology , Gene Expression Regulation, Plant , Pollen/genetics
16.
BMC Biol ; 22(1): 97, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679718

ABSTRACT

BACKGROUND: The plastid is the photosynthetic organelle in plant cell, and the plastid genomes (plastomes) are generally conserved in evolution. As one of the most economically and ecologically important order of angiosperms, Poales was previously documented to exhibit great plastomic variation as an order of photoautotrophic plants. RESULTS: We acquired 93 plastomes, representing all the 16 families and 5 major clades of Poales to reveal the extent of their variation and evolutionary pattern. Extensive variation including the largest one in monocots with 225,293 bp in size, heterogeneous GC content, and a wide variety of gene duplication and loss were revealed. Moreover, rare occurrences of three inverted repeat (IR) copies in angiosperms and one IR loss were observed, accompanied by short IR (sIR) and small direct repeat (DR). Widespread structural heteroplasmy, diversified inversions, and unusual genomic rearrangements all appeared in Poales, occasionally within a single species. Extensive repeats in the plastomes were found to be positively correlated with the observed inversions and rearrangements. The variation all showed a "small-large-moderate" trend along the evolution of Poales, as well as for the sequence substitution rate. Finally, we found some positively selected genes, mainly in C4 lineages, while the closely related lineages of those experiencing gene loss tended to have undergone more relaxed purifying selection. CONCLUSIONS: The variation of plastomes in Poales may be related to its successful diversification into diverse habitats and multiple photosynthetic pathway transitions. Our order-scale analyses revealed unusual evolutionary scenarios for plastomes in the photoautotrophic order of Poales and provided new insights into the plastome evolution in angiosperms as a whole.


Subject(s)
Evolution, Molecular , Genome, Plastid , Genetic Variation , Magnoliopsida/genetics , Phylogeny , Biological Evolution
17.
Planta ; 259(6): 134, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671234

ABSTRACT

MAIN CONCLUSION: Mfind is a tool to analyze the impact of microsatellite presence on DNA barcode specificity. We found a significant correlation between barcode entropy and microsatellite count in angiosperm. Genetic barcodes and microsatellites are some of the identification methods in taxonomy and biodiversity research. It is important to establish a relationship between microsatellite quantification and genetic information in barcodes. In order to clarify the association between the genetic information in barcodes (expressed as Shannon's Measure of Information, SMI) and microsatellites count, a total of 330,809 DNA barcodes from the BOLD database (Barcode of Life Data System) were analyzed. A parallel sliding-window algorithm was developed to compute the Shannon entropy of the barcodes, and this was compared with the quantification of microsatellites like (AT)n, (AC)n, and (AG)n. The microsatellite search method utilized an algorithm developed in the Java programming language, which systematically examined the genetic barcodes from an angiosperm database. For this purpose, a computational tool named Mfind was developed, and its search methodology is detailed. This comprehensive study revealed a broad overview of microsatellites within barcodes, unveiling an inverse correlation between the sumz of microsatellites count and barcodes information. The utilization of the Mfind tool demonstrated that the presence of microsatellites impacts the barcode information when considering entropy as a metric. This effect might be attributed to the concise length of DNA barcodes and the repetitive nature of microsatellites, resulting in a direct influence on the entropy of the barcodes.


Subject(s)
Algorithms , DNA Barcoding, Taxonomic , Magnoliopsida , Microsatellite Repeats , Microsatellite Repeats/genetics , DNA Barcoding, Taxonomic/methods , Magnoliopsida/genetics , DNA, Plant/genetics
18.
Int J Mol Sci ; 25(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612750

ABSTRACT

AP2/ERF transcription factor family plays an important role in plant development and stress responses. Previous studies have shed light on the evolutionary trajectory of the AP2 and DREB subfamilies. However, knowledge about the evolutionary history of the ERF subfamily in angiosperms still remains limited. In this study, we performed a comprehensive analysis of the ERF subfamily from 107 representative angiosperm species by combining phylogenomic and synteny network approaches. We observed that the expansion of the ERF subfamily was driven not only by whole-genome duplication (WGD) but also by tandem duplication (TD) and transposition duplication events. We also found multiple transposition events in Poaceae, Brassicaceae, Poales, Brassicales, and Commelinids. These events may have had notable impacts on copy number variation and subsequent functional divergence of the ERF subfamily. Moreover, we observed a number of ancient tandem duplications occurred in the ERF subfamily across angiosperms, e.g., in Subgroup IX, IXb originated from ancient tandem duplication events within IXa. These findings together provide novel insights into the evolution of this important transcription factor family.


Subject(s)
Brassicaceae , Magnoliopsida , Magnoliopsida/genetics , DNA Copy Number Variations , Poaceae , Transcription Factors/genetics
19.
Ann Bot ; 133(2): 225-260, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597914

ABSTRACT

BACKGROUND: The Chloranthaceae comprise four extant genera (Hedyosmum, Ascarina, Chloranthus and Sarcandra), all with simple flowers. Molecular phylogenetics indicates that the Chloranthaceae diverged very early in angiosperm evolution, although how they are related to eudicots, magnoliids, monocots and Ceratophyllum is uncertain. Fossil pollen similar to that of Ascarina and Hedyosmum has long been recognized in the Early Cretaceous, but over the last four decades evidence of extinct Chloranthaceae based on other types of fossils has expanded dramatically and contributes significantly to understanding the evolution of the family. SCOPE: Studies of fossils from the Cretaceous, especially mesofossils of Early Cretaceous age from Portugal and eastern North America, recognized diverse flowers, fruits, seeds, staminate inflorescences and stamens of extinct chloranthoids. These early chloranthoids include forms related to extant Hedyosmum and also to the Ascarina, Chloranthus and Sarcandra clade. In the Late Cretaceous there are several occurrences of distinctive fossil androecia related to extant Chloranthus. The rich and still expanding Cretaceous record of Chloranthaceae contrasts with a very sparse Cenozoic record, emphasizing that the four extant genera are likely to be relictual, although speciation within the genera might have occurred in relatively recent times. In this study, we describe three new genera of Early Cretaceous chloranthoids and summarize current knowledge on the extinct diversity of the group. CONCLUSIONS: The evolutionary lineage that includes extant Chloranthaceae is diverse and abundantly represented in Early Cretaceous mesofossil floras that provide some of the earliest evidence of angiosperm reproductive structures. Extinct chloranthoids, some of which are clearly in the Chloranthaceae crown group, fill some of the morphological gaps that currently separate the extant genera, help to illuminate how some of the unusual features of extant Chloranthaceae evolved and suggest that Chloranthaceae are of disproportionate importance for a more refined understanding of ecology and phylogeny of early angiosperm diversification.


Subject(s)
Fruit , Magnoliopsida , Seeds , Ecology , Flowers , Fossils , Magnoliopsida/genetics
20.
Plant Physiol ; 195(3): 2143-2157, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38482951

ABSTRACT

Lamiales is an order of core eudicots with abundant diversity, and many Lamiales plants have important medicinal and ornamental values. Here, we comparatively reanalyzed 11 Lamiales species with well-assembled genome sequences and found evidence that Lamiales plants, in addition to a hexaploidization or whole-genome triplication (WGT) shared by core eudicots, experienced further polyploidization events, establishing new groups in the order. Notably, we identified a whole-genome duplication (WGD) occurred just before the split of Scrophulariaceae from the other Lamiales families, such as Acanthaceae, Bignoniaceae, and Lamiaceae, suggesting its likely being the causal reason for the establishment and fast divergence of these families. We also found that a WGT occurred ∼68 to 78 million years ago (Mya), near the split of Oleaceae from the other Lamiales families, implying that it may have caused their fast divergence and the establishment of the Oleaceae family. Then, by exploring and distinguishing intra- and intergenomic chromosomal homology due to recursive polyploidization and speciation, respectively, we inferred that the Lamiales ancestral cell karyotype had 11 proto-chromosomes. We reconstructed the evolutionary trajectories from these proto-chromosomes to form the extant chromosomes in each Lamiales plant under study. We must note that most of the inferred 11 proto-chromosomes, duplicated during a WGD thereafter, have been well preserved in jacaranda (Jacaranda mimosifolia) genome, showing the credibility of the present inference implementing a telomere-centric chromosome repatterning model. These efforts are important to understand genome repatterning after recursive polyploidization, especially shedding light on the origin of new plant groups and angiosperm cell karyotype evolution.


Subject(s)
Chromosomes, Plant , Evolution, Molecular , Genome, Plant , Polyploidy , Chromosomes, Plant/genetics , Phylogeny , Magnoliopsida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...