Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Arch Virol ; 166(3): 955-959, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33502595

ABSTRACT

Maize streak disease (MSD) is one of the most significant biotic constraints on the production of Africa's most important cereal crop. Until recently, the only virus known to cause severe MSD was the A-strain of maize streak virus (MSV/A), a member of the genus Mastrevirus, family Geminiviridae. However, over the past decade, two other mastreviruses, MSV/C and maize streak Réunion virus (MSRV), have been repeatedly found in the absence of MSV/A in maize plants displaying severe MSD symptoms. Here, we report on infectious clones of MSV/C and MSRV and test their ability to cause severe MSD symptoms. Although cloned MSV/C and MSRV genomes could cause systemic symptomatic infections in MSD-sensitive maize genotypes, these infections yielded substantially milder symptoms than those observed in the field. The MSV/C and MSRV isolates that we have examined are therefore unlikely to cause severe MSD on their own. Furthermore, mixed infections of MSRV and MSV/C with other mild MSV strains also consistently yielded mild MSD symptoms. It is noteworthy that MSRV produces distinctive striate symptoms in maize that are similar in pattern, albeit not in severity, to those seen in the field, showing that this virus may contribute to the severe MSD symptoms seen in the field. Therefore, despite not fulfilling Koch's postulates for MSV/C and MSRV as causal agents of severe MSD, we cannot exclude the possibility that these viruses could be contributing to currently emerging maize diseases.


Subject(s)
Maize streak virus/pathogenicity , Plant Diseases/virology , Zea mays/virology , DNA, Viral/genetics , Genome, Viral/genetics , Genotype , Maize streak virus/genetics , Maize streak virus/isolation & purification , Phylogeny , Sequence Analysis, DNA
2.
Elife ; 92020 01 15.
Article in English | MEDLINE | ID: mdl-31939738

ABSTRACT

For pathogens infecting single host species evolutionary trade-offs have previously been demonstrated between pathogen-induced mortality rates and transmission rates. It remains unclear, however, how such trade-offs impact sub-lethal pathogen-inflicted damage, and whether these trade-offs even occur in broad host-range pathogens. Here, we examine changes over the past 110 years in symptoms induced in maize by the broad host-range pathogen, maize streak virus (MSV). Specifically, we use the quantified symptom intensities of cloned MSV isolates in differentially resistant maize genotypes to phylogenetically infer ancestral symptom intensities and check for phylogenetic signal associated with these symptom intensities. We show that whereas symptoms reflecting harm to the host have remained constant or decreased, there has been an increase in how extensively MSV colonizes the cells upon which transmission vectors feed. This demonstrates an evolutionary trade-off between amounts of pathogen-inflicted harm and how effectively viruses position themselves within plants to enable onward transmission.


Subject(s)
Host-Pathogen Interactions/genetics , Maize streak virus , Plant Diseases/virology , Zea mays , Evolution, Molecular , Host-Pathogen Interactions/physiology , Maize streak virus/pathogenicity , Maize streak virus/physiology , Plant Diseases/classification , Plant Diseases/genetics , Plant Necrosis and Chlorosis/classification , Plant Necrosis and Chlorosis/genetics , Plant Necrosis and Chlorosis/virology , Zea mays/genetics , Zea mays/physiology , Zea mays/virology
3.
Mol Plant Pathol ; 11(1): 1-12, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20078771

ABSTRACT

UNLABELLED: Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. TAXONOMY: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. PHYSICAL PROPERTIES: MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 x 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. DISEASE SYMPTOMS: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. DISEASE CONTROL: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maize genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. USEFUL WEBSITES: http://www.mcb.uct.ac.za/MSV/mastrevirus.htm; http://www.danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus.htm.


Subject(s)
Maize streak virus/pathogenicity , Biological Evolution , Genes, Viral , Genetic Variation , Maize streak virus/genetics , Zea mays/virology
4.
J Gen Virol ; 90(Pt 12): 3066-3074, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19692547

ABSTRACT

Maize streak virus (MSV), which causes maize streak disease (MSD), is one of the most serious biotic threats to African food security. Here, we use whole MSV genomes sampled over 30 years to estimate the dates of key evolutionary events in the 500 year association of MSV and maize. The substitution rates implied by our analyses agree closely with those estimated previously in controlled MSV evolution experiments, and we use them to infer the date when the maize-adapted strain, MSV-A, was generated by recombination between two grass-adapted MSV strains. Our results indicate that this recombination event occurred in the mid-1800 s, approximately 20 years before the first credible reports of MSD in South Africa and centuries after the introduction of maize to the continent in the early 1500 s. This suggests a causal link between MSV recombination and the emergence of MSV-A as a serious pathogen of maize.


Subject(s)
Evolution, Molecular , Maize streak virus/genetics , Maize streak virus/pathogenicity , Plant Diseases/virology , Recombination, Genetic , Zea mays/virology , Bayes Theorem , Genome, Viral , Maize streak virus/classification , Molecular Sequence Data , Poaceae/virology , Sequence Analysis, DNA , Virulence
5.
J Gen Virol ; 90(Pt 3): 734-746, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19218220

ABSTRACT

Experimental investigations into virus recombination can provide valuable insights into the biochemical mechanisms and the evolutionary value of this fundamental biological process. Here, we describe an experimental scheme for studying recombination that should be applicable to any recombinogenic viruses amenable to the production of synthetic infectious genomes. Our approach is based on differences in fitness that generally exist between synthetic chimaeric genomes and the wild-type viruses from which they are constructed. In mixed infections of defective reciprocal chimaeras, selection strongly favours recombinant progeny genomes that recover a portion of wild-type fitness. Characterizing these evolved progeny viruses can highlight both important genetic fitness determinants and the contribution that recombination makes to the evolution of their natural relatives. Moreover, these experiments supply precise information about the frequency and distribution of recombination breakpoints, which can shed light on the mechanistic processes underlying recombination. We demonstrate the value of this approach using the small single-stranded DNA geminivirus, maize streak virus (MSV). Our results show that adaptive recombination in this virus is extremely efficient and can yield complex progeny genomes comprising up to 18 recombination breakpoints. The patterns of recombination that we observe strongly imply that the mechanistic processes underlying rolling circle replication are the prime determinants of recombination breakpoint distributions found in MSV genomes sampled from nature.


Subject(s)
Genome, Viral , Maize streak virus/genetics , Plant Diseases/virology , Recombination, Genetic , Selection, Genetic , Zea mays/virology , Base Sequence , DNA, Viral/analysis , Geminiviridae/genetics , Geminiviridae/isolation & purification , Geminiviridae/pathogenicity , Geminiviridae/physiology , Maize streak virus/isolation & purification , Maize streak virus/pathogenicity , Maize streak virus/physiology , Molecular Sequence Data , Mutation , Plant Leaves/virology
6.
J Gen Virol ; 89(Pt 9): 2063-2074, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18753214

ABSTRACT

Maize streak virus (MSV; family Geminiviridae, genus Mastrevirus), the causal agent of maize streak disease, ranks amongst the most serious biological threats to food security in subSaharan Africa. Although five distinct MSV strains have been currently described, only one of these - MSV-A - causes severe disease in maize. Due primarily to their not being an obvious threat to agriculture, very little is known about the 'grass-adapted' MSV strains, MSV-B, -C, -D and -E. Since comparing the genetic diversities, geographical distributions and natural host ranges of MSV-A with the other MSV strains could provide valuable information on the epidemiology, evolution and emergence of MSV-A, we carried out a phylogeographical analysis of MSVs found in uncultivated indigenous African grasses. Amongst the 83 new MSV genomes presented here, we report the discovery of six new MSV strains (MSV-F to -K). The non-random recombination breakpoint distributions detectable with these and other available mastrevirus sequences partially mirror those seen in begomoviruses, implying that the forces shaping these breakpoint patterns have been largely conserved since the earliest geminivirus ancestors. We present evidence that the ancestor of all MSV-A variants was the recombinant progeny of ancestral MSV-B and MSV-G/-F variants. While it remains unknown whether recombination influenced the emergence of MSV-A in maize, our discovery that MSV-A variants may both move between and become established in different regions of Africa with greater ease, and infect more grass species than other MSV strains, goes some way towards explaining why MSV-A is such a successful maize pathogen.


Subject(s)
Maize streak virus/genetics , Maize streak virus/pathogenicity , Africa , Base Sequence , Conserved Sequence , DNA, Viral/genetics , Food Microbiology , Geminiviridae/classification , Geminiviridae/genetics , Genome, Viral , Maize streak virus/classification , Maize streak virus/isolation & purification , Molecular Sequence Data , Phylogeny , Plant Diseases/virology , Poaceae/virology , Recombination, Genetic , Reunion , Virulence/genetics , Zea mays/virology
7.
Virol J ; 5: 61, 2008 May 20.
Article in English | MEDLINE | ID: mdl-18489800

ABSTRACT

BACKGROUND: A variety of interactions between up to three different movement proteins (MPs), the coat protein (CP) and genomic DNA mediate the inter- and intra-cellular movement of geminiviruses in the genus Begomovirus. Although movement of viruses in the genus Mastrevirus is less well characterized, direct interactions between a single MP and the CP of these viruses is also clearly involved in both intra- and intercellular trafficking of virus genomic DNA. However, it is currently unknown how specific these MP-CP interactions are, nor how disruption of these interactions might impact on virus viability. RESULTS: Using chimaeric genomes of two strains of Maize streak virus (MSV) we adopted a genetic approach to investigate the gross biological effects of interfering with interactions between virus MP and CP homologues derived from genetically distinct MSV isolates. MP and CP genes were reciprocally exchanged, individually and in pairs, between maize (MSV-Kom)- and Setaria sp. (MSV-Set)-adapted isolates sharing 78% genome-wide sequence identity. All chimaeras were infectious in Zea mays c.v. Jubilee and were characterized in terms of symptomatology and infection efficiency. Compared with their parental viruses, all the chimaeras were attenuated in symptom severity, infection efficiency, and the rate at which symptoms appeared. The exchange of individual MP and CP genes resulted in lower infection efficiency and reduced symptom severity in comparison with exchanges of matched MP-CP pairs. CONCLUSION: Specific interactions between the mastrevirus MP and CP genes themselves and/or their expression products are important determinants of infection efficiency, rate of symptom development and symptom severity.


Subject(s)
Capsid Proteins/metabolism , Maize streak virus/pathogenicity , Plant Viral Movement Proteins/metabolism , Recombination, Genetic , Capsid Proteins/genetics , Maize streak virus/genetics , Microbial Viability , Plant Diseases/virology , Plant Viral Movement Proteins/genetics , Protein Binding , Severity of Illness Index , Zea mays
8.
J Virol Methods ; 109(1): 95-8, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12668274

ABSTRACT

The infectivity of cloned unit-length genomes of Maize streak virus (MSV) was tested using vascular puncture inoculation (VPI). VPI of kernels with plasmid DNA (pUC19) carrying a tandem repeat of the MSV genome produced 33+/-8% infection. Similar plasmids carrying the unit-length MSV genome were not infectious. If the MSV genome was released from the plasmid prior to VPI, 16+/-4% of plants became infected. Ligation of the free linear MSV genome did not increase infectivity. The three infective inocula produced symptoms of similar severity in maize. Bioassay of systemically infected leaves indicated the virus was equally infectious regardless of inoculum. In Southern blots of bioassay plants, no differences in MSV genome restriction endonuclease sites were observed. Thus, inoculation with the free linear or circularized MSV unit-length genome produced infections similar to those with plasmids carrying tandemly repeated genomes. The infectivity of free linear MSV unit-length genomes will facilitate molecular analysis of MSV, because cloning steps are minimized.


Subject(s)
DNA, Viral/genetics , Genome, Viral , Maize streak virus/pathogenicity , Plant Diseases/virology , Plasmids/genetics , Zea mays/virology , Maize streak virus/genetics , Plant Leaves/virology , Tandem Repeat Sequences
9.
Virology ; 300(2): 180-8, 2002 Sep 01.
Article in English | MEDLINE | ID: mdl-12350349

ABSTRACT

Genes and intergenic regions were reciprocally exchanged between a highly pathogenic Maize streak virus (MSV) isolate (MSV-MatA) and three less pathogenic isolates (MSV-Kom, MSV-R2, and MSV-VW) to determine the contribution of individual genome constituents to MSV pathogenicity in maize. Comparison of disease symptoms produced by the 54 resulting chimaeras and parental viruses enabled identification of genome constituents that are primarily responsible for the heightened pathogenicity of MSV-MatA in maize. Whereas pathogenicity determinants were detected in all of the MSV genomic regions examined, generally only chimaeras containing the MSV-MatA long intergenic region, coat protein gene, and/or movement protein gene were more pathogenic than the milder MSV isolates from which most of their genomes were derived. The pathogenicity of chimeras was strongly influenced by the relatedness of their parental viruses and evidence was found of nucleotide sequence-dependent interactions between both coding and intergenic regions.


Subject(s)
Chimera/genetics , Genome, Viral , Maize streak virus/genetics , Genotype , Maize streak virus/pathogenicity , Open Reading Frames , Virulence
10.
J Gen Virol ; 82(Pt 12): 3081-3090, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11714986

ABSTRACT

Recombination between divergent virus genomes is believed to be a major mechanism for generation of novel virus genotypes. We have examined the recombination process in geminiviruses by forcing recombination between two distinct isolates of Maize streak virus (MSV), MSV-Kom and MSV-Set. Heterodimeric agroinfectious constructs containing tandemly cloned mixtures of complete or partial MSV-Set and MSV-Kom genomes were used to simulate a circular dimeric form similar to that which would be expected to occur following a single intermolecular crossing-over event between MSV-Set and MSV-Kom replicative form DNAs at the long intergenic region (LIR)-movement protein gene (MP) interface. We isolated, analysed and biologically characterized many of the recombinant MSV genomes that were generated from the constructs in planta. Apart from having the same simulated breakpoint at the LIR-MP interface, all the genomes examined had a second breakpoint that had been generated through either intramolecular homologous recombination or a replicational release mechanism. The pathogenicities of six predominantly MSV-Kom-like recombinants were tested in maize. While all were capable of producing a symptomatic infection in this host, none was more virulent than MSV-Kom and only two were more virulent than MSV-Set. The two most virulent recombinants were leafhopper transmitted to a range of differentially MSV-resistant maize, wheat and barley genotypes and both were found to have unique biological properties.


Subject(s)
Maize streak virus/genetics , Recombination, Genetic , Base Sequence , DNA, Intergenic , Genome, Viral , Genotype , Maize streak virus/pathogenicity , Molecular Sequence Data , Plant Diseases/virology , Plant Viral Movement Proteins , Sequence Alignment , Viral Proteins/genetics , Virulence , Zea mays/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...