Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.091
1.
J Water Health ; 22(5): 878-886, 2024 May.
Article En | MEDLINE | ID: mdl-38822466

The health district of Sakassou is one of the 83 health districts in Côte d'Ivoire, located in a zone with very high malarial transmission rates, with an incidence rate of ≥40% Therefore, to guide vector control methods more effectively, it was crucial to have a good understanding of the vectors in the area. This study aimed to determine the level of malarial transmission during the dry season in Sakassou, Côte d'Ivoire. Female Anopheles mosquitoes were sampled using human landing catches (HLCs) and pyrethrum spraying catches (PSCs). The larvae were collected using the 'dipping' method. A total of 10,875 adult female mosquitoes of Anopheles gambiae were collected. The PCR analysis revealed that all individuals were Anopheles coluzzii. The geographical distribution of potential breeding sites of Anopheles showed the presence of An. coluzzii in all the wetlands of the city of Sakassou. During the dry season, the human-biting rate of An. coluzzii was 139.1 bites/person/night. An exophagic trend was displayed by an adult female of An. coluzzii. The entomological inoculation rate during the dry season was 1.49 infectious bites/person/night. This study demonstrated that An. coluzzii was the main vector of malarial transmission in Sakassou, and the intensity of transmission remains high throughout the dry season.


Anopheles , Malaria , Mosquito Vectors , Seasons , Animals , Anopheles/physiology , Anopheles/parasitology , Cote d'Ivoire/epidemiology , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Malaria/transmission , Malaria/epidemiology , Female , Humans , Oryza/parasitology , Agricultural Irrigation , Mosquito Control
2.
Proc Natl Acad Sci U S A ; 121(24): e2320898121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38833464

The World Health Organization identifies a strong surveillance system for malaria and its mosquito vector as an essential pillar of the malaria elimination agenda. Anopheles salivary antibodies are emerging biomarkers of exposure to mosquito bites that potentially overcome sensitivity and logistical constraints of traditional entomological surveys. Using samples collected by a village health volunteer network in 104 villages in Southeast Myanmar during routine surveillance, the present study employs a Bayesian geostatistical modeling framework, incorporating climatic and environmental variables together with Anopheles salivary antigen serology, to generate spatially continuous predictive maps of Anopheles biting exposure. Our maps quantify fine-scale spatial and temporal heterogeneity in Anopheles salivary antibody seroprevalence (ranging from 9 to 99%) that serves as a proxy of exposure to Anopheles bites and advances current static maps of only Anopheles occurrence. We also developed an innovative framework to perform surveillance of malaria transmission. By incorporating antibodies against the vector and the transmissible form of malaria (sporozoite) in a joint Bayesian geostatistical model, we predict several foci of ongoing transmission. In our study, we demonstrate that antibodies specific for Anopheles salivary and sporozoite antigens are a logistically feasible metric with which to quantify and characterize heterogeneity in exposure to vector bites and malaria transmission. These approaches could readily be scaled up into existing village health volunteer surveillance networks to identify foci of residual malaria transmission, which could be targeted with supplementary interventions to accelerate progress toward elimination.


Anopheles , Bayes Theorem , Malaria , Mosquito Vectors , Animals , Anopheles/parasitology , Mosquito Vectors/parasitology , Humans , Malaria/transmission , Malaria/epidemiology , Malaria/immunology , Malaria/parasitology , Seroepidemiologic Studies , Insect Bites and Stings/epidemiology , Insect Bites and Stings/immunology , Insect Bites and Stings/parasitology , Sporozoites/immunology
3.
Sci Rep ; 14(1): 12620, 2024 06 01.
Article En | MEDLINE | ID: mdl-38824239

Ivermectin (IVM) has been proposed as a new tool for malaria control as it is toxic on vectors feeding on treated humans or cattle. Nevertheless, IVM may have a direct mosquitocidal effect when applied on bed nets or sprayed walls. The potential for IVM application as a new insecticide for long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) was tested in this proof-of-concept study in a laboratory and semi-field environment. Laboratory-reared, insecticide-susceptible Kisumu Anopheles gambiae were exposed to IVM on impregnated netting materials and sprayed plastered- and mud walls using cone bioassays. The results showed a direct mosquitocidal effect of IVM on this mosquito strain as all mosquitoes died by 24 h after exposure to IVM. The effect was slower on the IVM-sprayed walls compared to the treated nettings. Further work to evaluate possibility of IVM as a new insecticide formulation in LLINs and IRS will be required.


Anopheles , Insecticide-Treated Bednets , Insecticides , Ivermectin , Mosquito Control , Animals , Anopheles/drug effects , Ivermectin/pharmacology , Insecticides/pharmacology , Mosquito Control/methods , Malaria/prevention & control , Malaria/transmission , Mosquito Vectors/drug effects
4.
Science ; 384(6696): 697-703, 2024 May 10.
Article En | MEDLINE | ID: mdl-38723080

Changes in climate shift the geographic locations that are suitable for malaria transmission because of the thermal constraints on vector Anopheles mosquitos and Plasmodium spp. malaria parasites and the lack of availability of surface water for vector breeding. Previous Africa-wide assessments have tended to solely represent surface water using precipitation, ignoring many important hydrological processes. Here, we applied a validated and weighted ensemble of global hydrological and climate models to estimate present and future areas of hydroclimatic suitability for malaria transmission. With explicit surface water representation, we predict a net decrease in areas suitable for malaria transmission from 2025 onward, greater sensitivity to future greenhouse gas emissions, and different, more complex, malaria transmission patterns. Areas of malaria transmission that are projected to change are smaller than those estimated by precipitation-based estimates but are associated with greater changes in transmission season lengths.


Anopheles , Climate Change , Hydrology , Malaria , Mosquito Vectors , Water , Animals , Humans , Africa/epidemiology , Anopheles/parasitology , Greenhouse Gases/analysis , Malaria/transmission , Mosquito Vectors/parasitology , Rain , Seasons , Water/parasitology , Plasmodium , Epidemiological Models
5.
Malar J ; 23(1): 156, 2024 May 22.
Article En | MEDLINE | ID: mdl-38773487

Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.


Anopheles , Gene Drive Technology , Malaria , Mosquito Control , Mosquito Vectors , Mosquito Control/methods , Mosquito Vectors/genetics , Malaria/prevention & control , Malaria/transmission , Animals , Anopheles/genetics , Gene Drive Technology/methods
6.
Malar J ; 23(1): 168, 2024 May 29.
Article En | MEDLINE | ID: mdl-38812003

BACKGROUND: The recent reduction in malaria burden in Côte d'Ivoire is largely attributable to the use of long-lasting insecticidal nets (LLINs). However, this progress is threatened by insecticide resistance and behavioral changes in Anopheles gambiae sensu lato (s.l.) populations and residual malaria transmission, and complementary tools are required. Thus, this study aimed to assess the efficacy of the combined use of LLINs and Bacillus thuringiensis israelensis (Bti), in comparison with LLINs. METHODS: This study was conducted in the health district of Korhogo, northern Côte d'Ivoire, within two study arms (LLIN + Bti arm and LLIN-only arm) from March 2019 to February 2020. In the LLIN + Bti arm, Anopheles larval habitats were treated every fortnight with Bti in addition to the use of LLINs. Mosquito larvae and adults were sampled and identified morphologically to genus and species using standard methods. The members of the An. gambiae complex were determined using a polymerase chain reaction technique. Plasmodium infection in An. gambiae s.l. and malaria incidence in local people was also assessed. RESULTS: Overall, Anopheles spp. larval density was lower in the LLIN + Bti arm 0.61 [95% CI 0.41-0.81] larva/dip (l/dip) compared with the LLIN-only arm 3.97 [95% CI 3.56-4.38] l/dip (RR = 6.50; 95% CI 5.81-7.29; P < 0.001). The overall biting rate of An. gambiae s.l. was 0.59 [95% CI 0.43-0.75] biting/person/night in the LLIN + Bti arm against 2.97 [95% CI 2.02-3.93] biting/person/night in LLIN-only arm (P < 0.001). Anopheles gambiae s.l. was predominantly identified as An. gambiae sensu stricto (s.s.) (95.1%, n = 293), followed by Anopheles coluzzii (4.9%; n = 15). The human-blood index was 80.5% (n = 389) in study area. EIR was 1.36 infected bites/person/year (ib/p/y) in the LLIN + Bti arm against 47.71 ib/p/y in the LLIN-only arm. Malaria incidence dramatically declined from 291.8‰ (n = 765) to 111.4‰ (n = 292) in LLIN + Bti arm (P < 0.001). CONCLUSIONS: The combined use of LLINs with Bti significantly reduced the incidence of malaria. The LLINs and Bti duo could be a promising integrated approach for effective vector control of An. gambiae for elimination of malaria.


Anopheles , Bacillus thuringiensis , Insecticide-Treated Bednets , Larva , Malaria , Mosquito Control , Cote d'Ivoire/epidemiology , Animals , Anopheles/drug effects , Anopheles/physiology , Larva/drug effects , Malaria/prevention & control , Malaria/transmission , Mosquito Control/methods , Insecticide-Treated Bednets/statistics & numerical data , Female , Mosquito Vectors/drug effects , Humans , Male , Adolescent , Child, Preschool , Young Adult , Child , Adult
7.
Parasit Vectors ; 17(1): 228, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755640

BACKGROUND: Ivermectin is a well-tolerated anthelminthic drug with wide clinical and veterinary applications. It also has lethal and sublethal effects on mosquitoes. Mass drug administration with ivermectin has therefore been suggested as an innovative vector control tool in efforts to curb emerging insecticide resistance and reduce residual malaria transition. To support assessments of the feasibility and efficacy of current and future formulations of ivermectin for vector control, we sought to establish the relationship between ivermectin concentration and its lethal and sublethal impacts in a primary malaria vector. METHODS: The in vitro effects of ivermectin on daily mortality and fecundity, measured by egg production, were assessed up to 14 days post-blood feed in a laboratory colony of Anopheles coluzzii. Mosquitoes were fed ivermectin in blood meals delivered by membrane feeding at one of six concentrations: 0 ng/ml (control), 10 ng/ml, 15 ng/ml, 25 ng/ml, 50 ng/ml, 75 ng/ml, and 100 ng/ml. RESULTS: Ivermectin had a significant effect on mosquito survival in a concentration-dependent manner. The LC50 at 7 days was 19.7 ng/ml. The time to median mortality at ≥ 50 ng/ml was ≤ 4 days, compared to 9.6 days for control, and 6.3-7.6 days for ivermectin concentrations between 10 and 25 ng/ml. Fecundity was also affected; no oviposition was observed in surviving females from the two highest concentration treatment groups. While females exposed to 10 to 50 ng/ml of ivermectin did oviposit, significantly fewer did so in the 50 ng/ml treatment group compared to the control, and they also produced significantly fewer eggs. CONCLUSIONS: Our results showed ivermectin reduced mosquito survival in a concentration-dependent manner and at ≥ 50 ng/ml significantly reduced fecundity in An. coluzzii. Results indicate that levels of ivermectin found in human blood following ingestion of a single 150-200 µg/kg dose would be sufficient to achieve 50% mortality across 7 days; however, fecundity in survivors is unlikely to be affected. At higher doses, a substantial impact on both survival and fecundity is likely. Treating human populations with ivermectin could be used as a supplementary malaria vector control method to kill mosquito populations and supress their reproduction; however strategies to safely maintain mosquitocidal blood levels of ivermectin against all Anopheles species require development.


Anopheles , Fertility , Insecticides , Ivermectin , Mosquito Control , Mosquito Vectors , Ivermectin/pharmacology , Animals , Anopheles/drug effects , Female , Mosquito Vectors/drug effects , Mosquito Control/methods , Insecticides/pharmacology , Fertility/drug effects , Malaria/transmission , Dose-Response Relationship, Drug , Feeding Behavior/drug effects
8.
Parasit Vectors ; 17(1): 224, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750608

BACKGROUND: Ivermectin mass drug administration to humans or livestock is a potential vector control tool for malaria elimination. Racemic ivermectin is composed of two components, namely a major component (> 80%; ivermectin B1a), which has an ethyl group at C-26, and a minor component (< 20%; ivermectin B1b), which has a methyl group at C-26. There is no difference between the efficacy of ivermectin B1a and ivermectin B1b efficacy in nematodes, but only ivermectin B1b has been reported to be lethal to snails. The ratios of ivermectin B1a and B1b ratios in ivermectin formulations and tablets can vary between manufacturers and batches. The mosquito-lethal effects of ivermectin B1a and ivermectin B1b have never been assessed. As novel ivermectin formulations are being developed for malaria control, it is important that the mosquito-lethal effects of individual ivermectin B1a and ivermectin B1b compounds be evaluated. METHODS: Racemic ivermectin, ivermectin B1a or ivermectin B1b, respectively, was mixed with human blood at various concentrations, blood-fed to Anopheles dirus sensu stricto and Anopheles minimus sensu stricto mosquitoes, and mortality was observed for 10 days. The ivermectin B1a and B1b ratios from commercially available racemic ivermectin and marketed tablets were assessed by liquid chromatography-mass spectrometry. RESULTS: The results revealed that neither the lethal concentrations that kills 50% (LC50) nor 90% (LC90) of mosquitoes differed between racemic ivermectin, ivermectin B1a or ivermectin B1b for An. dirus or An. minimus, confirming that the individual ivermectin components have equal mosquito-lethal effects. The relative ratios of ivermectin B1a and B1b derived from sourced racemic ivermectin powder were 98.84% and 1.16%, respectively, and the relative ratios for ivermectin B1a and B1b derived from human oral ivermectin tablets were 98.55% and 1.45%, respectively. CONCLUSIONS: The ratio of ivermectin B1a and B1b does not influence the Anopheles mosquito-lethal outcome, an ideal study result as the separation of ivermectin B1a and B1b components at scale is cost prohibitive. Thus, variations in the ratio of ivermectin B1a and B1b between batches and manufacturers, as well as potentially novel formulations for malaria control, should not influence ivermectin mosquito-lethal efficacy.


Anopheles , Insecticides , Ivermectin , Ivermectin/pharmacology , Animals , Anopheles/drug effects , Insecticides/pharmacology , Humans , Mosquito Vectors/drug effects , Female , Mosquito Control/methods , Malaria/prevention & control , Malaria/transmission
9.
PLoS One ; 19(5): e0303794, 2024.
Article En | MEDLINE | ID: mdl-38753670

INTRODUCTION: In Senegal, the widespread use of vector control measures has resulted in a significant reduction in the malaria burden and led the country to consider the possibility of elimination. Given this shift and changing context, it is important to characterize the malaria burden across all age groups to guide decision-making on programmatic interventions to interrupt transmission and ultimately eradicate the disease. In Senegal, there is a lack of information on malaria prevalence among certain populations, particularly among adolescents and adults. This study sought to assess the magnitude of malaria infections in all age groups, as well as malaria associated factors in an area of persistent transmission in Senegal. METHODS: A cross-sectional household survey was conducted in four health posts (Khossanto, Mamakhona, Diakhaling and Sambrambougou), of the health district of Saraya, in November 2021, among individuals over 6 months of age. Households were selected using multistage sampling. Consented participants were screened for malaria parasites by microscopic examination of blood smears, and hemoglobin levels were measured using the Hemocue HB 301TM analyzer. Socio-demographic information of the participants, household heads, household assets, and information on ownership and use of preventive measures were collected using a structured questionnaire. Weighted generalized mixed effects logistic regression model was used to identify factors associated with microscopically confirmed malaria infection. RESULTS: A total of 1759 participants were enrolled in the study. Overall, about 21% of participants were classified as having Plasmodium infection; children aged 5-10 years old (26.6%), adolescents aged 10-19 years old (24.7%), and children under five years of age (20.5%) had higher rates of infection compared to adults (13.5%). Plasmodium falciparum accounted for 99.2% of the malaria infections, and most infections (69%) were asymptomatic. Around one-third of study participants had anemia (hemoglobin level <11.0 g/dl), with under five children bearing the highest burden (67.3%). Multivariate analysis showed that the odds of having a malaria infection were around 2 times higher among participants in Khossanto compared to Diakhaling (aOR = 1.84, 95% CI:1.06-3.20). Participants aged 5-9 years were more likely to have malaria infection compared to under five children (aOR = 1.40, 95% CI:1.02-1.91). Factors associated with anemia were P. falciparum infection (aOR = 1.36, p = 0.027), females (aOR = 2.16, p = 0.000), under-five age group (aOR = 13.01, p = 0.000). CONCLUSION: Malaria burden was considerable among adolescents and under ten children living in an area of persistent transmission, with adolescents more commonly presenting as asymptomatic. Interventions tailored to this specific group of the population are needed to better control the disease and reduce its burden.


Malaria , Humans , Senegal/epidemiology , Adolescent , Female , Adult , Child , Male , Child, Preschool , Prevalence , Young Adult , Cross-Sectional Studies , Infant , Middle Aged , Malaria/epidemiology , Malaria/transmission , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission
10.
Malar J ; 23(1): 161, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783348

BACKGROUND: Mosquitoes of the Anopheles gambiae complex are one of the major vectors of malaria in sub-Saharan Africa. Their ability to transmit this disease of major public health importance is dependent on their abundance, biting behaviour, susceptibility and their ability to survive long enough to transmit malaria parasites. A deeper understanding of this behaviour can be exploited for improving vector surveillance and malaria control. FINDINGS: Adult mosquitoes emerge from aquatic habitats at dusk. After a 24 h teneral period, in which the cuticle hardens and the adult matures, they may disperse at random and search upwind for a mate or to feed. Mating generally takes place at dusk in swarms that form over species-specific 'markers'. Well-nourished females may mate before blood-feeding, but the reverse is true for poorly-nourished insects. Females are monogamous and only mate once whilst males, that only feed on nectar, swarm nightly and can potentially mate up to four times. Females are able to locate hosts by following their carbon dioxide and odour gradients. When in close proximity to the host, visual cues, temperature and relative humidity are also used. Most blood-feeding occurs at night, indoors, with mosquitoes entering houses mainly through gaps between the roof and the walls. With the exception of the first feed, females are gonotrophically concordant and a blood meal gives rise to a complete egg batch. Egg development takes two or three days depending on temperature. Gravid females leave their resting sites at dusk. They are attracted by water gradients and volatile chemicals that provide a suitable aquatic habitat in which to lay their eggs. CONCLUSION: Whilst traditional interventions, using insecticides, target mosquitoes indoors, additional protection can be achieved using spatial repellents outdoors, attractant traps or house modifications to prevent mosquito entry. Future research on the variability of species-specific behaviour, movement of mosquitoes across the landscape, the importance of light and vision, reproductive barriers to gene flow, male mosquito behaviour and evolutionary changes in mosquito behaviour could lead to an improvement in malaria surveillance and better methods of control reducing the current over-reliance on the indoor application of insecticides.


Anopheles , Malaria , Mosquito Vectors , Animals , Anopheles/physiology , Mosquito Vectors/physiology , Malaria/prevention & control , Malaria/transmission , Africa South of the Sahara , Mosquito Control/methods , Female , Feeding Behavior , Male
11.
Parasit Vectors ; 17(1): 236, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783366

BACKGROUND: Like other oviparous organisms, the gonotrophic cycle of mosquitoes is not complete until they have selected a suitable habitat to oviposit. In addition to the evolutionary constraints associated with selective oviposition behavior, the physiological demands relative to an organism's oviposition status also influence their nutrient requirement from the environment. Yet, studies that measure transmission potential (vectorial capacity or competence) of mosquito-borne parasites rarely consider whether the rates of parasite replication and development could be influenced by these constraints resulting from whether mosquitoes have completed their gonotrophic cycle. METHODS: Anopheles stephensi mosquitoes were infected with Plasmodium berghei, the rodent analog of human malaria, and maintained on 1% or 10% dextrose and either provided oviposition sites ('oviposited' herein) to complete their gonotrophic cycle or forced to retain eggs ('non-oviposited'). Transmission potential in the four groups was measured up to 27 days post-infection as the rates of (i) sporozoite appearance in the salivary glands ('extrinsic incubation period' or EIP), (ii) vector survival and (iii) sporozoite densities. RESULTS: In the two groups of oviposited mosquitoes, rates of sporozoite appearance and densities in the salivary glands were clearly dependent on sugar availability, with shorter EIP and higher sporozoite densities in mosquitoes fed 10% dextrose. In contrast, rates of appearance and densities in the salivary glands were independent of sugar concentrations in non-oviposited mosquitoes, although both measures were slightly lower than in oviposited mosquitoes fed 10% dextrose. Vector survival was higher in non-oviposited mosquitoes. CONCLUSIONS: Costs to parasite fitness and vector survival were buffered against changes in nutritional availability from the environment in non-oviposited but not oviposited mosquitoes. Taken together, these results suggest vectorial capacity for malaria parasites may be dependent on nutrient availability and oviposition/gonotrophic status and, as such, argue for more careful consideration of this interaction when estimating transmission potential. More broadly, the complex patterns resulting from physiological (nutrition) and evolutionary (egg-retention) trade-offs described here, combined with the ubiquity of selective oviposition behavior, implies the fitness of vector-borne pathogens could be shaped by selection for these traits, with implications for disease transmission and management. For instance, while reducing availability of oviposition sites and environmental sources of nutrition are key components of integrated vector management strategies, their abundance and distribution are under strong selection pressure from the patterns associated with climate change.


Anopheles , Malaria , Mosquito Vectors , Oviposition , Plasmodium berghei , Animals , Anopheles/physiology , Anopheles/parasitology , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Female , Malaria/transmission , Malaria/parasitology , Plasmodium berghei/physiology , Salivary Glands/parasitology , Sporozoites/physiology , Sugars/metabolism , Mice
12.
Infect Dis Poverty ; 13(1): 35, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783374

BACKGROUND: Lao PDR has made significant progress in malaria control. The National Strategic Plans outline ambitious targets, aiming for the elimination of Plasmodium falciparum and P. vivax malaria from all northern provinces by 2025 and national elimination by 2030. This article presents an overview of malaria epidemiology, surveillance, and response systems in Lao PDR, emphasizing experiences and achievements in transmission reduction. METHODS: Data on surveillance, monitoring and evaluation systems, human resources, infrastructure, and community malaria knowledge during 2010-2020 were systematically gathered from the national program and relevant documents. The collected information was synthesized, and discussions on challenges and future prospects were provided. RESULTS: Malaria control and elimination activities in Lao PDR were implemented at various levels, with a focus on health facility catchment areas. There has been significant progress in reducing malaria transmission throughout the country. Targeted interventions, such as case management, vector control, and community engagement, using stratification of control interventions by catchment areas have contributed to the decline in malaria cases. In elimination areas, active surveillance strategies, including case and foci investigation, are implemented to identify and stop transmission. The surveillance system has facilitated timely detection and response to malaria cases, enabling these targeted interventions in higher-risk areas. CONCLUSIONS: The malaria surveillance and response system in Lao PDR has played a crucial role in reducing transmission and advancing the country towards elimination. Challenges such as importation, drug resistance, and sustaining support require ongoing efforts. Further strengthening surveillance, improving access to services, and addressing transmission determinants are key areas of focus to achieve malaria elimination and enhance population health in Lao PDR.


Disease Eradication , Laos/epidemiology , Humans , Disease Eradication/methods , Malaria/epidemiology , Malaria/prevention & control , Malaria/transmission , Epidemiological Monitoring , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Population Surveillance , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control
13.
Malar J ; 23(1): 169, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811947

BACKGROUND: The primary vector control interventions in Zambia are long-lasting insecticidal nets and indoor residual spraying. Challenges with these interventions include insecticide resistance and the outdoor biting and resting behaviours of many Anopheles mosquitoes. Therefore, new vector control tools targeting additional mosquito behaviours are needed to interrupt transmission. Attractive targeted sugar bait (ATSB) stations, which exploit the sugar feeding behaviours of mosquitoes, may help in this role. This study evaluated the residual laboratory bioefficacy of Westham prototype ATSB® Sarabi v.1.2.1 Bait Station (Westham Ltd., Hod-Hasharon, Israel) in killing malaria vectors in Western Province, Zambia, during the first year of a large cluster randomized phase-III trial (Clinical Trials.gov Identifier: NCT04800055). METHODS: This was a repeat cross-sectional study conducted within three districts, Nkeyema, Kaoma, and Luampa, in Western Province, Zambia. The study was conducted in 12 intervention clusters among the 70 trial clusters (35 interventions, 35 controls) between December 2021 and June 2022. Twelve undamaged bait stations installed on the outer walls of households were collected monthly (one per cluster per month) for bioassays utilizing adult female and male Anopheles gambiae sensu stricto (Kisumu strain) mosquitoes from a laboratory colony. RESULTS: A total of 84 field-deployed ATSB stations were collected, and 71 ultimately met the study inclusion criteria for remaining in good condition. Field-deployed stations that remained in good condition (intact, non-depleted of bait, and free of dirt as well as mold) retained high levels of bioefficacy (mean induced mortality of 95.3% in males, 71.3% in females, 83.9% combined total) over seven months in the field but did induce lower mortality rates than non-deployed ATSB stations (mean induced mortality of 96.4% in males, 87.0% in females, 91.4% combined total). There was relatively little variation in corrected mortality rates between monthly rounds for those ATSB stations that had been deployed to the field. CONCLUSION: While field-deployed ATSB stations induced lower mortality rates than non-deployed ATSB stations, these stations nonetheless retained relatively high and stable levels of bioefficacy across the 7-month malaria transmission season. While overall mean mosquito mortality rates exceeded 80%, mean mortality rates for females were 24 percentage points lower than among males and these differences merit attention and further evaluation in future studies. The duration of deployment was not associated with lower bioefficacy. Westham prototype ATSB stations can still retain bioefficacy even after deployment in the field for 7 months, provided they do not meet predetermined criteria for replacement.


Anopheles , Mosquito Control , Mosquito Vectors , Zambia , Animals , Mosquito Control/methods , Anopheles/drug effects , Anopheles/physiology , Mosquito Vectors/drug effects , Mosquito Vectors/physiology , Female , Male , Cross-Sectional Studies , Malaria/prevention & control , Malaria/transmission , Seasons , Insecticides/pharmacology , Sugars , Humans , Feeding Behavior
14.
PLoS Med ; 21(5): e1004376, 2024 May.
Article En | MEDLINE | ID: mdl-38723040

BACKGROUND: Recently revised WHO guidelines on malaria chemoprevention have opened the door to more tailored implementation. Countries face choices on whether to replace old drugs, target additional age groups, and adapt delivery schedules according to local drug resistance levels and malaria transmission patterns. Regular routine assessment of protective efficacy of chemoprevention is key. Here, we apply a novel modelling approach to aid the design and analysis of chemoprevention trials and generate measures of protection that can be applied across a range of transmission settings. METHODS AND FINDINGS: We developed a model of genotype-specific drug protection, which accounts for underlying risk of infection and circulating genotypes. Using a Bayesian framework, we fitted the model to multiple simulated scenarios to explore variations in study design, setting, and participant characteristics. We find that a placebo or control group with no drug protection is valuable but not always feasible. An alternative approach is a single-arm trial with an extended follow-up (>42 days), which allows measurement of the underlying infection risk after drug protection wanes, as long as transmission is relatively constant. We show that the currently recommended 28-day follow-up in a single-arm trial results in low precision of estimated 30-day chemoprevention efficacy and low power in determining genotype differences of 12 days in the duration of protection (power = 1.4%). Extending follow-up to 42 days increased precision and power (71.5%) in settings with constant transmission over this time period. However, in settings of unstable transmission, protective efficacy in a single-arm trial was overestimated by 24.3% if recruitment occurred during increasing transmission and underestimated by 15.8% when recruitment occurred during declining transmission. Protective efficacy was estimated with greater precision in high transmission settings, and power to detect differences by resistance genotype was lower in scenarios where the resistant genotype was either rare or too common. CONCLUSIONS: These findings have important implications for the current guidelines on chemoprevention efficacy studies and will be valuable for informing where these studies should be optimally placed. The results underscore the need for a comparator group in seasonal settings and provide evidence that the extension of follow-up in single-arm trials improves the accuracy of measures of protective efficacy in settings with more stable transmission. Extension of follow-up may pose logistical challenges to trial feasibility and associated costs. However, these studies may not need to be repeated multiple times, as the estimates of drug protection against different genotypes can be applied to different settings by adjusting for transmission intensity and frequency of resistance.


Antimalarials , Chemoprevention , Drug Resistance , Malaria , Humans , Antimalarials/therapeutic use , Drug Resistance/genetics , Malaria/prevention & control , Malaria/transmission , Malaria/epidemiology , Chemoprevention/methods , Bayes Theorem , Genotype , Research Design
15.
Sci Adv ; 10(19): eadj6990, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728404

Mosquito-borne diseases like malaria are rising globally, and improved mosquito vector surveillance is needed. Survival of Anopheles mosquitoes is key for epidemiological monitoring of malaria transmission and evaluation of vector control strategies targeting mosquito longevity, as the risk of pathogen transmission increases with mosquito age. However, the available tools to estimate field mosquito age are often approximate and time-consuming. Here, we show a rapid method that combines matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry with deep learning for mosquito age prediction. Using 2763 mass spectra from the head, legs, and thorax of 251 field-collected Anopheles arabiensis mosquitoes, we developed deep learning models that achieved a best mean absolute error of 1.74 days. We also demonstrate consistent performance at two ecological sites in Senegal, supported by age-related protein changes. Our approach is promising for malaria control and the field of vector biology, benefiting other disease vectors like Aedes mosquitoes.


Anopheles , Deep Learning , Mosquito Vectors , Animals , Anopheles/physiology , Mosquito Vectors/physiology , Malaria/transmission , Malaria/prevention & control , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Senegal , Mass Spectrometry/methods , Aging/physiology
16.
Elife ; 122024 May 16.
Article En | MEDLINE | ID: mdl-38753426

Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.


Zoonotic diseases are infectious diseases that are transmitted from animals to humans. For example, the malaria-causing parasite Plasmodium knowlesi can be transmitted from monkeys to humans through mosquitos that have previously fed on infected monkeys. In Malaysia, progress towards eliminating malaria is being undermined by the rise of human incidences of 'monkey malaria', which has been declared a public health threat by The World Health Organisation. In humans, cases of monkey malaria are higher in areas of recent deforestation. Changes in habitat may affect how monkeys, insects and humans interact, making it easier for diseases like malaria to pass between them. Deforestation could also change the behaviour of wildlife, which could lead to an increase in infection rates. For example, reduced living space increases contact between monkeys, or it may prevent behaviours that help animals to avoid parasites. Johnson et al. wanted to investigate how the prevalence of malaria in monkeys varies across Southeast Asia to see whether an increase of Plasmodium knowlesi in primates is linked to changes in the landscape. They merged the results of 23 existing studies, including data from 148 sites and 6322 monkeys to see how environmental factors like deforestation influenced the amount of disease in different places. Many previous studies have assumed that disease prevalence is high across all macaques, monkey species that are considered pests, and in all places. But Johnson et al. found that disease rates vary widely across different regions. Overall disease rates in monkeys are lower than expected (only 12%), but in regions with less forest or more 'fragmented' forest areas, malaria rates are higher. Areas with a high disease rate in monkeys tend to further coincide with infection hotspots for humans. This suggests that deforestation may be driving malaria infection in monkeys, which could be part of the reason for increased human infection rates. Johnsons et al.'s study has provided an important step towards better understanding the link between deforestation and the levels of monkey malaria in humans living nearby. Their study provides important insights into how we might find ways of managing the landscape better to reduce health risks from wildlife infection.


Malaria , Plasmodium knowlesi , Primates , Zoonoses , Animals , Humans , Asia, Southeastern/epidemiology , Ecosystem , Malaria/epidemiology , Malaria/transmission , Malaria/parasitology , Prevalence , Primate Diseases/epidemiology , Primate Diseases/parasitology , Primate Diseases/transmission , Primates/parasitology , Zoonoses/epidemiology , Zoonoses/parasitology , Zoonoses/transmission
17.
Parasit Vectors ; 17(1): 230, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760849

BACKGROUND: Anopheles funestus is a leading vector of malaria in most parts of East and Southern Africa, yet its ecology and responses to vector control remain poorly understood compared with other vectors such as Anopheles gambiae and Anopheles arabiensis. This study presents the first large-scale survey of the genetic and phenotypic expression of insecticide resistance in An. funestus populations in Tanzania. METHODS: We performed insecticide susceptibility bioassays on An. funestus mosquitoes in nine regions with moderate-to-high malaria prevalence in Tanzania, followed by genotyping for resistance-associated mutations (CYP6P9a, CYP6P9b, L119F-GSTe2) and structural variants (SV4.3 kb, SV6.5 kb). Generalized linear models were used to assess relationships between genetic markers and phenotypic resistance. An interactive R Shiny tool was created to visualize the data and support evidence-based interventions. RESULTS: Pyrethroid resistance was universal but reversible by piperonyl-butoxide (PBO). However, carbamate resistance was observed in only five of the nine districts, and dichloro-diphenyl-trichloroethane (DDT) resistance was found only in the Kilombero valley, south-eastern Tanzania. Conversely, there was universal susceptibility to the organophosphate pirimiphos-methyl in all sites. Genetic markers of resistance had distinct geographical patterns, with CYP6P9a-R and CYP6P9b-R alleles, and the SV6.5 kb structural variant absent or undetectable in the north-west but prevalent in all other sites, while SV4.3 kb was prevalent in the north-western and western regions but absent elsewhere. Emergent L119F-GSTe2, associated with deltamethrin resistance, was detected in heterozygous form in districts bordering Mozambique, Malawi and the Democratic Republic of Congo. The resistance landscape was most complex in western Tanzania, in Tanganyika district, where all five genetic markers were detected. There was a notable south-to-north spread of resistance genes, especially CYP6P9a-R, though this appears to be interrupted, possibly by the Rift Valley. CONCLUSIONS: This study underscores the need to expand resistance monitoring to include An. funestus alongside other vector species, and to screen for both the genetic and phenotypic signatures of resistance. The findings can be visualized online via an interactive user interface and could inform data-driven decision-making for resistance management and vector control. Since this was the first large-scale survey of resistance in Tanzania's An. funestus, we recommend regular updates with greater geographical and temporal coverage.


Anopheles , Insecticide Resistance , Insecticides , Malaria , Mosquito Vectors , Animals , Anopheles/genetics , Anopheles/drug effects , Insecticide Resistance/genetics , Tanzania/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Insecticides/pharmacology , Malaria/transmission , Malaria/epidemiology , Genetic Markers , Pyrethrins/pharmacology , Genotype , Mutation
18.
Malar J ; 23(1): 158, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773512

BACKGROUND: This study aimed to assess the spatial distribution of Anopheles mosquito larval habitats and the environmental factors associated with them, as a prerequisite for the implementation of larviciding. METHODS: The study was conducted in December 2021, during the transition period between the end of the short rainy season (September-November) and the short dry season (December-February). Physical, biological, and land cover data were integrated with entomological observations to collect Anopheles larvae in three major towns: Mitzic, Oyem, and Bitam, using the "dipping" method during the transition from rainy to dry season. The collected larvae were then reared in a field laboratory established for the study period. After the Anopheles mosquitoes had emerged, their species were identified using appropriate morphological taxonomic keys. To determine the influence of environmental factors on the breeding of Anopheles mosquitoes, multiple-factor analysis (MFA) and a binomial generalized linear model were used. RESULTS: According to the study, only 33.1% out of the 284 larval habitats examined were found to be positive for Anopheles larvae, which were primarily identified as belonging to the Anopheles gambiae complex. The findings of the research suggested that the presence of An. gambiae complex larvae in larval habitats was associated with various significant factors such as higher urbanization, the size and type of the larval habitats (pools and puddles), co-occurrence with Culex and Aedes larvae, hot spots in ambient temperature, moderate rainfall, and land use patterns. CONCLUSIONS: The results of this research mark the initiation of a focused vector control plan that aims to eradicate or lessen the larval habitats of An. gambiae mosquitoes in Gabon's Woleu Ntem province. This approach deals with the root causes of malaria transmission through larvae and is consistent with the World Health Organization's (WHO) worldwide objective to decrease malaria prevalence in regions where it is endemic.


Anopheles , Ecosystem , Larva , Malaria , Mosquito Vectors , Animals , Anopheles/physiology , Anopheles/growth & development , Larva/growth & development , Larva/physiology , Gabon , Malaria/transmission , Mosquito Vectors/physiology , Seasons , Spatial Analysis , Animal Distribution
19.
Malar J ; 23(1): 160, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778399

BACKGROUND: Anopheles mosquito resistance to insecticide remains a serious threat to malaria vector control affecting several sub-Sahara African countries, including Côte d'Ivoire, where high pyrethroid, carbamate and organophosphate resistance have been reported. Since 2017, new insecticides, namely neonicotinoids (e.g.; clothianidin) and pyrroles (e.g.; chlorfenapyr) have been pre-qualified by the World Health Organization (WHO) for use in public health to manage insecticide resistance for disease vector control. METHODS: Clothianidin and chlorfenapyr were tested against the field-collected Anopheles gambiae populations from Gagnoa, Daloa and Abengourou using the WHO standard insecticide susceptibility biossays. Anopheles gambiae larvae were collected from several larval habitats, pooled and reared to adulthood in each site in July 2020. Non-blood-fed adult female mosquitoes aged 2 to 5 days were exposed to diagnostic concentration deltamethrin, permethrin, alpha-cypermethrin, bendiocarb, and pirimiphos-methyl. Clothianidin 2% treated papers were locally made and tested using WHO tube bioassay while chlorfenapyr (100 µg/bottle) was evaluated using WHO bottle assays. Furthermore, subsamples of exposed mosquitoes were identified to species and genotyped for insecticide resistance markers including the knock-down resistance (kdr) west and east, and acetylcholinesterase (Ace-1) using molecular techniques. RESULTS: High pyrethroid resistance was recorded with diagnostic dose in Abengourou (1.1 to 3.4% mortality), in Daloa (15.5 to 33.8%) and in Gagnoa (10.3 to 41.6%). With bendiocarb, mortality rates ranged from 49.5 to 62.3%. Complete mortality (100% mortality) was recorded with clothianidin in Gagnoa, 94.9% in Daloa and 96.6% in Abengourou, while susceptibility (mortality > 98%) to chlorfenapyr 100 µg/bottle was recorded at all sites and to pirimiphos-methyl in Gagnoa and Abengourou. Kdr-west mutation was present at high frequency (0.58 to 0.73) in the three sites and Kdr-east mutation frequency was recorded at a very low frequency of 0.02 in both Abengourou and Daloa samples and absent in Gagnoa. The Ace-1 mutation was present at frequencies between 0.19 and 0.29 in these areas. Anopheles coluzzii represented 100% of mosquitoes collected in Daloa and Gagnoa, and 72% in Abengourou. CONCLUSIONS: This study showed that clothianidin and chlorfenapyr insecticides induce high mortality in the natural and pyrethroid-resistant An. gambiae populations in Côte d'Ivoire. These results could support a resistance management plan by proposing an insecticide rotation strategy for vector control interventions.


Anopheles , Insecticide Resistance , Insecticides , Mosquito Vectors , Pyrethrins , Animals , Anopheles/drug effects , Anopheles/genetics , Insecticides/pharmacology , Insecticide Resistance/genetics , Cote d'Ivoire , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Pyrethrins/pharmacology , Female , Neonicotinoids/pharmacology , Guanidines/pharmacology , Malaria/prevention & control , Malaria/transmission , Thiazoles/pharmacology , Pyrroles/pharmacology , Mosquito Control , Larva/drug effects
20.
Parasit Vectors ; 17(1): 235, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778423

BACKGROUND: "Regeneration time" (RT) denotes the time required to obtain a stable mortality rate for mosquitoes exposed to insecticide-treated nets (ITNs) after three consecutive washes of a net in a day. The RT informs the wash interval used to artificially age ITNs to simulate their lifetime performance under user conditions (20 washes). RT was estimated following World Health Organization (WHO) longitudinal method (LM) procedures. Longitudinal evaluation may introduce heterogeneity due to mosquito batch variability, complicating RT determination. To overcome this, nets at each stage of regeneration (i.e., 1, 2, 3, 5 and 7 days post wash) were prepared in advance and refrigerated; then, a complete regeneration series was tested with a single mosquito batch on 1 testing day, completing four series over 4 days. This study compared the complete series method (CSM) against the LM. METHODS: The overall heterogeneity in the methods for estimating RT of one incorporated alpha-cypermethrin and piperonyl butoxide (PBO) and one incorporated permethrin with PBO ITNs was determined using laboratory-reared resistant Anopheles arabiensis under standard laboratory conditions. LM methods and CSM were compared in two experiments with refrigerated nets acclimated for (i) 2 h (test 1) and (ii) 3 h (test 2). Four regeneration replicates per day were tested per ITN product with 50 mosquitoes exposed per replicate (equivalent sample size to LM). The heterogeneity from these methods was compared descriptively. RESULTS: The intra-method variability for unwashed pieces was minimal, with variance of 1.26 for CSM and 1.18 for LM. For unwashed nets, LM had substantially greater variance and ratio of LM:CSM was 2.66 in test 1 and 2.49 in test 2. The magnitude of mortality measured in bioassays depended on sample acclimation after refrigeration. CONCLUSIONS: The CSM is a convenient method for determining the regeneration times. ITNs are prepared in advance, reducing pressure to prepare all samples to start on a single day. A complete regeneration series of samples is removed from the refrigerator, defrosted and evaluated on a single day with one mosquito batch reducing the influence of mosquito batch heterogeneity on results. Replicates can be conducted over several days but do not have to be conducted on consecutive days, allowing easy facility scheduling.


Anopheles , Insecticide-Treated Bednets , Insecticides , Mosquito Control , Animals , Anopheles/physiology , Anopheles/drug effects , Insecticides/pharmacology , Mosquito Control/methods , Time Factors , Pyrethrins/pharmacology , Permethrin/pharmacology , Malaria/prevention & control , Malaria/transmission , Piperonyl Butoxide/pharmacology
...