Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.301
Filter
1.
Physiol Plant ; 176(4): e14453, 2024.
Article in English | MEDLINE | ID: mdl-39091124

ABSTRACT

Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation. The results showed that melatonin improved rosemary callus growth, with fresh weight and dry weight increased by 15.81% and 8.30%, respectively. The addition of 100 µM melatonin increased antioxidant enzyme activity and NO content in rosemary callus. At the same time, melatonin also significantly reduced membrane lipid damage and H2O2 accumulation in rosemary callus under UV-B stress, with malondialdehyde (MDA) and H2O2 contents reduced by 13.03% and 14.55%, respectively. In addition, melatonin increased the total phenol and rosmarinic acid contents in rosemary callus by 19% and 54%, respectively. Melatonin significantly improved the antioxidant activity of the extracts from rosemary callus. These results suggest that exogenous melatonin can alleviate the adverse effects of UV-B stress on rosemary callus by promoting NO accumulation while further enhancing phenolic accumulation and biological activity.


Subject(s)
Antioxidants , Hydrogen Peroxide , Melatonin , Phenols , Rosmarinus , Ultraviolet Rays , Melatonin/pharmacology , Melatonin/metabolism , Rosmarinus/metabolism , Rosmarinus/drug effects , Rosmarinus/radiation effects , Antioxidants/metabolism , Phenols/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Stress, Physiological/radiation effects , Stress, Physiological/drug effects , Rosmarinic Acid , Cinnamates/metabolism , Cinnamates/pharmacology , Depsides/metabolism
2.
BMC Plant Biol ; 24(1): 742, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095745

ABSTRACT

In this study, various constraints of Cd toxicity on growth, morpho-anatomical characters along with physiological and biochemical metabolic processes of Solanum melongena L. plants were analyzed. Conversely, ameliorative role of iron oxide nanoparticles (FeONPs) was examined against Cd stress. For this purpose, the following treatments were applied in completely randomized fashion; 3 mM CdCl2 solution applied with irrigation water, 40 and 80 ppm solutions of FeONPs applied via foliar spray. Regarding the results, Cd caused oxidative damage to plants' photosynthetic machinery, resulting in elevated levels of stress-markers like malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) along with slight increase in antioxidants activities, including glutathione (GsH), ascorbate (AsA), catalases (CAT), peroxidases (POD), superoxide dismutase (SOD), and ascorbate peroxidases (APX). Also, high Cd level in plants disturb ions homeostasis and reduced essential minerals uptake, including Ca and K. This ultimately reduced growth and development of S. melongena plants. In contrast, FeONPs supplementations improved antioxidants (enzymatic and non-enzymatic) defenses which in turn limited ROS generation and lowered the oxidative damage to photosynthetic machinery. Furthermore, it maintained ionic balance resulting in enhanced uptake of Ca and K nutrients which are necessary for photosynthesis, hence also improved photosynthesis rate of S. melongena plants. Overall, FeONPs foliar spray effectively mitigated Cd toxicity imposed on S. melongena plants.


Subject(s)
Antioxidants , Cadmium , Oxidative Stress , Solanum melongena , Oxidative Stress/drug effects , Antioxidants/metabolism , Cadmium/toxicity , Solanum melongena/drug effects , Solanum melongena/metabolism , Photosynthesis/drug effects , Malondialdehyde/metabolism
3.
PeerJ ; 12: e17837, 2024.
Article in English | MEDLINE | ID: mdl-39099653

ABSTRACT

Hexavalent chromium (Cr(VI)) is a hazardous metallic compound commonly used in industrial processes. The liver, responsible for metabolism and detoxification, is the main target organ of Cr(VI). Toxicity experiments were performed to investigate the impacts of low-dose exposure to Cr(VI) on rat livers. It was revealed that exposure of 0.05 mg/kg potassium dichromate (K2Cr2O7) and 0.25 mg/kg K2Cr2O7 notably increased malondialdehyde (MDA) levels and the expressions of P-AMPK, P-ULK, PINK1, P-Parkin, and LC3II/LC3I, and significantly reduced SOD activity and P-mTOR and P62 expression levels in liver. Electron microscopy showed that CR(VI) exposure significantly increased mitophagy and the destruction of mitochondrial structure. This study simulates the respiratory exposure mode of CR(VI) workers through intratracheal instillation of CR(VI) in rats. It confirms that autophagy in hepatocytes is induced by low concentrations of CR(VI) and suggest that the liver damage caused by CR(VI) may be associated with the AMPK-related PINK/Parkin signaling pathway.


Subject(s)
Chromium , Liver , Mitophagy , Protein Kinases , Signal Transduction , Ubiquitin-Protein Ligases , Animals , Chromium/toxicity , Mitophagy/drug effects , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Signal Transduction/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats , Male , Potassium Dichromate/toxicity , AMP-Activated Protein Kinases/metabolism , Rats, Sprague-Dawley , Malondialdehyde/metabolism
4.
BMC Gastroenterol ; 24(1): 245, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090535

ABSTRACT

BACKGROUND: Ferroptosis is a newly recognized form of regulatory cell death characterized by severe lipid peroxidation triggered by iron overload and the production of reactive oxygen species (ROS). However, the role of ferroptosis in severe acute pancreatitis(SAP) has not been fully elucidated. METHODS: We established four severe acute pancreatitis models of rats including the sham control group, the SAP group, the Fer -1-treated SAP (SAP + Fer-1) group, the 3-MA-treated SAP (SAP + 3-MA) group. The SAP group was induced by retrograde injection of sodium taurocholate into the pancreatic duct. The other two groups were intraperitoneally injected with ferroptosis inhibitor (Fer-1) and autophagy inhibitor (3-MA), respectively. The model of severe acute pancreatitis with amylase crest-related inflammatory factors was successfully established. Then we detected ferroptosis (GPX4, SLC7A1 etc.) and autophagy-related factors (LC3II, p62 ect.) to further clarify the relationship between ferroptosis and autophagy. RESULTS: Our study found that ferroptosis occurs during the development of SAP, such as iron and lipid peroxidation in pancreatic tissues, decreased levels of reduced glutathione peroxidase 4 (GPX 4) and glutathione (GSH), and increased malondialdehyde(MDA) and significant mitochondrial damage. In addition, ferroptosis related proteins such as GPX4, solute carrier family 7 member 11(SLC7A11) and ferritin heavy chain 1(FTH1) were significantly decreased. Next, the pathogenesis of ferroptosis in SAP was studied. First, treatment with the ferroptosis inhibitor ferrostatin-1(Fer-1) significantly alleviated ferroptosis in SAP. Interestingly, autophagy occurs during the pathogenesis of SAP, and autophagy promotes the occurrence of ferroptosis in SAP. Moreover, 3-methyladenine (3-MA) inhibition of autophagy can significantly reduce iron overload and ferroptosis in SAP. CONCLUSIONS: Our results suggest that ferroptosis is a novel pathogenesis of SAP and is dependent on autophagy. This study provides a new theoretical basis for the study of SAP.


Subject(s)
Autophagy , Disease Models, Animal , Ferroptosis , Lipid Peroxidation , Pancreatitis , Rats, Sprague-Dawley , Animals , Pancreatitis/metabolism , Pancreatitis/pathology , Rats , Male , Adenine/analogs & derivatives , Adenine/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Taurocholic Acid , Cyclohexylamines/pharmacology , Pancreas/pathology , Pancreas/metabolism , Phenylenediamines/pharmacology , Malondialdehyde/metabolism , Reactive Oxygen Species/metabolism , Acute Disease , Glutathione/metabolism , Iron/metabolism
5.
BMC Microbiol ; 24(1): 287, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095728

ABSTRACT

This study used berberine hydrochloride to treat the Asian paddle crab, Charybdis japonica infected with the Gram-negative bacterium Aeromonas hydrophila at concentrations of 0, 100, 200 and 300 mg/L. The effect of berberine hydrochloride on the survival rate and gut microbiota of C. japonica was investigated. Berberine hydrochloride improved the stability of the intestinal flora, with an increase in the abundance of probiotic species and a decrease in the abundance of both pathogenic bacteria after treatment with high concentrations of berberine hydrochloride. Berberine hydrochloride altered peroxidase activity (POD), malondialdehyde (MDA), and lipid peroxidation (LPO) in the intestinal tract compared to the control. Berberine hydrochloride could modulate the energy released from the enzyme activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the intestinal tract of C. japonica infected with A. hydrophila. Zona occludens 1 (ZO-1), Zinc finger E-box binding homeobox 1 (ZEB1), occludin and signal transducer, and activator of transcription5b (STAT5b) expression were also increased, which improved intestinal barrier function. The results of this study provide new insights into the role of berberine hydrochloride in intestinal immune mechanisms and oxidative stress in crustaceans.


Subject(s)
Aeromonas hydrophila , Antioxidants , Berberine , Gastrointestinal Microbiome , Gram-Negative Bacterial Infections , Berberine/pharmacology , Aeromonas hydrophila/drug effects , Aeromonas hydrophila/genetics , Gastrointestinal Microbiome/drug effects , Animals , Antioxidants/metabolism , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/drug therapy , Brachyura/microbiology , Brachyura/drug effects , Malondialdehyde/metabolism , Lipid Peroxidation/drug effects , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism
6.
Exp Dermatol ; 33(8): e15156, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39133032

ABSTRACT

This study investigates the carcinogenic potential of chronic dermal exposure (16 weeks) to sulfuric acid (SA) in immunocompetent mice. Clinical assessments, histopathological analyses, immunohistochemical analyses and biochemical assays were conducted to evaluate skin irritation, oxidative stress biomarkers and the potential carcinogenic effect of SA. Results indicated that prolonged exposure to SA leads to various alterations in skin structure, notably inflammation, preneoplastic and neoplastic proliferation in hair follicles, as well as hyperkeratosis and acanthosis, resulting in an increased epidermal thickness of 98.50 ± 21.6 µm. Immunohistochemistry analysis further corroborates these observations, showcasing elevated nuclear expression of p53 and Ki-67, with a significant mitotic index of (57.5% ± 2.5%). Moreover, biochemical analyses demonstrate that SA induces lipid peroxidation in the skin, evidenced by a high level of Malondialdehyde and a consequential reduction in catalase activity. These findings suggest that prolonged exposure to SA can induce skin neoplasms, highlighting the need for stringent safety measures in environments where SA is frequently used. This study underscores the potential occupational health risks associated with SA exposure.


Subject(s)
Skin Neoplasms , Sulfuric Acids , Animals , Skin Neoplasms/chemically induced , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Mice , Sulfuric Acids/adverse effects , Sulfuric Acids/toxicity , Oxidative Stress/drug effects , Lipid Peroxidation/drug effects , Female , Malondialdehyde/metabolism , Immunocompetence , Catalase/metabolism , Skin/pathology , Skin/metabolism , Skin/drug effects , Ki-67 Antigen/metabolism , Tumor Suppressor Protein p53/metabolism
7.
BMC Plant Biol ; 24(1): 744, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098900

ABSTRACT

BACKGROUND: Soil contamination by heavy metals is a critical environmental challenge, with Pb being of particular concern due to its propensity to be readily absorbed and accumulated by plants, despite its lack of essential biological functions or beneficial roles in cellular metabolism. Within the scope of phytoremediation, the use of plants for the decontamination of various environmental matrices, the present study investigated the potential of activated charcoal (AC) to enhance the tolerance and mitigation capacity of S. sesban seedlings when exposed to Pb. The experiment was conducted as a factorial arrangement in a completely randomized design in hydroponic conditions. The S. sesban seedlings were subjected to a gradient of Pb concentrations (0, 0.02, 0.2, 2, and 10 mg/L) within the nutrient solution, alongside two distinct AC treatments (0 and 1% inclusion in the culture media). The study reached its conclusion after 60 days. RESULTS: The seedlings exposed to Pb without AC supplementation indicated an escalation in peroxidase (POX) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) levels, signaling an increase in oxidative stress. Conversely, the incorporation of AC into the treatment regime markedly bolstered the antioxidative defense system, as evidenced by the significant elevation in antioxidant capacity and a concomitant reduction in the biomarkers of oxidative stress (POX, ROS, and MDA). CONCLUSIONS: With AC application, a notable improvement was observed in the chlorophyll a, total chlorophyll, and plant fresh and dry biomass. These findings illuminate the role of activated charcoal as a viable adjunct in phytoremediation strategies aimed at ameliorating heavy metal stress in plants.


Subject(s)
Biodegradation, Environmental , Charcoal , Hydroponics , Lead , Sesbania , Soil Pollutants , Charcoal/pharmacology , Lead/toxicity , Lead/metabolism , Sesbania/metabolism , Sesbania/drug effects , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Oxidative Stress/drug effects , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Chlorophyll/metabolism , Malondialdehyde/metabolism
8.
Cryo Letters ; 45(5): 288-293, 2024.
Article in English | MEDLINE | ID: mdl-39126330

ABSTRACT

BACKGROUND: In reproductive biotechnology, sperm cryopreservation has a vital role to play. Cryopreservation of sperm produces reactive oxygen species (ROS), which disrupt sperm function and structural competence. Numerous protective chemicals, including fructans, have been used during sperm cryopreservation. OBJECTIVES: To evaluate the effect of different concentrations of the fructosan inulin on ram sperm quality parameters, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) production after freezing and thawing. MATERIALS AND METHODS: The pooled samples from four healthy rams were divided into seven equal aliquots and diluted in a Tris-base extender supplemented with 1, 2, 4, 8, 16, and 28 mM of inulin or without inulin supplementation (control). By using liquid nitrogen vapor, the semen was frozen and stored at 196 degree C. RESULTS: The total motility, viability, and DNA integrity were significantly improved after freeze-thawing with 28 mM inulin, compared to other treatment groups (P < 0.05). A Tris-based extender containing 16 and 28 mM of inulin displayed the highest levels of ram sperm membrane integrity when compared with the control (p <0.05). The abnormality of ram sperm was increased during freeze-thawing at control and 1 mM of inulin, compared to 16 and 28 mM of inulin (P < 0.05). Additionally, 28 mM of inulin decreased MDA and increased SOD activity in ram sperm in comparison with the other treatments (P < 0.05). CONCLUSION: As a result, 28 mM of inulin could be beneficial for the cryopreservation industry and reduce the harmful effects of freeze-thawing on ram sperm. Doi.org/10.54680/fr24510110512.


Subject(s)
Cryopreservation , Cryoprotective Agents , Inulin , Malondialdehyde , Semen Preservation , Sperm Motility , Spermatozoa , Superoxide Dismutase , Male , Cryopreservation/methods , Cryopreservation/veterinary , Inulin/pharmacology , Semen Preservation/methods , Semen Preservation/veterinary , Animals , Spermatozoa/drug effects , Spermatozoa/physiology , Sheep , Sperm Motility/drug effects , Cryoprotective Agents/pharmacology , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Semen Analysis , Cell Survival/drug effects , Freezing
9.
Acta Cir Bras ; 39: e395329, 2024.
Article in English | MEDLINE | ID: mdl-39109783

ABSTRACT

PURPOSE: To evaluate the neuroprotective effect of resveratrol, urapidil, and a combined administration of these drugs against middle cerebral artery occlusion (MCAO) induced ischemia/reperfusion (IR) injury model in rats. METHODS: Thirty-five rats were divided into five groups of seven animals each. Animals in IR, IR resveratrol (IRr), IR urapidil (IRu), and IR + combination of resveratrol and urapidil (IRc) were exposed to MCAO induced cerebral ischemia reperfusion injury model. Rats in IRr and IRu groups received 30-mg/kg resveratrol and 5-mg/kg urapidil respectively. Animals in IRc received a combined treatment of both drugs. At the end of the study, brain tissues were used for oxidative stress (malondialdehyde, glutathione, and superoxide dismutase), pro-apoptotic caspase-3, anti-apoptotic Bcl-2, and pro-inflammatory tumor necrosis factor-α cytokine level measurements. RESULTS: The MCAO model successfully replicated IR injury with significant histopathological changes, elevated tissue oxidative stress, and upregulated apoptotic and inflammatory protein expression in IR group compared to control group (p < 0.001). All parameters were significantly alleviated in IRr group compared to IR group (all p < 0.05). In IRu group, all parameters except for caspase-3 and Bcl-2 were also significantly different than IR group (all p < 0.05). The IRc group showed the biggest difference compared to IR group in all parameters (all p < 0.001). The IRc had higher superoxide dismutase and Bcl-2 levels, and lower caspase-3 levels compared to both IRr and IRu groups (all p < 0.05). Also, the IRc group had lower MDA and TNF-α levels compared to IRu group (all p < 0.05). CONCLUSIONS: The results indicate that combined treatment of resveratrol and urapidil may be a novel strategy to downregulate neurodegeneration in cerebral IR injury.


Subject(s)
Disease Models, Animal , Neuroprotective Agents , Oxidative Stress , Reperfusion Injury , Resveratrol , Stilbenes , Animals , Resveratrol/pharmacology , Resveratrol/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Male , Oxidative Stress/drug effects , Stilbenes/therapeutic use , Stilbenes/pharmacology , Drug Therapy, Combination , Rats, Wistar , Infarction, Middle Cerebral Artery/drug therapy , Treatment Outcome , Rats , Tumor Necrosis Factor-alpha/analysis , Superoxide Dismutase/analysis , Superoxide Dismutase/metabolism , Malondialdehyde/analysis , Malondialdehyde/metabolism , Reproducibility of Results , Apoptosis/drug effects , Random Allocation , Brain Ischemia/drug therapy , Antioxidants/therapeutic use , Antioxidants/pharmacology , Caspase 3/metabolism , Caspase 3/analysis
10.
BMC Oral Health ; 24(1): 911, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39112979

ABSTRACT

AIM: The aim of the present study is to show how sodium nitrite alters the histology of submandibular salivary glands and livers of Albino rats, as well as how chlorogenic acid may have therapeutic benefits. METHODS: A sample size of thirty male Sprague Dawley Albino rats weighing between 100 and 150 g (5-6 weeks old) was randomly allocated into 3 equal groups. Group I: rats were used as controls and were given phosphate buffer solution, whereas Group II: rats were given an 80 mg/kg sodium nitrites (SN) daily dissolved in distilled water. The rats in Group III were given a daily dose of 80 mg/kg SN dissolved in distilled water and after 6 hours each rat received 50 mg/mL freshly prepared chlorogenic acid (CGA) every other day. For 12 weeks, all treatment modalities will be administered orally, every day. After the experiment, all rats were euthanized. Samples from salivary glands and livers were processed and stained with H&E and interleukin 6 (IL 6). Malondialdehyde (MDA) and superoxide dismutase (SOD) enzymes were detected using an ELISA assay. RESULTS: Groups III had nearly comparable findings to Group I regarding histological pattern with normal submandibular glands and livers features. Group III salivary gland treated with CGA exhibited higher SOD levels (20.60±4.81 U/g) in comparison to the SN group, and lower MDA levels (111.58±28.28 nmol/mg) in comparison to the SN treated samples. In comparison to the SN group, CGA treatment significantly reduced MDA levels in liver samples (167.56±21.17 nmol/mg) and raised SOD (30.85±6.77 U/g). CONCLUSIONS: Chlorogenic acid has a protective effect against salivary gland and liver toxicity induced by SN in rats. This was mediated via the anti-inflammatory and antioxidative properties of CGA and the restoration of oxidant/antioxidant balance in rat salivary gland and liver.


Subject(s)
Chlorogenic Acid , Liver , Malondialdehyde , Rats, Sprague-Dawley , Sodium Nitrite , Submandibular Gland , Superoxide Dismutase , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Male , Submandibular Gland/drug effects , Submandibular Gland/pathology , Submandibular Gland/metabolism , Rats , Liver/drug effects , Liver/pathology , Sodium Nitrite/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase/drug effects , Malondialdehyde/metabolism , Random Allocation , Interleukin-6/analysis , Interleukin-6/metabolism
11.
Sci Rep ; 14(1): 19202, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39160181

ABSTRACT

Drought, which adversely affects plant growth and continuity of life and reduces product yield and quality, is one of the most common abiotic stresses at the globally. One of the polyamines that regulates plant development and reacts to abiotic stressors, including drought stress, is Putrescine (Put). This study compared the physiological and molecular effects of applying exogenous Put (10 µM) to barley (Hordeum vulgare cv. Burakbey) under drought stress (- 6.30 mPa PEG 6000). The 21-day drought stress imposed on the barley plant had a strong negative effect on plant metabolism in all experimental groups. Exogenous Put treatment under drought stress had a reformative effect on the cell cycle (transitions from G0-G1 to S and from S to G2-M), total protein content (almost 100%), endogenous polyamine content, malondialdehyde (MDA) (70%), and ascorbate peroxidase (APX) (62%) levels compared to the drought stress plants. Superoxide dismutase (SOD) (12%) and catalase (CAT) (32%) enzyme levels in the same group increased further after exogenous Put application, forming a response to drought stress. Consequently, it was discovered that the administration of exogenous Put in barley raises endogenous polyamine levels and then improves drought tolerance due to increased antioxidant capability, cell division stimulation, and total protein content.


Subject(s)
Droughts , Hordeum , Putrescine , Stress, Physiological , Hordeum/metabolism , Hordeum/genetics , Putrescine/metabolism , Malondialdehyde/metabolism , Cell Cycle , Antioxidants/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Polyamines/metabolism , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Gene Expression Regulation, Plant
12.
PeerJ ; 12: e17885, 2024.
Article in English | MEDLINE | ID: mdl-39161965

ABSTRACT

Background: Myocardial ischemia-reperfusion injury (MIRI) refers to severe damage to the ischemic myocardium following the restoration of blood flow, and it is a major complication of reperfusion therapy for myocardial infarction. Notably, drugs such as metoprolol have been utilized to reduce ischemia-reperfusion injury. Tanshinone IIA is a major constituent extracted from Salvia miltiorrhiza Bunge. Recently, tanshinone IIA has been studied extensively in animal models for controlling MIRI. Therefore, we conducted a meta-analysis on the application of tanshinone IIA in rat models with MIRI to evaluate the therapeutic effects of tanshinone IIA. Methods: A comprehensive search was conducted across PubMed, Web of Science, Embase, the Cochrane Library, the China National Knowledge Infrastructure database, the Wanfang database, and the Chinese Scientific Journal Database to gather studies on tanshinone IIA intervention in rat models with MIRI.We employed SYRCLE's risk of bias tool to assess study quality. The primary outcome indicators were superoxide dismutase (SOD) and malondialdehyde (MDA). Myocardial infarction area was a secondary outcome indicator. This study was registered at PROSPERO (registration number CRD 42022344447). Results: According to the inclusion and exclusion criteria, 15 eligible studies were selected from 295 initially identified studies. In rat models with MIRI, tanshinone IIA significantly increased SOD levels while reducing MDA levels and myocardial infarction area. Moreover, the duration of myocardial ischemia influenced the effectiveness of tanshinone IIA. However, additional high-quality research studies are needed to establish the efficacy and definitive guidelines for the use of tanshinone IIA. Animal studies demonstrated that tanshinone IIA exerted a significant therapeutic effect when the ischemia duration was less than 40 minutes. Tanshinone IIA was found to be more effective when administered via intravenous, intraperitoneal, and intragastric routes at doses above 5 mg/kg. Additionally, treatment with tanshinone IIA at all stages-prior to myocardial ischemia, after ischemia but before reperfusion, prior to ischemia and after reperfusion, and after reperfusion-showed satisfactory results. Conclusions: Tanshinone IIA enhanced SOD activity and reduced MDA levels, thereby ameliorating oxidative stress damage during MIRI. Additionally, it reduced the myocardial infarction area, indicating its effectiveness in mitigating MIRI-induced damage in rats and demonstrating a myocardial protective effect. These findings contribute valuable insights for developing MIRI treatment strategies.


Subject(s)
Abietanes , Disease Models, Animal , Myocardial Reperfusion Injury , Abietanes/pharmacology , Abietanes/therapeutic use , Animals , Myocardial Reperfusion Injury/drug therapy , Rats , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Myocardial Infarction/drug therapy
13.
Med Sci Monit ; 30: e945045, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152631

ABSTRACT

BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of perinatal and postnatal morbidity and mortality worldwide. Catalase (CAT) activity detection is used to determine levels of inflammation and oxidative stress. Glutathione (GSH) is the most critical non-enzymatic endogenous antioxidant. Lipid peroxidation levels marked after hypoxia can be detected based on the level of malondialdehyde (MDA). Ischemia-modified albumin (IMA) is considered a biomarker for cardiac ischemia and is known to increase in the liver, brain, and kidney in states of insufficient oxygenation. We aimed to explain the results and relations between the oxidant and antioxidants to detail oxidant-antioxidant balance and cellular mechanisms. MATERIAL AND METHODS Serum levels of IMA and MDA, as an oxidative stress marker, and CAT and GSH, as antioxidant enzymes, were measured in first blood samples of 59 neonates diagnosed with HIE, with pH <7, base excess >12, and APGAR scores. RESULTS Neonates who were ≥37 weeks of gestation and had hypoxia were included. Compared with healthy newborns (n=32), CAT was statistically significantly lower in the hypoxia group (P=0.0001), while MDA serum levels were significantly higher in neonates with hypoxia (P=0.01). There was no difference between hypoxic and healthy neonates in GSH and IMA measurements (P=0.054, P=0.19 respectively). CONCLUSIONS HIE pathophysiology involves oxidative stress and mitochondrial energy production failure. Explaining the pathways between oxidant-antioxidant balance and cell death, which explains the pathophysiology of HIE, is essential to develop treatment strategies that will minimize the effects of oxygen deprivation on other body organs, especially the brain.


Subject(s)
Antioxidants , Biomarkers , Hypoxia-Ischemia, Brain , Malondialdehyde , Oxidative Stress , Humans , Infant, Newborn , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/blood , Hypoxia-Ischemia, Brain/physiopathology , Biomarkers/blood , Biomarkers/metabolism , Antioxidants/metabolism , Female , Male , Malondialdehyde/blood , Malondialdehyde/metabolism , Glutathione/blood , Glutathione/metabolism , Serum Albumin, Human/metabolism , Catalase/blood , Catalase/metabolism , Lipid Peroxidation
14.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126089

ABSTRACT

Tomato (Solanum lycopersicum L.), as one of the most valuable horticulture crops, was chosen to investigate the effect of nanoparticles (NPs) in the form of nano-ZnO combined with conventional fertilizer on the quality of tomato fruits, including their antioxidant potential (total antioxidant activity, lycopene and ß-carotene content), sugars content and allergenic potential (profilin and Bet v 1 content). Nano-ZnO was implemented during plant cultivation, applied by foliar spraying or directly via soil, at three different concentrations (50, 150 and 250 mg/L). The obtained results suggest that the usage of NPs during tomato plant cultivation had minor impacts on parameters such as total antioxidant activity or the content of selected allergens. Even though the total antioxidant activity was not affected by nano-ZnO, the malondialdehyde activity (MDA) content was notably decreased in fruits under nano-ZnO treatment. The content of lycopene and ß-carotene was significantly affected by the use of nano-ZnO. Moreover, the usage of nano-ZnO significantly increased the total sugar content in fruits treated with nanoparticles via foliar spraying. Based on the obtained results, it can be stated that nano-ZnO, regardless of the method of application, significantly affected tomato fruits which can be beneficial for fruit production.


Subject(s)
Antioxidants , Fruit , Solanum lycopersicum , Zinc Oxide , beta Carotene , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Fruit/chemistry , Fruit/drug effects , Fruit/metabolism , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Antioxidants/chemistry , beta Carotene/metabolism , beta Carotene/analysis , Lycopene , Nanoparticles/chemistry , Malondialdehyde/metabolism , Fertilizers/analysis , Carotenoids/metabolism , Carotenoids/analysis
15.
Turk J Gastroenterol ; 35(7): 523-531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39128087

ABSTRACT

BACKGROUND/AIMS:  This study aimed to investigate the possible positive effects of arbutin in a trinitrobenzene sulfonic acid (TNBS)- induced experimental colitis model, to compare it with mesalazine, which is used in treating inflammatory bowel disease and to observe the effect of its concomitant use. MATERIALS AND METHODS:  Forty Wistar albino species male rats were randomized into 5 groups as control, colitis, colitis+arbutin (Arb), colitis+mesalazine (Mes), and colitis+mesalazine+arbutin (M+A). Proinflammatory cytokines [interleukin (IL)-6, IL-1ß, tumor necrosis factor alpha (TNF-α)] and oxidant/antioxidant parameters [malondialdehyde (MDA), superoxide dismutase inhibition (SOD) inhibition, myeloperoxidase (MPO), and catalase, glutathione peroxidase (GPx)] were processed from the samples. Histopathological evaluation evaluated goblet cell reduction, cellular infiltration, and mucosal loss. RESULTS:  When the treatment groups and the TNBS group were compared, statistical significance was achieved in MDA, MPO, SOD inhibition, GPx values, IL-6, IL-1ß and TNF-α levels. Histopathological evaluation revealed a statistically significant decrease in the mucosal loss value in the group where mesalazine and arbutin were used together compared to the TNBS group. CONCLUSION:  Our study's results elaborated that using arbutin alone or in combination with mesalazine produced positive effects in colitis-induced rats.


Subject(s)
Arbutin , Colitis , Disease Models, Animal , Mesalamine , Peroxidase , Rats, Wistar , Trinitrobenzenesulfonic Acid , Animals , Male , Arbutin/pharmacology , Arbutin/therapeutic use , Rats , Colitis/drug therapy , Colitis/chemically induced , Trinitrobenzenesulfonic Acid/toxicity , Mesalamine/pharmacology , Mesalamine/therapeutic use , Peroxidase/metabolism , Superoxide Dismutase/metabolism , Cytokines/metabolism , Malondialdehyde/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Tumor Necrosis Factor-alpha , Random Allocation , Glutathione Peroxidase/metabolism , Interleukin-1beta/metabolism , Oxidative Stress/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
16.
Pestic Biochem Physiol ; 203: 105997, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084771

ABSTRACT

In this study, the toxicity of the pesticide cypermethrin and the protective properties of royal jelly against this toxicity were investigated using Allium cepa L., a model organism. Toxicity was evaluated using 6 mg/L cypermethrin, while royal jelly (250 mg/L and 500 mg/L) was used in combination with cypermethrin to test the protective effect. To comprehend toxicity and protective impact, growth, genotoxicity, biochemical, comet assay and anatomical parameters were employed. Royal jelly had no harmful effects when applied alone. On the other hand, following exposure to cypermethrin, there was a reduction in weight increase, root elongation, rooting percentage, mitotic index (MI), and chlorophyll a and b. Cypermethrin elevated the frequencies of micronucleus (MN) and chromosomal aberrations (CAs), levels of proline and malondialdehyde (MDA), and the activity rates of the enzymes catalase (CAT) and superoxide dismutase (SOD). A spectral change in the DNA spectrum indicated that the interaction of cypermethrin with DNA was one of the reasons for its genotoxicity, and molecular docking investigations suggested that tubulins, histones, and topoisomerases might also interact with this pesticide. Cypermethrin also triggered some critical meristematic cell damage in the root tissue. At the same time, DNA tail results obtained from the comet assay revealed that cypermethrin caused DNA fragmentation. When royal jelly was applied together with cypermethrin, all negatively affected parameters due to the toxicity of cypermethrin were substantially restored. However, even at the maximum studied dose of 500 mg/L of royal jelly, this restoration did not reach the levels of the control group. Thus, the toxicity of cypermethrin and the protective function of royal jelly against this toxicity in A. cepa, the model organism studied, were determined by using many different approaches. Royal jelly is a reliable, well-known and easily accessible protective functional food candidate against the harmful effects of hazardous substances such as pesticides.


Subject(s)
Fatty Acids , Molecular Docking Simulation , Onions , Pyrethrins , Pyrethrins/toxicity , Onions/drug effects , Fatty Acids/metabolism , DNA Damage/drug effects , Comet Assay , Insecticides/toxicity , Catalase/metabolism , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Chromosome Aberrations/chemically induced , Chromosome Aberrations/drug effects , Plant Roots/drug effects , Plant Roots/growth & development
17.
Chem Biol Interact ; 399: 111138, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38992768

ABSTRACT

Oxidative stress status, as a disruption of redox homeostasis, in the blood sera of Wistar rats caused by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Throughout this study, each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Then, seven days after the last oximes' application, markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, reduced glutathione, GSH, and oxidized glutathione, GSSG), were determined. Oxidative stress parameters, MDA and AOPP were significantly highest in the K048-, K074- and K075-treated groups (p < 0.001). The activity of CAT was significantly elevated in the obidoxime-treated group (p < 0.05), while treatment with K027, K048, and K074 induced high elevation in SOD levels (p < 0.01, p < 0.001). Interestingly, the activity of GSH in each oxime-treated group was significantly elevated. Unlike, treatment with obidoxime caused elevation in GSSG levels (p < 0.01). As a continuation of our previously published data, these results assure that applied oximes following subacute treatment ameliorated the oxidative status and further adverse systemic toxic effects in rats.


Subject(s)
Biomarkers , Glutathione , Oxidative Stress , Oximes , Rats, Wistar , Animals , Oxidative Stress/drug effects , Oximes/pharmacology , Biomarkers/blood , Rats , Male , Glutathione/blood , Glutathione/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/blood , Lipid Peroxidation/drug effects , Catalase/metabolism , Catalase/blood , Malondialdehyde/blood , Malondialdehyde/metabolism , Cholinesterase Reactivators/pharmacology , Advanced Oxidation Protein Products/blood , Antioxidants/metabolism , Antioxidants/pharmacology
18.
Funct Plant Biol ; 512024 Jul.
Article in English | MEDLINE | ID: mdl-39008621

ABSTRACT

One strategy to improve olive (Olea europaea ) tree drought tolerance is through the symbiosis of arbuscular mycorrhizal fungi (AMF), which helps alleviate water deficit through a combination of morphophysiological effects. Cuttings of olive varieties Arbequina (A) and Barnea (B) were grown with (+AMF) or without (-AMF) inoculum in the olive grove rhizosphere soil. One year after establishment, pots were exposed to four different water regimes: (1) control (100% of crop evapotranspiration); (2) short-period drought (20days); (3) long-period drought (25days); and (4) rewatering (R). To evaluate the influence of AMF on tolerance to water stress, stem water potential, stomatal conductance and the biomarkers for water deficit malondialdehyde, proline, soluble sugars, phenols, and flavonoids were evaluated at the end of the irrigation regimes. Stem water potential showed higher values in A(+) and B(+) in all water conditions, and the opposite was true for stomatal conductance. For proline and soluble sugars, the stem water potential trend is repeated with some exceptions. AMF inoculum spore communities from A(+ and -) and B(+ and -) were characterised at the morphospecies level in terms of richness and abundance. Certain morphospecies were identified as potential drought indicators. These results highlight that the benefits of symbiotic relationships between olive and native AMF can help to mitigate the effects of abiotic stress in soils affected by drought.


Subject(s)
Mycorrhizae , Olea , Rhizosphere , Water , Olea/microbiology , Mycorrhizae/physiology , Water/metabolism , Droughts , Proline/metabolism , Symbiosis , Plant Stomata/physiology , Plant Stems/microbiology , Plant Roots/microbiology , Malondialdehyde/metabolism
19.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961333

ABSTRACT

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Subject(s)
Antioxidants , Apoptosis , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Ginsenosides , Myocytes, Cardiac , Oxidative Stress , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Male , Oxidative Stress/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/drug effects , Ginsenosides/pharmacology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/etiology , Apoptosis/drug effects , Antioxidants/pharmacology , Phosphorylation , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocardium/pathology , Myocardium/metabolism , Insulin , Malondialdehyde/metabolism
20.
J Cell Mol Med ; 28(14): e18565, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39044287

ABSTRACT

Cisplatin (CIS) is a platinum-derived chemotherapeutic agent commonly utilized in the treatment of various malignant tumours. However, anticancer doses of the drug cause serious damage to the brain. This study aimed to determine the potential protective effects of tangeretin, which has antioxidant and anti-inflammatory properties, in cisplatin-induced neurotoxicity on BALB/c mice brains. Male BALB/c mice were randomized and separated into four groups. Tangeretin was given for 10 days by gavage. CIS was injected as a single dose of 10 mg/kg intraperitoneally (ip) on the 10th day. Brain tissues, malondialdehyde (MDA), total glutathione (tGSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) and nitric oxide (NO) levels were measured to determine oxidative damage and myeloperoxidase, tumour necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), IL-6 and IL-10 were measured to determine inflammatory activity. In addition, 8-OHdG and caspase-3 were analysed by immunofluorescence methods. While CIS administration remarkably elevated reactive oxygen species, MDA, and NO levels in brain tissue compared to the control, tGSH, GPx, SOD and CAT levels were significantly decreased. Also, it has been detected that TNF-α, IL-1ß and IL-6 obtained in CIS-treated groups increased as well as IL-10 decreased, thereby elevating the inflammatory response. In addition, 8-OHdG and caspase-3 immunoreactivity in neurons increased with CIS administration. Treatment with tangeretin ameliorated the deterioration in oxidant/antioxidant status, overpowered neuroinflammation and ameliorated neurotoxicity-induced apoptosis. This study shows that tangeretin has beneficial effects on CIS-induced neurodegeneration. Possible mechanisms underlying these beneficial effects include the antioxidant and anti-inflammatory properties of tangeretin.


Subject(s)
Brain , Cisplatin , Flavones , Mice, Inbred BALB C , Oxidative Stress , Animals , Cisplatin/adverse effects , Cisplatin/pharmacology , Male , Oxidative Stress/drug effects , Brain/metabolism , Brain/drug effects , Brain/pathology , Flavones/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Mice , Rats , Reactive Oxygen Species/metabolism , Anti-Inflammatory Agents/pharmacology , Malondialdehyde/metabolism , Glutathione Peroxidase/metabolism , Nitric Oxide/metabolism , Superoxide Dismutase/metabolism , Cytokines/metabolism , Glutathione/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL