Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 683
Filter
1.
J Agric Food Chem ; 72(33): 18649-18657, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39109746

ABSTRACT

Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose to trehalose, playing a vital role in trehalose production. Understanding the catalytic mechanism of TreS is crucial for optimizing the enzyme activity and enhancing its suitability for industrial applications. Here, we report the crystal structures of both the wild type and the E324D mutant of Deinococcus radiodurans trehalose synthase in complex with the trehalose analogue, validoxylamine A. By employing structure-guided mutagenesis, we identified N253, E320, and E324 as crucial residues within the +1 subsite for isomerase activity. Based on these complex structures, we propose the catalytic mechanism underlying the reversible interconversion of maltose to trehalose. These findings significantly advance our comprehension of the reaction mechanism of TreS.


Subject(s)
Bacterial Proteins , Deinococcus , Glucosyltransferases , Maltose , Trehalose , Glucosyltransferases/genetics , Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Deinococcus/enzymology , Deinococcus/genetics , Deinococcus/chemistry , Trehalose/metabolism , Trehalose/chemistry , Maltose/metabolism , Maltose/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Mutation
2.
Carbohydr Res ; 542: 109202, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38954850

ABSTRACT

Alternansucrase, a glucosyltransferase, is currently used to produce slowly digestible alternan oligosaccharides or maltooligosaccharides from sucrose. These oligosaccharides are popular for food fortification to lower postprandial glucose levels. This study aimed to explore the enzymatic reaction of alternansucrase in simulated in vitro gastric reaction conditions. Under the studied conditions, SucroSEB (a model enzyme for alternansucrase) hydrolyzed the sucrose and transglycosylated the glucose to produce glucans, both in the absence and presence of acceptors. The preference of the acceptor was maltose˃ raffinose˃ lactose. The rate of sucrose hydrolysis was significantly higher in the presence of maltose (p = 0.024). The glucans formed during the reaction included oligomers (DP 3-10) and polymers (DP ≥ 11), both of which increased over time. These glucans contained α-1,3 and α-1,6 glycosidic linkages, confirmed by 1H and 13C NMR. They were slowly and partially digestible in the presence of rat intestinal extract in contrast to the complete and rapid digestion of starch. The glucans formed after a longer gastric reaction time exhibited higher dietary fiber potential (19.145 ± 4.77 %; 60 min) compared to those formed during the initial phase (2.765 ± 0.19 %; 15 min). Overall, this study demonstrated the efficacy of SucroSEB in converting sucrose to slowly and partially digestible glucans under simulated in vitro gastric conditions.


Subject(s)
Sucrose , Sucrose/metabolism , Sucrose/chemistry , Animals , Rats , Hydrolysis , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Biocatalysis , Maltose/metabolism , Maltose/chemistry , Glucans/chemistry , Glucans/metabolism , Stomach/enzymology
3.
Int J Biol Macromol ; 276(Pt 1): 133778, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992541

ABSTRACT

Pickering emulsions with good freeze-thaw stability are essential in frozen food applications. This study developed a high freeze-thaw stabilized soy protein isolate (SPI)-maltose (M) Pickering emulsion and applied it to frozen doughs to investigate and reveal its impacts on the processing properties of the frozen dough. The results showed that after the freeze-thaw cycle, with a volume ratio of 1:2 of SPI to M, the appropriate amount of M changed the structure of SPI. This resulted in the Pickering emulsion prepared by the SPI exhibiting the least droplet coalescence and the best freeze-thaw stability. The results of dough rheological properties, textural properties, and binding capacity with water demonstrated that Pickering emulsions effectively inhibited the loss of gluten protein network structure in the dough after freeze treatment and increased the binding capacity of gluten proteins with starch and water in the dough. The best results were obtained with the incorporation of 3 % SPI-M high freeze-thaw stability, where the amount of bound water following three freeze-thaw cycles was 4.27 times higher than in doughs without Pickering emulsion. Overall, this study is significant for enhancing the freeze-thaw stability of Pickering emulsions stabilized by proteins and providing a new application route for Pickering emulsions.


Subject(s)
Emulsions , Freezing , Maltose , Soybean Proteins , Emulsions/chemistry , Soybean Proteins/chemistry , Maltose/chemistry , Rheology , Water/chemistry , Flour , Glutens/chemistry
4.
Mol Pharm ; 21(7): 3634-3642, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38805365

ABSTRACT

Drying protein-based drugs, usually via lyophilization, can facilitate storage at ambient temperature and improve accessibility but many proteins cannot withstand drying and must be formulated with protective additives called excipients. However, mechanisms of protection are poorly understood, precluding rational formulation design. To better understand dry proteins and their protection, we examine Escherichia coli adenylate kinase (AdK) lyophilized alone and with the additives trehalose, maltose, bovine serum albumin, cytosolic abundant heat soluble protein D, histidine, and arginine. We apply liquid-observed vapor exchange NMR to interrogate the residue-level structure in the presence and absence of additives. We pair these observations with differential scanning calorimetry data of lyophilized samples and AdK activity assays with and without heating. We show that the amino acids do not preserve the native structure as well as sugars or proteins and that after heating the most stable additives protect activity best.


Subject(s)
Adenylate Kinase , Escherichia coli , Freeze Drying , Trehalose , Freeze Drying/methods , Adenylate Kinase/metabolism , Trehalose/chemistry , Serum Albumin, Bovine/chemistry , Excipients/chemistry , Calorimetry, Differential Scanning , Maltose/chemistry , Histidine/chemistry , Arginine/chemistry , Magnetic Resonance Spectroscopy
5.
Food Chem ; 449: 139232, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38581794

ABSTRACT

To effectively inhibit the retrogradation of staple foods, the effects of maltotetraose-forming amylase(G4-amylase) on the short and long-term retrogradation of different staple starches such as rice starch (RS), wheat starch (WS), potato starch (PS) were studied. The results indicated that G4-amylase decreased the content of amylose. Amylose contents (21.09%) of WSG4 were higher than that (14.82%) of RSG4 and (13.13%) of PSG4. WS had the most obvious change in the chain length distribution of amylopectin. A chains decreased by 18.99% and the B1 chains decreased by 12.08% after G4-amylase treatment. Compared to RS (662 cP) and WS (693 cP), the setback viscosity of RSG4 (338 cP) and WSG4 (385 cP) decreased. Compared to RS (0.41), WS (0.45), and PS (0.51), the long-term retrogradation rate of RSG4 (0.33), WSG4 (0.31), and PSG4 (0.38) significantly reduced. It indicated that G4-amylase significantly inhibited the long-term retrogradation of WS, followed by RS and PS.


Subject(s)
Amylases , Maltose/analogs & derivatives , Oryza , Solanum tuberosum , Starch , Triticum , Starch/chemistry , Amylases/chemistry , Amylases/metabolism , Triticum/chemistry , Viscosity , Solanum tuberosum/chemistry , Oryza/chemistry , Amylose/chemistry , Amylose/analysis , Maltose/chemistry , Biocatalysis
6.
Proteins ; 92(8): 923-932, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38572606

ABSTRACT

Genetically encoded fluorescent biosensors (GEFBs) proved to be reliable tracers for many metabolites and cellular processes. In the simplest case, a fluorescent protein (FP) is genetically fused to a sensing protein which undergoes a conformational change upon ligand binding. This drives a rearrangement in the chromophore environment and changes the spectral properties of the FP. Structural determinants of successful biosensors are revealed only in hindsight when the crystal structures of both ligand-bound and ligand-free forms are available. This makes the development of new biosensors for desired analytes a long trial-and-error process. In the current study, we conducted µs-long all atom molecular dynamics (MD) simulations of a maltose biosensor in both the apo (dark) and holo (bright) forms. We performed detailed hydrogen bond occupancy analyses to shed light on the mechanism of ligand induced conformational change in the sensor protein and its allosteric effect on the chromophore environment. We find that two strong indicators for distinguishing bright and dark states of biosensors are due to substantial changes in hydrogen bond dynamics in the system and solvent accessibility of the chromophore.


Subject(s)
Biosensing Techniques , Hydrogen Bonding , Maltose , Molecular Dynamics Simulation , Biosensing Techniques/methods , Maltose/chemistry , Maltose/metabolism , Allosteric Regulation , Ligands , Fluorescence , Protein Binding , Protein Conformation
7.
Mol Cell Proteomics ; 23(4): 100745, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447790

ABSTRACT

In recent years, there has been a growing demand for low-input proteomics, particularly in the context of single-cell proteomics (SCP). In this study, we have developed a lauryl maltose neopentyl glycol (LMNG)-assisted sample preparation (LASP) method. This method effectively reduces protein and peptide loss in samples by incorporating LMNG, a surfactant, into the digestion solution and subsequently removing the LMNG simply via reversed phase solid-phase extraction. The advantage of removing LMNG during sample preparation for general proteomic analysis is the prevention of mass spectrometry (MS) contamination. When we applied the LASP method to the low-input SP3 method and on-bead digestion in coimmunoprecipitation-MS, we observed a significant improvement in the recovery of the digested peptides. Furthermore, we have established a simple and easy sample preparation method for SCP based on the LASP method and identified a median of 1175 proteins from a single HEK239F cell using liquid chromatography (LC)-MS/MS with a throughput of 80 samples per day.


Subject(s)
Analytic Sample Preparation Methods , Glycols , Maltose , Proteomics , Single-Cell Analysis , Maltose/chemistry , Glycols/chemistry , Single-Cell Analysis/methods , Proteomics/methods , Humans , HEK293 Cells , Liquid Chromatography-Mass Spectrometry , Immunoprecipitation
8.
Biophys J ; 123(14): 2063-2075, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38350449

ABSTRACT

With the great progress on determining protein structures over the last decade comes a renewed appreciation that structures must be combined with dynamics and energetics to understand function. Fluorescence spectroscopy, specifically Förster resonance energy transfer (FRET), provides a great window into dynamics and energetics due to its application at physiological temperatures and ability to measure dynamics on the ångström scale. We have recently advanced transition metal FRET (tmFRET) to study allosteric regulation of maltose binding protein and have reported measurements of maltose-dependent distance changes with an accuracy of ∼1.5 Å. When paired with the noncanonical amino acid Acd as a donor, our previous tmFRET acceptors were useful over a working distance of 10 to 20 Å. Here, we use cysteine-reactive bipyridyl and phenanthroline compounds as chelators for Fe2+ and Ru2+ to produce novel tmFRET acceptors to expand the working distance to as long as 50 Å, while preserving our ability to resolve even small maltose-dependent changes in distance. We compare our measured FRET efficiencies to predictions based on models using rotameric ensembles of the donors and acceptors to demonstrate that steady-state measurements of tmFRET with our new probes have unprecedented ability to measure conformational rearrangements under physiological conditions.


Subject(s)
Fluorescence Resonance Energy Transfer , Phenanthrolines , Phenanthrolines/chemistry , Ligands , 2,2'-Dipyridyl/chemistry , 2,2'-Dipyridyl/analogs & derivatives , Maltose/chemistry , Maltose/metabolism , Maltose/analogs & derivatives , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/metabolism
9.
J Biomol NMR ; 78(1): 61-72, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38114873

ABSTRACT

Reducing sugars can spontaneously react with free amines in protein side chains leading to posttranslational modifications (PTMs) called glycation. In contrast to glycosylation, glycation is a non-enzymatic modification with consequences on the overall charge, solubility, aggregation susceptibility and functionality of a protein. Glycation is a critical quality attribute of therapeutic monoclonal antibodies. In addition to glucose, also disaccharides like maltose can form glycation products. We present here a detailed NMR analysis of the Amadori product formed between proteins and maltose. For better comparison, data collection was done under denaturing conditions using 7 M urea-d4 in D2O. The here presented correlation patterns serve as a signature and can be used to identify maltose-based glycation in any protein that can be denatured. In addition to the model protein BSA, which can be readily glycated, we present data of the biotherapeutic abatacept containing maltose in its formulation buffer. With this contribution, we demonstrate that NMR spectroscopy is an independent method for detecting maltose-based glycation, that is suited for cross-validation with other methods.


Subject(s)
Maillard Reaction , Maltose , Maltose/chemistry , Nuclear Magnetic Resonance, Biomolecular , Proteins/metabolism , Magnetic Resonance Spectroscopy
10.
Arch Biochem Biophys ; 740: 109584, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37001749

ABSTRACT

The lactate dehydrogenase from rabbit skeletal muscle (rbLDH) is a tetrameric enzyme, known to undergo dissociation when exposed to acidic pH conditions. Moreover, it should be mentioned that this dissociation translates into a pronounced loss of enzyme activity. Notably, among the compounds able to stabilize proteins and enzymes, the disaccharide trehalose represents an outperformer. In particular, trehalose was shown to efficiently counteract quite a number of physical and chemical agents inducing protein denaturation. However, no information is available on the effect, if any, exerted by trehalose against the dissociation of protein oligomers. Accordingly, we thought it of interest to investigate whether this disaccharide is competent in preventing the dissociation of rbLDH induced by acidic pH conditions. Further, we compared the action of trehalose with the effects triggered by maltose and cellobiose. Surprisingly, both these disaccharides enhanced the dissociation of rbLDH, with maltose being responsible for a major effect when compared to cellobiose. On the contrary, trehalose was effective in preventing enzyme dissociation, as revealed by activity assays and by Dynamic Light Scattering (DLS) experiments. Moreover, we detected a significant decrease of both K0.5 and Vmax when the rbLDH activity was tested (at pH 7.5 and 6.5) as a function of pyruvate concentration in the presence of trehalose. Further, we found that trehalose induces a remarkable increase of Vmax when the enzyme is exposed to pH 5. Overall, our observations suggest that trehalose triggers conformational rearrangements of tetrameric rbLDH mirrored by resistance to dissociation and peculiar catalytic features.


Subject(s)
Maltose , Trehalose , Animals , Rabbits , Trehalose/chemistry , Maltose/chemistry , Maltose/metabolism , Cellobiose , L-Lactate Dehydrogenase/metabolism , Disaccharides/pharmacology , Disaccharides/metabolism , Hydrogen-Ion Concentration
11.
J Mol Model ; 28(8): 232, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35882698

ABSTRACT

Current biopharmaceutical drugs are mainly a class of peptides or proteins that play an essential role in the treatment of many diseases. Such peptides/proteins are usually thermally unstable and may lose their bioactivity when exposed to ambient conditions. Therefore, they are not suitable for long-term storage. Lyophilisation is the most common method to prolong shelf life of solid peptide/protein drugs; however, the freeze-drying process can lead to irreversible damage. In the present study, human interferon-alpha 2a (IFN-α2a) was selected as a model protein drug; four disaccharides (ß-lactose, ß-maltose, sucrose, and trehalose) were selected as bioactive protectants. We investigated the effects of different protectants on IFN-α2a under various ambient conditions (vacuum, dry state, and aqueous solution) using replica exchange molecular dynamics simulation. The protective effect of ß-maltose on IFN-α2a was the highest in aqueous solution and dry state, ß-lactose showed a poor protective effect in all three conditions, the performance of sucrose was good in all conditions, and trehalose showed a better protective effect under vacuum conditions and in aqueous solution. Disaccharides form H-bonds with water, thereby preventing water from the tertiary structure of proteins. Trehalose forms strong H-bonds with water which explains its extraordinary stability.


Subject(s)
Maltose , Trehalose , Disaccharides/chemistry , Disaccharides/pharmacology , Humans , Lactose/chemistry , Maltose/chemistry , Molecular Dynamics Simulation , Sucrose/chemistry , Trehalose/chemistry , Trehalose/pharmacology , Water/chemistry
12.
Nanoscale ; 14(12): 4654-4670, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35262128

ABSTRACT

Anti-(ds)-DNA antibodies are the serological hallmark of Systemic Lupus Erythematosus (SLE). They assemble in the bloodstream with (ds)-DNA, forming immunocomplexes, which spread all over the body causing, among the other symptoms, lupic glomerulonephritis. Pathological manifestations of the disease may be reduced by destabilizing or inhibiting the formation of the immunocomplexes. In this respect, glycodendrimers showed peculiar interacting abilities towards this kind of biomolecule. Various generations of open-shell maltose-decorated poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) dendrimers and two oligopeptides with different polyethylene glycol units were synthesized and characterized, and then tested for their anti-SLE activity. The activity of glycodendrimers and oligopeptides was evaluated in human plasma from patients with SLE, compared to healthy plasma, by means of an enzyme-linked immunosorbent assay (ELISA), and electron paramagnetic resonance (EPR) characterization using spin-label and spin-probe techniques. Different strategies for the immunocomplex formation were tested. The results show that both kinds of glycodendrimers and oligopeptides inhibited the formation of immunocomplexes. Also, a partial breakdown of preformed immunocomplexes was observed. Both ELISA and EPR analyses indicated a better activity of glycodendrimers compared to oligopeptides, the 3rd generation PPI dendrimer being the most promising against SLE. This study highlights the possibility to develop a new class of dendritic therapeutics for the treatment of Lupus in pre-clinical studies.


Subject(s)
Dendrimers , Lupus Erythematosus, Systemic , DNA , Dendrimers/chemistry , Dendrimers/pharmacology , Enzyme-Linked Immunosorbent Assay , Humans , Lupus Erythematosus, Systemic/drug therapy , Maltose/chemistry , Maltose/pharmacology , Oligopeptides/pharmacology
13.
Carbohydr Polym ; 279: 118986, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34980347

ABSTRACT

Isomaltodextrin (IMD) is a novel dietary fiber enzymatically produced by reconstructing the molecular chain structure of starch using glycosyltransferases. In this study, the specific prebiotic effects of α-1,6 linear and α-1,2 or α-1,3 branched IMDs with different molecular weights (Mw) on human intestinal bacteria were investigated by pure culture of single strains and mixed fermentation of human fecal microflora in vitro. The results showed that α-1,6 linear IMDs markedly promoted beneficial Bifidobacterium and Lactobacillus in both pure culture and mixed fermentation. α-1,3 branching exhibited similar selectivity with α-1,6 linkage but yielded more butyrate in pure cultures. In contrast, IMDs containing α-1,2 branches were utilized efficiently only during mixed fermentation, which was speculated to result from metabolic cross-feeding. Regarding Mw, IMDs with lower Mw showed better prebiotic effects in pure cultures but no differences in mixed culture. These findings provide a theoretical basis for their application as functional foods.


Subject(s)
Dextrins/pharmacology , Gastrointestinal Microbiome/drug effects , Glycosides/pharmacology , Maltose/analogs & derivatives , Prebiotics , Acetates/metabolism , Bacteria/drug effects , Bacteria/genetics , Bacteria/growth & development , Bacteria/metabolism , Dextrins/chemistry , Feces/microbiology , Fermentation , Gastrointestinal Microbiome/genetics , Glycosides/chemistry , Humans , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Maltose/chemistry , Maltose/pharmacology , Molecular Weight
14.
J Phys Chem B ; 126(3): 708-715, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35040322

ABSTRACT

Alteration of the hydrogen-bond (H-bond) network by trehalose is acknowledged as a bioprotective agent. However, most studies exploring the hydration superiority of the trehalose structure are limited structure are limited by the computational cost or a narrow-range spectrum. In the present study, the structural and dynamical behaviors of the H-bond network of trehalose and maltose solutions were observed and compared with a broadband dielectric spectrum (100 MHz-18 THz) to investigate the influence of the trehalose structure on the bioprotective function. From the relaxation time, the reorientation cooperativity, resonant frequency, and damping constant of water-water vibration, the symmetric structure of trehalose allowed a more significant H-bond strengthening effect and homogeneous aqueous environment. In contrast, the difference in the hydration number between trehalose and maltose was negligible. Thus, the enhanced H-bond strengthening effect and homogeneous aqueous environment owing to the symmetric structure are the essential factors that contribute to the remarkable bioprotective effect of trehalose.


Subject(s)
Trehalose , Water , Hydrogen Bonding , Maltose/chemistry , Trehalose/chemistry , Water/chemistry
15.
Biotechnol Appl Biochem ; 69(5): 2240-2248, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34775631

ABSTRACT

Maltogenic amylase CoMA from Corallococcus sp. strain EGB catalyzes the hydrolysis and transglycosylation of maltooligosaccharides and soluble starch into maltose, the sole hydrolysate. This process yields pure maltose with potentially wide applications. Here, we identified and evaluated the role of phenylalanine 314 (F314), a key amino acid located near the active center, in the catalytic activities of the CoMA. Site-directed mutagenesis analysis showed that the activity of a F314L mutant on potato starch substrate decreased to 26% of that of wild-type protein. Compared with the wild-type, F314L exhibited similar substrate specificity, hydrolysis pattern, pH, and temperature requirements. Circular dichroism spectrum data showed that the F314L mutation did not affect the structure of the folded protein. In addition, kinetic analysis demonstrated that F314L exhibited an increased Km value with lower substrate affinity. Homology modeling showed that the benzene ring structure of F314L was involved in π-π conjugation, which might potentially affect the affinity of CoMA toward starch. Taken together, these data demonstrated that F314 is essential for the hydrolytic activity of the CoMA from Corallococcus sp. strain EGB.


Subject(s)
Maltose , Myxococcales , Humans , Maltose/chemistry , Kinetics , Phenylalanine , Coma , Myxococcales/chemistry , Myxococcales/genetics , Myxococcales/metabolism , Hydrolysis , Starch/chemistry , Substrate Specificity
16.
Sci Rep ; 11(1): 18368, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526539

ABSTRACT

Amyloid plaques composed of Aß amyloid peptides and neurofibrillary tangles are a pathological hallmark of Alzheimer Disease. In situ identification of early-stage amyloid aggregates in Alzheimer's disease is relevant for their importance as potential targets for effective drugs. Synchrotron-based infrared imaging is here used to identify early-stage oligomeric/granular aggregated amyloid species in situ in the brain of APP/PS1 transgenic mice for the first time. Also, APP/PS1 mice show fibrillary aggregates at 6 and 12 months. A significant decreased burden of early-stage aggregates and fibrillary aggregates is obtained following treatment with poly(propylene imine) dendrimers with histidine-maltose shell (a neurodegenerative protector) in 6-month-old APP/PS1 mice, thus demonstrating their putative therapeutic properties of in AD models. Identification, localization, and characterization using infrared imaging of these non-fibrillary species in the cerebral cortex at early stages of AD progression in transgenic mice point to their relevance as putative pharmacological targets. No less important, early detection of these structures may be useful in the search for markers for non-invasive diagnostic techniques.


Subject(s)
Alzheimer Disease/drug therapy , Dendrimers/therapeutic use , Polypropylenes/therapeutic use , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Dendrimers/administration & dosage , Histidine/chemistry , Maltose/chemistry , Mice , Mice, Inbred C57BL , Polypropylenes/administration & dosage , Spectroscopy, Fourier Transform Infrared
17.
Drug Deliv ; 28(1): 1890-1902, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34519225

ABSTRACT

Although Fraxinellone (Frax) isolated from Dictamnus albus L. possessed excellent anti-hepatic fibrosis activity, oral administration of Frax suffered from the inefficient therapeutic outcome in vivo due to negligible oral absorption. At present, the oral formulation of Frax is rarely exploited. For rational formulation design, we evaluated preabsorption risks of Frax and found that Frax was rather stable while poorly dissolved in the gastrointestinal tract (78.88 µg/mL), which predominantly limited its oral absorption. Further solubility test revealed the outstanding capacity of cyclodextrin derivatives (CDs) to solubilize Frax (6.8-12.8 mg/mL). This led us to study the inclusion complexes of Frax with a series of CDs and holistically explore their drug delivery performance. Characterization techniques involving 1H-NMR, FT-IR, DSC, PXRD, and molecular docking confirmed the most stable binding interactions when Frax complexed with 6-O-α-D-maltosyl-ß-cyclodextrin (G2-ß-CD-Frax). Notably, G2-ß-CD-Frax exhibited the highest solubilizing capacity, fast dissolution rate, and superior Caco-2 cell internalization with no obvious toxicity. Pharmacokinetic studies demonstrated markedly higher oral bioavailability of G2-ß-CD-Frax (5.8-fold that of free drug) than other Frax-CDs. Further, long-term administration of G2-ß-CD-Frax (5 mg/kg) efficiently inhibited CCl4-induced hepatic fibrosis in the mouse without inducing any toxicity. Our results will inspire the continued advancement of optimal oral Frax formulations for anti-fibrotic therapy.


Subject(s)
Benzofurans/pharmacology , Cyclodextrins/chemistry , Drug Compounding/methods , Liver Cirrhosis/drug therapy , Maltose/analogs & derivatives , Animals , Animals, Outbred Strains , Benzofurans/administration & dosage , Benzofurans/pharmacokinetics , Caco-2 Cells , Cell Survival/drug effects , Chemistry, Pharmaceutical , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Liberation , Drug Stability , Humans , Male , Maltose/chemistry , Mice , Rats , Rats, Wistar , Solubility
18.
ACS Chem Biol ; 16(9): 1709-1720, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34431656

ABSTRACT

Motivated by the growing importance of single fluorescent protein biosensors (SFPBs) in biological research and the difficulty in rationally engineering these tools, we sought to increase the rate at which SFPB designs can be optimized. SFPBs generally consist of three components: a circularly permuted fluorescent protein, a ligand-binding domain, and linkers connecting the two domains. In the absence of predictive methods for biosensor engineering, most designs combining these three components will fail to produce allosteric coupling between ligand binding and fluorescence emission. While methods to construct diverse libraries with variation in the site of GFP insertion and linker sequences have been developed, the remaining bottleneck is the ability to test these libraries for functional biosensors. We address this challenge by applying a massively parallel assay termed "sort-seq," which combines binned fluorescence-activated cell sorting, next-generation sequencing, and maximum likelihood estimation to quantify the brightness and dynamic range for many biosensor variants in parallel. We applied this method to two common biosensor optimization tasks: the choice of insertion site and optimization of linker sequences. The sort-seq assay applied to a maltose-binding protein domain-insertion library not only identified previously described high-dynamic-range variants but also discovered new functional insertion sites with diverse properties. A sort-seq assay performed on a pyruvate biosensor linker library expressed in mammalian cell culture identified linker variants with substantially improved dynamic range. Machine learning models trained on the resulting data can predict dynamic range from linker sequences. This high-throughput approach will accelerate the design and optimization of SFPBs, expanding the biosensor toolbox.


Subject(s)
Green Fluorescent Proteins/chemistry , Mutant Proteins/chemistry , Single Molecule Imaging/methods , Amino Acid Sequence , Escherichia coli/genetics , Flow Cytometry/methods , Gene Library , Green Fluorescent Proteins/genetics , High-Throughput Screening Assays , Machine Learning , Maltose/chemistry , Mutant Proteins/genetics , Protein Binding , Protein Domains , Pyruvic Acid/chemistry
19.
Acta Crystallogr C Struct Chem ; 77(Pt 8): 490-495, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34350847

ABSTRACT

Isopropyl 3-deoxy-α-D-ribo-hexopyranoside (isopropyl 3-deoxy-α-D-glucopyranoside), C9H18O5, (I), crystallizes from a methanol-ethyl acetate solvent mixture at room temperature in a 4C1 chair conformation that is slightly distorted towards the C5SC1 twist-boat form. A comparison of the structural parameters in (I), methyl α-D-glucopyranoside, (II), α-D-glucopyranosyl-(1→4)-D-glucitol (maltitol), (III), and 3-deoxy-α-D-ribo-hexopyranose (3-deoxy-α-D-glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)-(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I)c-(IV)c. Exocyclic hydroxymethyl groups adopt the gauche-gauche (gg) conformation (H5 anti to O6) in (I) and (III), and the gauche-trans (gt) conformation (C4 anti to O6) in (II) and (IV). The O-glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing ß-(1→4) linkages.


Subject(s)
Glucosides/chemistry , Maltose/analogs & derivatives , Sugar Alcohols/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Maltose/chemistry , Molecular Conformation
20.
ACS Appl Mater Interfaces ; 13(29): 34597-34604, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34279076

ABSTRACT

As constructing hardware technology is widely regarded as an important step toward realizing brain-like computers and artificial intelligence systems, the development of artificial synaptic electronics that can simulate biological synaptic functions is an emerging research field. Among the various types of artificial synapses, synaptic transistors using an electrolyte as the gate electrode have been implemented as the high capacitance of the electrolyte increases the driving current and lowers operating voltages. Here, transistors using maltose-ascorbic acid as the proton-conducting electrolyte are proposed. A novel electrolyte composed of maltose and ascorbic acid, both of which are biocompatible, enables the migration of protons. This allows the channel conductance of the transistors to be modulated with the gate input pulse voltage, and fundamental synaptic functions including excitatory postsynaptic current, paired-pulse facilitation, long-term potentiation, and long-term depression can be successfully emulated. Furthermore, the maltose-ascorbic acid electrolyte (MAE)-gated synaptic transistors exhibit high mechanical endurance, with near-linear conductivity modulation and repeatability after 1000 bending cycles under a curvature radius of 5 mm. Benefitting from its excellent biodegradability and biocompatibility, the proposed MAE has potential applications in environmentally friendly, economical, and high-performance neuromorphic electronics, which can be further applied to dermal electronics and implantable electronics in the future.


Subject(s)
Ascorbic Acid/chemistry , Biocompatible Materials/chemistry , Computers, Molecular , Electrolytes/chemistry , Maltose/chemistry , Synapses , Animals , Biomimetics , Electric Conductivity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL