Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.581
Filter
1.
Plant Cell Rep ; 43(7): 187, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958739

ABSTRACT

KEY MESSAGE: MdERF023 is a transcription factor that can reduce salt tolerance by inhibiting ABA signaling and Na+/H+ homeostasis. Salt stress is one of the principal environmental stresses limiting the growth and productivity of apple (Malus × domestica). The APETALA2/ethylene response factor (AP2/ERF) family plays key roles in plant growth and various stress responses; however, the regulatory mechanism involved has not been fully elucidated. In the present study, we identified an AP2/ERF transcription factor (TF), MdERF023, which plays a negative role in apple salt tolerance. Stable overexpression of MdERF023 in apple plants and calli significantly decreased salt tolerance. Biochemical and molecular analyses revealed that MdERF023 directly binds to the promoter of MdMYB44-like, a positive modulator of ABA signaling-mediated salt tolerance, and suppresses its transcription. In addition, MdERF023 downregulated the transcription of MdSOS2 and MdAKT1, thereby reducing the Na+ expulsion, K+ absorption, and salt tolerance of apple plants. Taken together, these results suggest that MdERF023 reduces apple salt tolerance by inhibiting ABA signaling and ion transport, and that it could be used as a potential target for breeding new varieties of salt-tolerant apple plants via genetic engineering.


Subject(s)
Abscisic Acid , Gene Expression Regulation, Plant , Malus , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Signal Transduction , Sodium , Transcription Factors , Malus/genetics , Malus/metabolism , Malus/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Transcription Factors/metabolism , Transcription Factors/genetics , Salt Tolerance/genetics , Sodium/metabolism , Promoter Regions, Genetic/genetics
2.
Georgian Med News ; (349): 126-136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38963216

ABSTRACT

The present study was dealing with a Polyphenolic compound known as Phloretin. Phloretin (Ph), a dihydrochalcone, was determined qualitatively and quantitatively in different aerial parts for Iraqi Malus domestica (apple), cv." Ibrahimi" included leaves, petioles, stems, fruit pulp, and peels extracts. Leaves represented a rich source of Ph, which was separated and purified by preparative HPLC. The chemical structure of the isolated Phloretin (Ph2) was confirmed using various analytical characterization techniques: TLC, HPLC, FTIR, Melting point, CHN elemental analyses, 1H-NMR, and 13C-NMR). The scavenging efficacy of Ph2 by DPPH assay was employed. Cytotoxic effect was assessed by MTT assay against cancer cell lines including (Hep G2/ human hepatocyte carcinoma, A549/ human lung adenocarcinoma, SW480 / human colon cancer cell, and AGS /adenocarcinoma of the stomach), beside the non-cancerous cell line (HEK 293). About 1.404 g Ph2 was obtained from 18.146 g apple leaves (7.7%). The DPPH and MTT assay results demonstrated that the purified Ph2 possessed potent antioxidant activity with significant anticancer effects on all cancer cell lines. Data suggested that purified Ph2 from Iraqi apple leaves has potential antioxidant, cytotoxicity, which may benefit in human health.


Subject(s)
Malus , Phloretin , Plant Leaves , Humans , Malus/chemistry , Plant Leaves/chemistry , Phloretin/pharmacology , Phloretin/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , HEK293 Cells , A549 Cells , Cell Line, Tumor , Hep G2 Cells , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Iraq
3.
J Texture Stud ; 55(4): e12852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952166

ABSTRACT

The development of thickening powders for the management of dysphagia is imperative due to the rapid growth of aging population and prevalence of the dysphagia. One promising thickening agent that can be used to formulate dysphagia diets is basil seed mucilage (BSM). This work investigates the effects of dispersing media, including water, milk, skim milk, and apple juice, on the rheological and tribological properties of the BSM-thickened liquids. Shear rheology results revealed that the thickening ability of BSM in these media in ascending order is milk < skim milk ≈ apple juice < water. On the other hand, extensional rheology demonstrated that the longest filament breakup time was observed when BSM was dissolved in milk, followed by skim milk, water, and apple juice. Furthermore, tribological measurements showed varying lubrication behavior, depending on the BSM concentration and dispersing media. Dissolution of BSM in apple juice resulted in the most superior lubrication property compared with that in other dispersing media. Overall, this study provides insights on BSM's application as a novel gum-based thickening powder in a range of beverages and emphasizes how important it is for consumers to have clear guidance for the use of BSM in dysphagia management.


Subject(s)
Ocimum basilicum , Plant Mucilage , Rheology , Seeds , Ocimum basilicum/chemistry , Seeds/chemistry , Plant Mucilage/chemistry , Animals , Milk/chemistry , Viscosity , Deglutition Disorders , Malus/chemistry , Fruit and Vegetable Juices/analysis , Humans , Water , Powders , Lubrication
4.
Food Res Int ; 190: 114546, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945559

ABSTRACT

The thermal treatment carried out in the processing of apple products is very likely to induce Maillard reaction to produce furfurals, which have raised toxicological concerns. This study aimed to elucidate the formation of furfural compounds in apple products treated with pasteurization and high pressure processing (HPP). The method for simultaneous determination of five furfural compounds including 5-hydroxymethyl-2-furfural (5-HMF), furfural (F), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), 2-acetylfuran (FMC), and 5-Methyl-2-furfural (MF) using high performance liquid chromatography equipped with diode array detector (HPLC-DAD) was successfully developed and validated. All five furfurals exhibited an increasing trend after the pasteurization treatment of apple clear juice, cloudy juice, and puree. 5-HMF, F, FMC, and MF were increased significantly during the precooking of apple puree. Whereas there was no significant change in the furfurals formation after apple products treated with high pressure processing (HPP) with 300 MPa and 15 min. Based on the variation of the fructose, glucose and sucrose detected in apple products after thermal treatment, it revealed that the saccharides and thermal treatment have great effect on the furfural compounds formation. The commercial fruit juice samples with different treatments and fruit puree samples treated with pasteurization were also analyzed. Five furfurals were detected more frequently in the fruit juice samples treated with pasteurization or ultra-high temperature instantaneous sterilization (UHT) than those treated with HPP. 5-HMF and FMC were detected in all fruit puree samples treated with pasteurization, followed by F, MF, and HDMF with the detection rate of 79.31 %, 72.41 %, and 51.72 %. The results could provide a reference for risk assessment of furfural compounds and dietary guidance of fruit products for human, especially for infants and young children. Moreover, moderate HPP treatment with 300 MPa and 15 min would be a worthwhile alternative processing technology in the fruit juice and puree production to reduce the formation of furfural compounds.


Subject(s)
Food Handling , Fruit and Vegetable Juices , Furaldehyde , Malus , Pasteurization , Pressure , Malus/chemistry , Furaldehyde/analysis , Furaldehyde/analogs & derivatives , Chromatography, High Pressure Liquid , Fruit and Vegetable Juices/analysis , Food Handling/methods , Maillard Reaction , Fruit/chemistry , Furans/analysis
5.
Food Res Int ; 190: 114600, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945570

ABSTRACT

Browning commonly appeared in apple processing, which varied in different apple varieties. Present work investigated the metabolomics of four varieties apple of Yataka, Gala, Sansa, and Fuji, which possessed different browning characteristics and related enzymes. Sansa as browning insensitive apple variety, exhibited the least chroma change with the lowest PPO activity and the highest SOD activity among the four apple varieties. Browning inhibition pretreatment increased the activity of SOD and PAL and decreased PPO and POD activity. In addition, metabolomic variances among the four apple varieties (FC), their browning pulp (BR) and browning inhibition pulp (CM) were compared. And the key metabolites were in-depth analyzed to match the relevant KEGG pathways and speculated metabolic networks. There were 487, 644, and 494 significant differential metabolites detected in FC, BR and CM, which were consisted of lipids, benzenoids, phenylpropanoids, organheterocyclic compounds, organic acids, nucleosides, accounting for 23 %, 11 %, 15 %, 16 %, 11 % of the total metabolites. The differential metabolites were matched with 39, 49, and 36 KEGG pathways in FC, BR, and CM, respectively, in which other secondary metabolites biosynthesis metabolism was the most significant in FC, lipid metabolism was the most significant in BR and CM, and energy metabolism was markedly annotated in CM. Notably, Sansa displayed the highest number of differential metabolites in both its BR (484) and CM (342). The BR of Sansa was characterized by flavonoid biosynthesis, while the other three apple varieties were associated with α-linolenic acid metabolism. Furthermore, in browning sensitive apple varieties, the flavonoid and phenylpropanoid biosynthesis pathway was significantly activated by browning inhibition pretreatment. Phenolic compounds, lipids, sugars, organic acids, nucleotides, and adenosine were regulated differently in the four apple varieties, potentially serving as key regulatory sites. Overall, this work provides novel insight for browning prevention in different apple varieties.


Subject(s)
Fruit , Malus , Metabolomics , Malus/metabolism , Malus/classification , Fruit/metabolism , Fruit/chemistry , Food Handling/methods , Maillard Reaction
6.
Toxins (Basel) ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38922133

ABSTRACT

Patulin, a toxic mycotoxin, can contaminate apple-derived products. The FDA has established an action level of 50 ppb (ng/g) for patulin in apple juice and apple juice products. To effectively monitor this mycotoxin, there is a need for adequate analytical methods that can reliably and efficiently determine patulin levels. In this work, we developed an automated sample preparation workflow followed by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry (LC-APCI-MS/MS) detection to identify and quantify patulin in a single method, further expanding testing capabilities for monitoring patulin in foods compared to traditional optical methods. Using a robotic sample preparation system, apple juice, apple cider, apple puree, apple-based baby food, applesauce, fruit rolls, and fruit jam were fortified with 13C-patulin and extracted using dichloromethane (DCM) without human intervention, followed by an LC-APCI-MS/MS analysis in negative ionization mode. The method achieved a limit of quantification of 4.0 ng/g and linearity ranging from 2 to 1000 ng/mL (r2 > 0.99). Quantitation was performed with isotope dilution using 13C-patulin as an internal standard and solvent calibration standards. Average recoveries (relative standard deviations, RSD%) in seven spike matrices were 95% (9%) at 10 ng/g, 110% (5%) at 50 ng/g, 101% (7%) at 200 ng/g, and 104% (4%) at 1000 ng/g (n = 28). The ranges of within-matrix and between-matrix variability (RSD) were 3-8% and 4-9%, respectively. In incurred samples, the identity of patulin was further confirmed with a comparison of the information-dependent acquisition-enhanced product ion (IDA-EPI) MS/MS spectra to a reference standard. The metrological traceability of the patulin measurements in an incurred apple cider (21.1 ± 8.0 µg/g) and apple juice concentrate (56.6 ± 15.6 µg/g) was established using a certified reference material and calibration data to demonstrate data confidence intervals (k = 2, 95% confidence interval).


Subject(s)
Food Contamination , Fruit and Vegetable Juices , Malus , Patulin , Robotics , Tandem Mass Spectrometry , Patulin/analysis , Malus/chemistry , Fruit and Vegetable Juices/analysis , Chromatography, Liquid , Food Contamination/analysis , Fruit/chemistry
7.
J Agric Food Chem ; 72(25): 14294-14301, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38874060

ABSTRACT

Enzymatic browning in fruits and vegetables, driven by polyphenol oxidase (PPO) activity, results in color changes and loss of bioactive compounds. Emerging technologies are being explored to prevent this browning and ensure microbial safety in foods. This study assessed the effectiveness of pulsed light (PL) and ultraviolet light-emitting diodes (UV-LED) in inhibiting PPO and inactivating Escherichia coli ATTC 25922 in fresh apple juice (Malus domestica var. Red Delicious). Both treatments' effects on juice quality, including bioactive compounds, color changes, and microbial inactivation, were examined. At similar doses, PL-treated samples (126 J/cm2) showed higher 2,2- diphenyl-1-picrylhydrazyl inhibition (9.5%) compared to UV-LED-treated samples (132 J/cm2), which showed 1.06%. For microbial inactivation, UV-LED achieved greater E. coli reduction (>3 log cycles) and less ascorbic acid degradation (9.4% ± 0.05) than PL. However, increasing PL doses to 176 J/cm2 resulted in more than 5 log cycles reduction of E. coli, showing a synergistic effect with the final temperature reached (55 °C). The Weibull model analyzed survival curves to evaluate inactivation kinetics. UV-LED was superior in preserving thermosensitive compounds, while PL excelled in deactivating more PPO and achieving maximal microbial inactivation more quickly.


Subject(s)
Catechol Oxidase , Escherichia coli , Fruit and Vegetable Juices , Malus , Microbial Viability , Ultraviolet Rays , Catechol Oxidase/metabolism , Malus/chemistry , Escherichia coli/radiation effects , Fruit and Vegetable Juices/analysis , Fruit and Vegetable Juices/microbiology , Microbial Viability/radiation effects , Food Irradiation/methods
8.
J Plant Physiol ; 299: 154277, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843655

ABSTRACT

Glomerella leaf spot (GLS), caused by Colletotrichum fructicola (Cf), has been one of the main fungal diseases afflicting apple-producing areas across the world for many years, and it has led to substantial reductions in apple output and quality. HD-Zip transcription factors have been identified in several species, and they are involved in the immune response of plants to various types of biotic stress. In this study, inoculation of MdHB-7 overexpressing (MdHB-7-OE) and interference (MdHB-7-RNAi) transgenic plants with Cf revealed that MdHB-7, which encodes an HD-Zip transcription factor, adversely affects GLS resistance. The SA content and the expression of SA pathway-related genes were lower in MdHB-7-OE plants than in 'GL-3' plants; the content of ABA and the expression of ABA biosynthesis genes were higher in MdHB-7-OE plants than in 'GL-3' plants. Further analysis indicated that the content of phenolics and chitinase and ß-1, 3 glucanase activities were lower and H2O2 accumulation was higher in MdHB-7-OE plants than in 'GL-3' plants. The opposite patterns were observed in MdHB-7-RNAi apple plants. Overall, our results indicate that MdHB-7 plays a negative role in regulating defense against GLS in apple, which is likely achieved by altering the content of SA, ABA, polyphenols, the activities of defense-related enzymes, and the content of H2O2.


Subject(s)
Colletotrichum , Disease Resistance , Malus , Plant Diseases , Plant Proteins , Transcription Factors , Malus/genetics , Malus/microbiology , Malus/metabolism , Malus/immunology , Colletotrichum/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Leaves/genetics
9.
Curr Microbiol ; 81(7): 204, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831133

ABSTRACT

Erwinia amylovora, the primary causative agent of blight disease in rosaceous plants, poses a significant threat to agricultural yield worldwide, with limited effective countermeasures. The emergence of sustainable alternative agents such as bacteriophages is a promising solution for fire blight that specifically targets Erwinia. In this study, we isolated pEp_SNUABM_01 and pEa_SNUABM_55 from a South Korean apple orchard soil, analyzed their genomic DNA sequences, and performed a comprehensive comparative analysis of Hena1 in four distinct sections. This study aimed to unveil distinctive features of these phages, with a focus on host recognition, which will provide valuable insights into the evolution and characteristics of Henunavirus bacteriophages that infect plant pathogenic Erwinia spp. By elucidating the distinct genomic features of these phages, particularly in terms of host recognition, this study lays a foundation for their potential application in mitigating the risks associated with fire blight in Rosaceae plants on a global scale.


Subject(s)
Bacteriophages , Erwinia amylovora , Genome, Viral , Plant Diseases , Erwinia amylovora/virology , Erwinia amylovora/genetics , Plant Diseases/virology , Plant Diseases/microbiology , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , Phylogeny , Host Specificity , Genomics , Malus/microbiology , Malus/virology , Soil Microbiology
10.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891859

ABSTRACT

Abscisic acid (ABA) is a drought-stress-responsive hormone that plays an important role in the stomatal activity of plant leaves. Currently, ABA glycosides have been identified in apples, but their glycosyltransferases for glycosylation modification of ABA are still unidentified. In this study, the mRNA expression of glycosyltransferase gene MdUGT73AR4 was significantly up-regulated in mature apple leaves which were treated in drought stress by Real-Time PCR. It was hypothesised that MdUGT73AR4 might play an important role in drought stress. In order to further characterise the glycosylation modification substrate of glycosyltransferase MdUGT73AR4, we demonstrated through in vitro and in vivo functional validation that MdUGT73AR4 can glycosylate ABA. Moreover, the overexpression lines of MdUGT73AR4 significantly enhance its drought stress resistance function. We also found that the adversity stress transcription factor AREB1B might be an upstream transcription factor of MdUGT73AR4 by bioinformatics, EMSA, and ChIP experiments. In conclusion, this study found that the adversity stress transcription factor AREB1B was significantly up-regulated at the onset of drought stress, which in turn positively regulated the downstream glycosyltransferase MdUGT73AR4, causing it to modify ABA by mass glycosylation and promoting the ABA synthesis pathway, resulting in the accumulation of ABA content, and displaying a stress-resistant phenotype.


Subject(s)
Abscisic Acid , Droughts , Gene Expression Regulation, Plant , Glycosyltransferases , Malus , Plant Proteins , Plant Stomata , Stress, Physiological , Abscisic Acid/metabolism , Plant Stomata/metabolism , Plant Stomata/physiology , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Malus/metabolism , Malus/genetics , Malus/physiology , Glycosylation , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/metabolism , Plant Leaves/genetics
11.
New Phytol ; 243(3): 997-1016, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849319

ABSTRACT

Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.


Subject(s)
Cyclopentanes , Gene Expression Regulation, Plant , Gibberellins , Malus , Oxylipins , Plant Proteins , Signal Transduction , Ubiquitination , Oxylipins/metabolism , Malus/genetics , Malus/metabolism , Cyclopentanes/metabolism , Ubiquitination/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Gibberellins/metabolism , Proteolysis/drug effects , Anthocyanins/metabolism , Protein Binding/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Models, Biological
12.
New Phytol ; 243(3): 1154-1171, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38822646

ABSTRACT

Cross-kingdom RNA interference (RNAi) is a crucial mechanism in host-pathogen interactions, with RNA-dependent RNA polymerase (RdRP) playing a vital role in signal amplification during RNAi. However, the role of pathogenic fungal RdRP in siRNAs generation and the regulation of plant-pathogen interactions remains elusive. Using deep sequencing, molecular, genetic, and biochemical approaches, this study revealed that VmRDR2 of Valsa mali regulates VmR2-siR1 to suppress the disease resistance-related gene MdLRP14 in apple. Both VmRDR1 and VmRDR2 are essential for the pathogenicity of V. mali in apple, with VmRDR2 mediating the generation of endogenous siRNAs, including an infection-related siRNA, VmR2-siR1. This siRNA specifically degrades the apple intracellular LRR-RI protein gene MdLRP14 in a sequence-specific manner, and overexpression of MdLRP14 enhances apple resistance against V. mali, which can be suppressed by VmR2-siR1. Conversely, MdLRP14 knockdown reduces resistance. In summary, this study demonstrates that VmRDR2 contributes to the generation of VmR2-siR1, which silences the host's intracellular LRR protein gene, thereby inhibiting host resistance. These findings offer novel insights into the fungi-mediated pathogenicity mechanism through RNAi.


Subject(s)
Disease Resistance , Malus , Plant Diseases , Plant Proteins , RNA Interference , Malus/genetics , Malus/microbiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Fungal Proteins/metabolism , Fungal Proteins/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Genes, Plant
13.
Plant Physiol Biochem ; 213: 108833, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879984

ABSTRACT

Root plays an important role in plant drought tolerance, especially in horticultural crops like apples. However, the crucial regulator and molecular mechanism in root development of apple trees under drought are not well unknown. Cys2/His2-type Zinc-finger proteins are essential for plant response to drought, while the members of C2H2 Zinc-finger proteins in apple are largely unknown. In this study, we identified the members of the C1-2i subclass family of C2H2 Zinc-finger proteins in apple (Malus × domestica). Among them, MdZAT5 is significantly induced in apple roots under drought conditions and positively regulates apple root development under drought. Further investigation revealed that MdZAT5 positively regulates root development and root hydraulic conductivity by mediating the transcription level of MdMYB88 under drought stress. Taken together, our results demonstrate the importance of MdZAT5 in root development under drought in apple trees. This finding provides a new candidate direction for apple breeding for drought resistance.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Malus , Plant Proteins , Plant Roots , Malus/genetics , Malus/growth & development , Malus/metabolism , Malus/physiology , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
14.
Int J Biol Macromol ; 273(Pt 1): 132960, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852720

ABSTRACT

Collagen (COL)-hydroxypropyl methylcellulose (HPMC) blended films with apple polyphenol (AP) as cross-linking agent and antioxidant compound were developed to produce biodegradable active packaging film. The effects of AP content on the rheological behavior of the blended solution, the structure, physicochemical and functional properties of the blended film were systematically investigated. The incorporation of AP increased the viscosity and reduced the fluidity of COL-HPMC solution. The results of rheological tests and FTIR analysis manifested the formation of hydrogen bonding interactions between collagen, HPMC and AP, which made the structures of COL-HP-AP films more compact. The mechanical strength, UV-blocking ability, water-resistance performance and thermostability were gradually enhanced as increasing AP content. DPPH free radical scavenging experiment showed that a small amount of AP could efficiently improve the antioxidant activity of COL-HP film, and with increasing AP content to 5 wt%, the scavenging rate was as high as 94.23 %. Active film containing 5 wt% AP showed obvious antibacterial effect on E. coli and S. aureus, and it could effectively prevent the oxidation of vitamin C and reduce the accumulation of MDA on green pepper during the storage. COL-HP-AP films have great potential in food packaging field for extending the shelf life of food.


Subject(s)
Antioxidants , Collagen , Food Packaging , Hypromellose Derivatives , Malus , Polyphenols , Food Packaging/methods , Polyphenols/chemistry , Malus/chemistry , Collagen/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Hypromellose Derivatives/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Rheology , Viscosity , Staphylococcus aureus/drug effects , Escherichia coli/drug effects
15.
Int J Biol Macromol ; 273(Pt 1): 133111, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876238

ABSTRACT

In this study, we developed punicalagin-loaded antimicrobial films based on soy protein isolate (SPI) and apple pectin (AP). The AP was derived from apple pomace waste while the punicalagin was obtained from pomegranate peel. Punicalagin was identified to exist in both α- and ß-isomers, with the ß-type being predominant. The composite films were characterized using scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. Our results demonstrated that the incorporation of AP significantly enhanced the mechanical strength, heat resistance, and barrier properties of the films. Moreover, the composite films integrated with punicalagin exhibited excellent antimicrobial activities against Staphylococcus aureus (with a minimum bactericidal concentration value of 0.25 %), Escherichia coli (with a minimum bactericidal concentration value of 0.50 %), and Aspergillus niger. Finally, these antimicrobial film solutions were tested as coatings on strawberries and found to have significantly better effects on reducing weight loss, improving shelf-life, and maintaining the freshness of strawberries compared to coatings without punicalagin. The results indicate that antimicrobial coatings loaded with punicalagin hold great promise as multifunctional active packaging materials for fruit preservation.


Subject(s)
Edible Films , Food Preservation , Fragaria , Hydrolyzable Tannins , Malus , Pectins , Soybean Proteins , Soybean Proteins/chemistry , Fragaria/chemistry , Pectins/chemistry , Pectins/pharmacology , Malus/chemistry , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/pharmacology , Food Preservation/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Staphylococcus aureus/drug effects , Food Packaging/methods , Escherichia coli/drug effects
16.
Physiol Plant ; 176(3): e14377, 2024.
Article in English | MEDLINE | ID: mdl-38837251

ABSTRACT

One of the most devastating diseases of apples is scab, caused by the fungus Venturia inaequalis. Most commercial apple varieties are susceptible to this disease; only a few are resistant. Breeding approaches are being used to develop better apple varieties that are resistant to scab. Volatile organic compounds (VOCs) contribute greatly to a plant's phenotype, and their emission profile largely depends on the genotype. In the non-destructive phenotyping of plants, VOCs can be used as biomarkers. In this study, we assessed non-destructively the scab tolerance potential of resistant (cv. 'Prima') and susceptible (cv. 'Oregon Spur') apple cultivars by comparing their major leaf VOC compositions and relative proportions. A comparison of the leaf VOC profiles of the two cultivars revealed 16 different VOCs, with cis-3-hexenyl acetate (3HA) emerging as a biomarker of cultivar differences. V. inaequalis growth was significantly inhibited in vitro by 3HA treatment. 3HA was significantly effective in reducing scab symptoms on V. inaequalis-inoculated leaves of 'Oregon Spur.' The resistant cultivar 'Prima' also exhibited higher lipoxygenase (LOX) activity and α-linolenic acid (ALA) levels, suggesting that V. inaequalis resistance is linked to LOX activity and 3HA biosynthesis. This study proposes 3HA as a potential biomarker for rapid non-destructive screening of scab-resistant apple germplasm of 'Prima' based on leaf VOCs.


Subject(s)
Ascomycota , Disease Resistance , Malus , Phenotype , Plant Diseases , Plant Leaves , Volatile Organic Compounds , Malus/microbiology , Malus/genetics , Malus/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Plant Diseases/microbiology , Ascomycota/physiology , Ascomycota/pathogenicity , Plant Leaves/microbiology , Plant Leaves/metabolism , Disease Resistance/genetics , Lipoxygenase/metabolism , Lipoxygenase/genetics
17.
Fungal Biol ; 128(4): 1836-1846, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876536

ABSTRACT

Fungal endophytes inhabit a similar ecological niche to that occupied by many phytopathogens, with several pathogens isolated from healthy tissues in their latent phase. This study aimed to evaluate the pathogenicity, the colonisation ability, and the enzyme activity of 37 endophytic fungal isolates recovered from apparently healthy apple shoot and leaf tissues. The pathogenicity of the isolates was assessed on 'Royal Gala' and 'Braeburn' fruit and detached 'Royal Gala' shoots. For the non-pathogenic isolates, their ability to endophytically colonise detached 'Royal Gala' shoots was evaluated. Enzyme activity assays were undertaken to determine whether the pathogenicity of the endophytes was related to the production of the extracellular enzymes, amylase, cellulase, pectinase, protease, and xylanase. Of the 37 isolates studied, eight isolates, representing the genera Colletotrichum, Diaporthe, Fusarium, and Penicillium, were shown to be pathogenic on both apple shoots and fruit. Two isolates identified as Trichoderma atroviride, were pathogenic only on shoots, and three isolates, representing the genus Diaporthe, were pathogenic only on fruit. Of the remaining 24 isolates, 22 (Biscogniauxia (n = 8), Chaetomium (n = 4), Trichoderma (n = 3), Epicoccum (n = 2), Neosetophoma (n = 2), Xylaria (n = 1), Daldinia (n = 1), and Paraphaeosphaeria (n = 1)) were recovered from the inoculated apple shoots but two failed to colonise the shoot tissues. Of the isolates tested, 20 produced amylase, 15 cellulase, 25 pectinase, 26 protease, and 13 xylanase. There was no correlation between the range and type of enzymes produced by the isolates and their pathogenicity or ability to endophytically colonise the shoot tissue. The study showed that approximately one-third (13/37) of the isolates recovered from the apparently healthy apple shoot tissues were observed as latent pathogens. The isolates that did not cause disease symptoms may have the ability to reduce colonisation of apple tissues by pathogens including Neonectria ditissima associated with European canker of apple.


Subject(s)
Endophytes , Fungi , Malus , Plant Leaves , Malus/microbiology , Endophytes/isolation & purification , Endophytes/classification , Endophytes/genetics , Plant Leaves/microbiology , Fungi/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/pathogenicity , Plant Diseases/microbiology , Plant Shoots/microbiology , Fruit/microbiology
18.
Environ Monit Assess ; 196(7): 610, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862723

ABSTRACT

Crop diseases pose significant threats to agriculture, impacting crop production. Biotic factors contribute to various diseases, including fungal, bacterial, and viral infections. Recent advancements in deep learning present a novel approach to the detection and recognition of these crop diseases. While considerable research has focused on identifying and recognizing crop diseases, fungal disease-affected crops have received relatively less attention and also detecting disease on different region datasets. This paper is about spotting fungal diseases in crops across different regions with diverse climates. It emphasizes the need for tailored detection methods, addressing the risk of mycotoxin production by fungi, which can harm both humans and animals. Detecting fungal diseases in apple, guava, and custard apple crops such as spot, scab, rust, rot, leaf spot, and insect ate. In the proposed work, the modified ResNeXt variant of the convolution neural network (CNN) technique was employed to predict 3 major crop classes of fungal disease. Initially, using Inception-v7 and ResNet for fungal disease in crops did not yield satisfactory results. A modified ResNeXt CNN model was proposed, showing improved fungal disease prediction. The novel model underwent a comparison with established methodologies. The suggested model draws upon a benchmark dataset consisting of 14,408 images capturing fungal diseases, categorized into three distinct classes: apple, custard apple, and guava. Experimental outcomes show that the proposed mutated ResNeXt model outperformed the state-of-the-art approaches. The model achieved 98.92% accuracy and high performance across recall, precision, and F1-score (above 99%) for the benchmark dataset, which gained encouragement and was comparable with the state-of-the-art approach.


Subject(s)
Crops, Agricultural , Fungi , Plant Diseases , Plant Diseases/microbiology , Crops, Agricultural/microbiology , Neural Networks, Computer , Malus/microbiology , Psidium , Agriculture/methods
19.
Sci Data ; 11(1): 592, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844753

ABSTRACT

The 'Red Fuji' apple (Malus domestica), is one of the most important and popular economic crops worldwide in the fruit industry. Using PacBio HiFi long reads and Hi-C reads, we assembled a high-quality haplotype-resolved genome of 'Red Fuji', with sizes of 668.7 and 668.8 Mb, and N50 sizes of 34.1 and 31.4 Mb. About 97.2% of sequences were anchored in 34 chromosomes. We annotated both haploid genomes, identifying a total of 95,439 protein-coding genes in the two haplotype genomes, with 98% functional annotation. The haplotype-resolved genome of 'Red Fuji' apple stands as a precise benchmark for an array of analyses, such as comparative genomics, transcriptomics, and allelic expression studies. This comprehensive resource is paramount in unraveling variations in allelic expression, advancing quality improvements, and refining breeding efforts.


Subject(s)
Genome, Plant , Haplotypes , Malus , Malus/genetics
20.
Sci Rep ; 14(1): 14215, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902505

ABSTRACT

Fruit pomace, as a by-product of fruit and vegetable processing, is a cheap and easily accessible material for further processing that can replace selected recipe ingredients, most often flour. In addition, their advantage is their high health-promoting potential. The aim of this study was to evaluate the effect of the simultaneous use of erythritol (100% sucrose substitution) and the addition of varying amounts of blackcurrant, chokeberry and apple pomace (0%, 10%, 30% and 50% by weight of flour) on the glycaemic response after consumption of shortbread cookies in an in vivo study with humans (ISO 26642:2010). It was shown that an increase in the addition of each type of pomace reduced the glycaemic index value of the cookies. The pomace and sucrose-sweetened cookies were classified in the medium and low GI group. For each type of pomace, an increase in its share in the recipe of cookies was associated with a reduction in GI values (pomace: apple 49.1-37.2%, blackcurrant 56.4-41.0%, chokeberry 59.4-35.5%). Similar correlations were shown for the use of erythritol (pomace: apple 39.5-29.1%, blackcurrant 43.9-31.9%, chokeberry 34.6-20.7%). A significant effect of pomace addition on the GI values of shortbread cookies, was only observed for sucrose-sweetened products. The results obtained allow the conclusion that there is potential for the use of waste raw materials in the production of functional foods.


Subject(s)
Erythritol , Fruit , Glycemic Index , Humans , Fruit/chemistry , Adult , Male , Malus , Female , Ribes/chemistry , Blood Glucose/analysis , Young Adult , Sweetening Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...