Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
Add more filters











Publication year range
1.
An Acad Bras Cienc ; 96(suppl 1): e20240234, 2024.
Article in English | MEDLINE | ID: mdl-39258701

ABSTRACT

Jacobsite is a relatively rare mineral of composition MnFe2O4, found in Urandi (Bahia State) in Brazil. It is also a common species in the deep-sea manganese nodules, attracting the interest of many mineral-extracting companies. Because of its spinel constitution similar to magnetite, Jacobsite is commonly called a manganese-ferrite. However, the manganese/iron content may vary substantially according to its origin, demanding specific studies in each case. The Jacobsite mineral inspired our laboratory synthesis of the analogous manganese ferrite nanoparticles. The direct synthesis by the coprecipitation method has not been successful; however, it can be carried in the presence of citrate ions, yielding strongly magnetic nanoparticles, with a maximum magnetization of 45.6 emu.g1. Although they were structurally identical to Jacobsite, the mineral from Bahia exhibited a rather weak magnetism, because it involves a ferrimagnetic coupling. For this reason, the synthetic method seems to provide a better way of obtaining strongly magnetic manganese ferrites. These magnetic nanoparticles have been investigated in detail, including their interaction with diatoms, providing interesting magnetic bio-silicate carriers in drug delivery.


Subject(s)
Ferric Compounds , Manganese Compounds , Manganese Compounds/chemistry , Ferric Compounds/chemistry , Nanoparticles/chemistry , Manganese/chemistry , Brazil , Minerals/chemistry
2.
J Inorg Biochem ; 239: 112060, 2023 02.
Article in English | MEDLINE | ID: mdl-36402588

ABSTRACT

Antioxidant activity toward H2O2, anion radical superoxide, hydroxyl and DPPH (2,2-diphenyl-1-picrylhydrazyl) of two manganese complexes [Mn(III)(bpa)2]Cl.H2O (1) and [(Cl)Mn(µ-hbpclnol)(µ-bpclnol)Mn](ClO4).3H2O (2) (hbpa = (2-hydroxybenzyl-2-pyridylmethyl)amine and h2bpclnol = (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]propylamine) are presented. X-ray diffraction studies were performed for complex (1). Both complexes presented similar or better activities than reference complex [Mn(salen)Cl], when the interaction between them and ROS (H2O2, O2•- and •OH), was monitored, by EPR (Electron Paramagnetic Resonance), in PBS, DMSO and water. The antioxidant activity rank of complexes toward •OH, generated by Fenton reaction and monitored by EPR, is (2) > (1) > [Mn(salen)Cl], in water (0.1% of DMSO for each complex), with the values of the IC50 of 7.2 (±1.6), 15.5 (±1.8) and 29.1 (±2.01) µM respectively. EPR data presented herein suggest that complex (2) presents the better scavenging activity toward hydroxyl, being in good agreement with TBARS assay results, in which complex (2) presented the best inhibitory activity toward lipid peroxidation, employing Swiss mice liver homogenate tissue model. IC50 values obtained from the interaction between these complexes and hydroxyl, using TBARS method, were: 0.88 (± 0.029); 0.73 (± 0.01) and 42.7 (± 3.5) nM, respectively for (1), (2) and [Mn(salen)Cl]. Complexes (1) and (2) are regulating the lipid homeostasis, protecting the tissue from the lipid peroxidation, in nanomolar scale, motivating in vivo studies. Redox properties and radical scavenging activity of complexes toward DPPH are non-linear and solvent dependent. Furthermore, the monitoring of antioxidant activity probed by EPR could be a fair and appropriate study to guide more advanced investigations.


Subject(s)
Antioxidants , Manganese , Mice , Animals , Manganese/chemistry , Lipid Peroxidation , Antioxidants/pharmacology , Thiobarbituric Acid Reactive Substances , Dimethyl Sulfoxide , Hydrogen Peroxide , Hydroxyl Radical , Water
3.
J Biomol Struct Dyn ; 41(8): 3234-3244, 2023 05.
Article in English | MEDLINE | ID: mdl-35249451

ABSTRACT

Cancer is one of the leading causes of human death worldwide, being one of the most serious problems faced by mankind. For the diagnosis, Magnetic Resonance Imaging (MRI), through effective contrast agents (Cas), has greatly helped in the diagnosis at the initial stages. However, it is necessary to include new compounds more effective and selective for cancer diagnosis. The complexes with Mn2+, Cu2+ and Zn2+ have received great attention due to their applications as CAs for MRI. Those materials can shorten the T2 and T2* transverse relaxation times. Thus, the representative structures for hyperfine coupling constants (HFCCs) were selected from docking results by frequency of occupancy calculations. From the Multivariate Analysis to obtain the PCA graphs in the choice of a representative conformations. it is possible to notice that the variable energy does not present a high correlation with the other variables, and structural factors, such as the spatial positions of the metal atoms, seem to be important in the reactivity of the complexes. Structural factors, such as the spatial positions of the metal atoms, seem to be important in the reactivity of the complexes. Theoretical findings suggest that the compounds are capable of increasing the Aiso values of the water molecules, but the complex [Zn(H2O)(NNO)] shows a greater influence, being more sensitive to the Electron paramagnetic resonance parameters than the complexes [CuCl(H2O)NNO] and [MnCl2(H2O)(NNO)] with the explicit solvent and the enzyme. MRI contrast agents have generated various problems due to their high toxicity. In this perspective, this compound may be a promising alternative for transporting the CAs into diseased tissue.Communicated by Ramaswamy H. Sarma.


Subject(s)
Contrast Media , Coordination Complexes , Humans , Contrast Media/chemistry , Manganese/chemistry , Magnetic Resonance Imaging , Metals , Zinc/chemistry , Coordination Complexes/chemistry
4.
J Inorg Biochem ; 237: 112026, 2022 12.
Article in English | MEDLINE | ID: mdl-36270893

ABSTRACT

A mononuclear Mn(III) complex of a clickable ligand, [Mn(hbpapn)(H2O)2]ClO4·4.5H2O, where H2hbpapn = 1,3-bis[(2-hydroxybenzyl)(propargyl)amino]propane, has been prepared and fully characterized. The complex catalyzes the dismutation of superoxide employing a Mn(III)/Mn(IV) redox cycle, with catalytic rate constant of 3.9 × 106 M-1 s-1 determined through the nitro blue tetrazolium photoreduction inhibition assay, in aqueous medium of pH 7.8. The alkyne function of the ligand was used for the covalent attachment of the catalyst to azide modified mesoporous silicas with different texture and morphology, through click chemistry. In these materials the catalyst is essentially linked to the inner pore walls, isolated and protected from the external medium. The hybrid materials can be recycled, and retain or improve the superoxide dismutase activity of the free catalyst with the pore size of the solid matrix playing a role on the activity of the catalyst.


Subject(s)
Manganese , Silicon Dioxide , Manganese/chemistry , Ligands , Silicon Dioxide/chemistry , Biomimetics , Superoxide Dismutase/chemistry
5.
J Struct Biol ; 214(2): 107855, 2022 06.
Article in English | MEDLINE | ID: mdl-35390463

ABSTRACT

Protein 3D structure can be remarkably robust to the accumulation of mutations during evolution. On the other hand, sometimes a single amino acid substitution can be sufficient to generate dramatic and completely unpredictable structural consequences. In an attempt to rationally alter the preferences for the metal ion at the active site of a member of the Iron/Manganese superoxide dismutase family, two examples of the latter phenomenon were identified. Site directed mutants of SOD from Trichoderma reesei were generated and studied crystallographically together with the wild type enzyme. Despite being chosen for their potential impact on the redox potential of the metal, two of the mutations (D150G and G73A) in fact resulted in significant alterations to the protein quaternary structure. The D150G mutant presented alternative inter-subunit contacts leading to a loss of symmetry of the wild type tetramer, whereas the G73A mutation transformed the tetramer into an octamer despite not participating directly in any of the inter-subunit interfaces. We conclude that there is considerable intrinsic plasticity in the Fe/MnSOD fold that can be unpredictably affected by single amino acid substitutions. In much the same way as phenotypic defects at the organism level can reveal much about normal function, so too can such mutations teach us much about the subtleties of protein structure.


Subject(s)
Manganese , Superoxide Dismutase , Amino Acid Substitution , Iron/chemistry , Manganese/chemistry , Protein Conformation , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics
6.
J Mater Chem B ; 10(2): 247-261, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34878486

ABSTRACT

The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle-cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.


Subject(s)
Fluorescent Dyes/chemistry , Quantum Dots/chemistry , Animals , Europium/chemistry , Europium/metabolism , Europium/toxicity , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Fluorescent Dyes/toxicity , Manganese/chemistry , Manganese/metabolism , Manganese/toxicity , Mice , Microscopy, Fluorescence , Quantum Dots/metabolism , Quantum Dots/toxicity , RAW 264.7 Cells , Selenium Compounds/chemistry , Selenium Compounds/metabolism , Selenium Compounds/toxicity , Sulfides/chemistry , Sulfides/metabolism , Sulfides/toxicity , Zinc Compounds/chemistry , Zinc Compounds/metabolism , Zinc Compounds/toxicity
7.
Angew Chem Int Ed Engl ; 60(32): 17671-17679, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34042234

ABSTRACT

We report the single crystal XRD and MicroED structure, magnetic susceptibility, and EPR data of a series of CaMn3IV O4 and YMn3IV O4 complexes as structural and spectroscopic models of the cuboidal subunit of the oxygen-evolving complex (OEC). The effect of changes in heterometal identity, cluster geometry, and bridging oxo protonation on the spin-state structure was investigated. In contrast to previous computational models, we show that the spin ground state of CaMn3IV O4 complexes and variants with protonated oxo moieties need not be S=9/2. Desymmetrization of the pseudo-C3 -symmetric Ca(Y)Mn3IV O4 core leads to a lower S=5/2 spin ground state. The magnitude of the magnetic exchange coupling is attenuated upon oxo protonation, and an S=3/2 spin ground state is observed in CaMn3IV O3 (OH). Our studies complement the observation that the interconversion between the low-spin and high-spin forms of the S2 state is pH-dependent, suggesting that the (de)protonation of bridging or terminal oxygen atoms in the OEC may be connected to spin-state changes.


Subject(s)
Biomimetic Materials/chemistry , Bridged-Ring Compounds/chemistry , Coordination Complexes/chemistry , Protons , Biomimetic Materials/chemical synthesis , Bridged-Ring Compounds/chemical synthesis , Calcium/chemistry , Coordination Complexes/chemical synthesis , Electron Spin Resonance Spectroscopy , Manganese/chemistry , Molecular Structure , Photosystem II Protein Complex/chemistry , Yttrium/chemistry
8.
Molecules ; 26(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809812

ABSTRACT

An on-line preconcentration system for the simultaneous determination of Copper (Cu) and manganese (Mn) in water samples was developed and coupled to a microwave-induced plasma optical emission spectrometer (MIP OES). The flow injection system was designed with a minicolumn packed with sisal fiber (Agave sisalana). A multivariate experimental design was performed to evaluate the influence of pH, preconcentration time, and eluent concentration. Optimal conditions for sample preparation were pH 5.5, preconcentration time was 90 s, and HCl 0.5 mol L-1 was the eluent. The main figures of merit were detection limits 3.7 and 9.0 µg L-1 for Cu and Mn, respectively. Precision was expressed as a relative standard deviation better than 10%. Accuracy was evaluated via spiked recovery assays with recoveries between 75-125%. The enrichment factor was 30 for both analytes. These results were adequate for water samples analysis for monitoring purposes. The preconcentration system was coupled and synchronized with the MIP OES nebulizer to allow simultaneous determination of Cu and Mn as a novel sample introduction strategy. The sampling rate was 20 samples/h. Sisal fiber resulted an economical biosorbent for trace element preconcentration without extra derivatization steps and with an awfully time of use without replacement complying with the principles of green analytical methods.


Subject(s)
Copper/chemistry , Green Chemistry Technology/methods , Manganese/chemistry , Water/chemistry , Hydrogen-Ion Concentration , Indicators and Reagents/chemistry , Microwaves , Plasma/chemistry , Trace Elements/chemistry
9.
Environ Geochem Health ; 43(6): 2231-2242, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33090370

ABSTRACT

The dispersion of mine tailings affects ecosystems due to their high content of potentially toxic elements. Environmental risk increases when the soil impacted by tailings is used for agriculture; this use may result in health impacts. This study analyzes the feasibility of remediating a calcareous soil (used for maize cultivation) polluted with lead in the semiarid zone of Zimapán, México, by using EDTA as an extractant. Total geoavailable and bioaccessible concentrations in the gastric and intestinal phases were determined to evaluate lead availability and health risk. The soil was then washed with EDTA, and the geochemical fractionation (interchangeable, carbonates, Fe/Mn oxy-hydroxides, organic matter-sulfides, and residual) and impact on the mesophile bacteria and fungi/yeast populations were analyzed. The results showed total Pb concentrations up to 647 ± 3.50 mg/kg, a 46% bioaccessible fraction (297 ± 9.90 mg/kg) in the gastric phase and a 12.2% (80 ± 5 mg/kg) bioaccessible fraction in the intestinal phase, indicating a health and environmental risk. Meanwhile, the geochemical fractionation before washing showed a Pb fraction mainly consisting of Fe/Mn oxy-hydroxides (69.6%); this reducible fraction may progressively increase its bioaccessibility. Geochemical fractionation performed in the washed soil showed differences from that determined before the treatment; however, the iron and manganese fraction, at 42.4%, accounted for most of the Pb. The soil microbiology was also modified by EDTA, with an increase in aerobic bacteria and a decrease in fungi/yeast populations. Although 44% total lead removal was achieved, corresponding to a final concentration of 363.50 ± 43.50 mg/kg (below national and USEPA standards), washing with EDTA increased the soluble and interchangeable lead concentrations. Statistical analysis indicated a significant effect (p < 0.05) of EDTA on the soil's geochemical fractionation of lead.


Subject(s)
Edetic Acid/chemistry , Environmental Restoration and Remediation/methods , Lead/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Agriculture , Biological Availability , Iron/analysis , Iron/chemistry , Lead/analysis , Lead/pharmacokinetics , Manganese/analysis , Manganese/chemistry , Mexico , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics
10.
Poult Sci ; 99(11): 5718-5727, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33142489

ABSTRACT

Two experiments were designed to evaluate the effect of mineral-amino acid complexes (AACM) as a partial replacement of inorganic mineral (IM) in layer-type chicks' diets. Both studies had the same dietary treatments, where in experiment 1 (Exp. 1) was conducted under thermoneutral conditions from 0 to 35 D and chicks in experiment 2 (Exp. 2) were exposed to cold stress conditions at nighttime during the first 15 D and to thermoneutral condition from 16 to 35 D. For each trial, 1,200 one-day-old Lohmann Brown chicks were used, with 20 cage replicates with 30 chicks per cage. Treatments consisted of the control diet (IM; with 70, 70, and 8 mg/kg of zinc [Zn], manganese [Mn], and copper [Cu], respectively) and the treatment diet (AACM, with 40, 40, and 2.75 mg/kg of Zn, Mn, and Cu, respectively, from IM sources, along with 30, 30, and 5.25 mg/kg of Zn, Mn, and Cu, respectively). Data were submitted to analysis of variance, and means were compared using the t-test (P < 0.05). In Exp. 1, there were no significant differences between treatments on chick performance. However, AACM-fed chicks had higher thymus (P = 0.03) and cecum weight (P < 0.01), superior micromineral deposition in the tibias (P < 0.01), and reduced phosphorus excretion (P = 0.03). In Exp. 2, chicks fed with AACM had higher body weight gain (P = 0.04), better average daily feed intake (P = 0.03), lower phosphorus excretion (P = 0.02), and higher liver and pancreas weight (P < 0.01) in the last week of the study. In conclusion, chicks fed with AACM under thermoneutral conditions had higher bone mineralization and reduced excretion of phosphorus, and in adverse conditions, AACM improves performance and liver and pancreas weight, also reducing phosphorus excretion.


Subject(s)
Amino Acids , Animal Nutritional Physiological Phenomena , Bone and Bones , Chickens , Cold-Shock Response , Dietary Supplements , Metals, Heavy , Amino Acids/chemistry , Amino Acids/pharmacology , Animal Feed/analysis , Animals , Bone and Bones/drug effects , Chickens/physiology , Cold-Shock Response/drug effects , Copper/chemistry , Copper/pharmacology , Diet/veterinary , Manganese/chemistry , Manganese/pharmacology , Metals, Heavy/chemistry , Metals, Heavy/pharmacology , Zinc/chemistry , Zinc/pharmacology
11.
J Inorg Biochem ; 213: 111264, 2020 12.
Article in English | MEDLINE | ID: mdl-33045594

ABSTRACT

Two mixed-valence Mn(II)Mn(III) complexes, [Mn2L1(OAc)2(H2O)]BPh4·2.5H2O and [Mn2L2(OAc)2]·4H2O, obtained with unsymmetrical N4O2-hexadentate L1(2-) (H2L1 = 2-(N,N-bis(2-(pyridylmethyl)aminomethyl)-6-(N-(2-hydroxybenzyl)benzylaminomethyl)-4-methylphenol) and N4O3-heptadentate L2(3-) (NaH2L2 = 2-(N,N-bis(2-(pyridylmethyl)aminomethyl)-6-(N'-(2-hydroxybenzyl)(carboxymethyl)aminomethyl)-4-methylphenol sodium salt) ligands, have been prepared and characterized. Both complexes share a µ-phenolate-bis(µ-acetate)Mn(II)Mn(III) core and N3O3-coordination sphere around the Mn(II) ion, but differ in the donor groups surrounding Mn(III) (NO4(solvent) and NO5). In non-protic solvents, these two complexes are able to disproportionate at least 3600 equiv. of H2O2 without significant decomposition, with first-order dependence on catalyst and saturation kinetics on [H2O2]. Spectroscopic monitoring of the reaction mixtures revealed the two complexes disproportionate H2O2 employing a different redox cycle, with retention of dinuclearity. The higher catalytic efficiency of [Mn2L2(OAc)2] was rationalized in terms of the larger labilizing effect of the heptadentate ligand that favors the acetate-shift and the replacement of the non-coordinating benzyl arm of L1 by a carboxylate arm in L2 which facilitates the formation of the catalyst-H2O2 adduct, placing [Mn2L2(OAc)2] as the most efficient among the phenolate-bridged diMn catalysts based on the kcat/KM criterion.


Subject(s)
Catalase/chemistry , Coordination Complexes/chemistry , Manganese/chemistry , Molecular Mimicry , Carboxylic Acids/chemistry , Catalysis , Coordination Complexes/chemical synthesis , Hydrogen Peroxide/chemistry , Kinetics , Ligands , Nitrogen Oxides/chemistry , Oxidation-Reduction , Spectrum Analysis/methods
12.
Dalton Trans ; 49(45): 16404-16418, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32633298

ABSTRACT

Two classes of heterogenized biomimetic catalysts were prepared and characterized for hydrocarbon oxidations: (1) by covalent anchorage of the three Mn(iii) meso-tetrakis(2-, 3-, or 4-pyridyl)porphyrin isomers by in situ alkylation with chloropropyl-functionalized silica gel (Sil-Cl) to yield Sil-Cl/MnPY (Y = 1, 2, 3) materials, and (2) by electrostatic immobilization of the three Mn(iii) meso-tetrakis(N-methylpyridinium-2, 3, or 4-yl)porphyrin isomers (MnPY, Y = 4, 5, 6) on non-modified silica gel (SiO2) to yield SiO2/MnPY (Y = 4, 5, 6) materials. Silica gel used was of column chromatography grade and Mn porphyrin loadings were deliberately kept at a low level (0.3% w/w). These resulting materials were explored as catalysts for iodosylbenzene (PhIO) oxidation of cyclohexane, n-heptane, and adamantane to yield the corresponding alcohols and ketones; the oxidation of cyclohexanol to cyclohexanone was also investigated. The heterogenized catalysts exhibited higher efficiency and selectivity than the corresponding Mn porphyrins under homogeneous conditions. Recycling studies were consistent with low leaching/destruction of the supported Mn porphyrins. The Sil-Cl/MnPY catalysts were more efficient and more selective than SiO2/MnPY ones; alcohol selectivity may be associated with hydrophobic silica surface modification reminiscent of biological cytochrome P450 oxidations. The use of widespread, column chromatography, amorphous silica yielded Sil-Cl/MnPY or SiO2/MnPY catalysts considerably more efficient than the corresponding, previously reported materials with mesoporous Santa Barbara Amorphous No 15 (SBA-15) silica. Among the materials studied, in situ derivatization of Mn(iii) 2-N-pyridylporphyrin by covalent immobilization on Sil-Cl to yield Sil-Cl/MnP1 showed the best catalytic performance with high stability against oxidative destruction and reusability/recyclability.


Subject(s)
Coordination Complexes/chemistry , Hydrocarbons/chemistry , Manganese/chemistry , Porphyrins/chemistry , Silicon Dioxide/chemistry , Catalysis , Gels , Kinetics , Oxidation-Reduction
13.
Salud Publica Mex ; 62(2): 147-155, 2020.
Article in English | MEDLINE | ID: mdl-32237557

ABSTRACT

OBJECTIVE: To obtain a first indication of the distribution and extent of manganese (Mn) contamination in Mexico City. Mn concentration and load in street dust were analyzed in order to reveal the most contaminated areas. MATERIALS AND METHODS: 482 samples of street dust were analyzed through inductively coupled plasma-optical emission spectroscopy. The contamination factor (CF), the geoaccumulation index (Igeo) and the spatial interpolations of the kriging indicator were calculated. RESULTS: A slight influence of anthropogenic activities is detected on the Mn content of street dust. The highest levels of pollution by concentra- tion (Igeo=uncontaminated to moderately contaminated) are grouped towards the city's north (industrial) and center (commercial and high traffic) areas. The areas with the high- est Mn load were located towards the east and northwest areas (Igeo=moderately contaminated). CONCLUSIONS: These findings will serve as a baseline to assess future variations in Mn content in Mexico City's environment.


OBJETIVO: Obtener una primera aproximación sobre la distribución espacial de la contaminación por manganeso (Mn) en la Ciudad de México. Se analizó la concentración y carga de Mn en el polvo de la calle para identificar las áreas más contaminadas. MATERIAL Y MÉTODOS: 482 muestras de polvo de la calle fueron analizadas con espectroscopía de emisión por plasma de acoplamiento inductivo. Se calculó el factor de contaminación, índice de geoacumulación, y las interpolaciones espaciales del indicador kriging. RESULTADOS: Existe una ligera influencia de actividades antropogénicas en el contenido de Mn del polvo de la calle. Los niveles más altos de contaminación por concentración (Igeo=no contaminado a moderadamente contaminado) se agruparon en el norte (industrial) y centro (comercial y de alto tráfico) de la ciudad. Las áreas con las cargas de Mn más altas estuvieron al este y noroeste (Igeo=moderadamente contaminado), donde había más polvo. CONCLUSIONES: Estos resultados servirán como punto de referencia para evaluar variaciones futuras en el contenido de Mn en la Ciudad de México.


Subject(s)
Dust/analysis , Manganese/chemistry , Cities , Environmental Monitoring , Mexico
14.
Salud pública Méx ; 62(2): 147-155, mar.-abr. 2020. tab, graf
Article in English | LILACS | ID: biblio-1366012

ABSTRACT

Abstract: Objective: To obtain a first indication of the distribution and extent of manganese (Mn) contamination in Mexico City. Mn concentration and load in street dust were analyzed in order to reveal the most contaminated areas. Materials and methods: 482 samples of street dust were analyzed through inductively coupled plasma-optical emission spectroscopy. The contamination factor (CF), the geoaccumulation index (Igeo) and the spatial interpolations of the kriging indicator were calculated. Results: A slight influence of anthropogenic activities is detected on the Mn content of street dust. The highest levels of pollution by concentration (Igeo=uncontaminatedtomoderately contaminated) are grouped towards the city's north (industrial) and center (commercial and high traffic) areas. The areas with the highest Mn load were located towards the east and northwest areas (Igeo=moderately contaminated). Conclusions: These findings will serve as a baseline to assess future variations in Mn content in Mexico City's environment.


Resumen: Objetivo: Obtener una primera aproximación sobre la distribución espacial de la contaminación por manganeso (Mn) en la Ciudad de México. Se analizó la concentración y carga de Mn en el polvo de la calle para identificar las áreas más contaminadas. Material y métodos: 482 muestras de polvo de la calle fueron analizadas con espectroscopía de emisión por plasma de acoplamiento inductivo. Se calculó el factor de contaminación, índice de geoacumulación, y las interpolaciones espaciales del indicador kriging. Resultados: Existe una ligera influencia de actividades antropogénicas en el contenido de Mn del polvo de la calle. Los niveles más altos de contaminación por concentración (Igeo=no contaminado a moderadamente contaminado) se agruparon en el norte (industrial) y centro (comercial y de alto tráfico) de la ciudad. Las áreas con las cargas de Mn más altas estuvieron al este y noroeste (Igeo=moderadamente contaminado), donde había más polvo. Conclusiones: Estos resultados servirán como punto de referencia para evaluar variaciones futuras en el contenido de Mn en la Ciudad de México.


Subject(s)
Dust/analysis , Manganese/chemistry , Environmental Monitoring , Cities , Mexico
15.
Ecotoxicology ; 29(3): 340-358, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32107699

ABSTRACT

Cd is a non-essential metal and highly toxic to plants, animals and humans, even at very low concentrations. Cd has been found in cocoa beans and in their products, as in the case of chocolate. Mn plays an important role in photosynthetic and can interact with Cd and attenuate its toxic effects on plants. The objective of this work was to evaluate the mechanisms of Mn response in the mitigation of Cd toxicity in young plants of the CCN 51 cacao genotype submitted to 0.8 mmol Cd kg-1, 1.6 mmol Mn kg-1 or the combination of 0.4 mmol Cd kg-1 + 0.8 mmol Mn kg-1 soil, together with the control treatment (without addition of Cd and Mn in soil), by means of analysis of changes in the profile of exclusive proteins (EP) and differentially accumulated proteins (DAP). Leaf and root proteins were extracted and quantified from the different treatments, followed by proteomic analysis. About eight DAP and 38 EP were identified in leaves, whereas in roots 43 DAP and 21 EP were identified. Some important proteins induced in the presence of Cd and repressed in the presence of Cd + Mn or vice versa, were ATPases, isoflavone reductase, proteasome and chaperonin. It was concluded that proteins involved in oxidoreduction and defense and stress response processes, in addition to other processes, were induced in the presence of Cd and repressed in the presence of Cd + Mn. This demonstrated that Mn was able to mitigate the toxic effects of Cd on young plants of the CCN 51 cocoa genotype.


Subject(s)
Cacao/physiology , Cadmium/toxicity , Manganese/chemistry , Soil Pollutants/toxicity , Agriculture , Photosynthesis , Plant Leaves/chemistry , Plant Roots/chemistry , Proteome/metabolism , Proteomics , Soil , Soil Pollutants/chemistry
16.
J Agric Food Chem ; 67(47): 13010-13020, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31670946

ABSTRACT

Increasing the yield of soybean is a challenge to humankind dependent on several management practices, such as fertilizing and weed control. While glyphosate contributes to controlling weeds, it can interfere with spray mixture stability and, supposedly, complex with micronutrients within the plant tissue. This study investigated the effects of glyphosate on soybean foliar uptake and transport of Mn supplied as MnSO4, MnHPO3, Mn-ethylenediamine tetraacetic acid (EDTA), and MnCO3. These fertilizers induced ultrastructural changes in the leaf cuticle, regardless of the glyphosate mixture. Except for MnCO3, all tested sources increased the Mn content in the petiole. The mixture of glyphosate impaired Mn transport from MnSO4 and MnHPO3, but no evidence of Mn-glyphosate complexation within the plant was found. Manganese is rather transported in a similar chemical environment regardless of the source, except for Mn-EDTA, which was absorbed and transported in its pristine form. Interferences of glyphosate seem to be related to complexations in the tank mixture rather than affecting nutrients' metabolism.


Subject(s)
Glycine max/drug effects , Glycine max/metabolism , Glycine/analogs & derivatives , Herbicides/pharmacology , Manganese/metabolism , Plant Leaves/chemistry , Biological Transport , Glycine/chemistry , Glycine/pharmacology , Kinetics , Manganese/chemistry , Plant Leaves/drug effects , Plant Leaves/metabolism , Glycine max/chemistry , Spectrometry, X-Ray Emission , Glyphosate
17.
Molecules ; 24(19)2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31581425

ABSTRACT

The Cu2+, Mn2+, and Fe3+ complexes of a 14 membered macrocycle were synthesized and their antioxidant capacities were evaluated against ABTS and DPPH radicals, with the objective of collecting insights into the biomimetic role of the central metal ions. The macrocycle, abbreviated as H2L14, is a derivative of EDTA cyclized with 1,4-diamine, and the moderately flexible macrocyclic frame permits the formation of [ML14·H2O] chelates with octahedral coordination geometries common among the metal ions. The metal complexes were characterized by electrospray-ionization mass spectrometry, Fourier transform infrared spectroscopy, and Raman and X-ray photoelectron spectroscopic methods, as well as thermogravimetric analysis; the octahedral coordination geometries with water coordination were optimized by DFT calculations. The antioxidant assays showed that [FeL14·H2O]+ was able to scavenge synthetic radicals with moderate capacity, whereas the other metal chelates did not show significant activity. The Raman spectrum of DPPH in solution suggests that interaction was operative between the Fe3+ chelate and the radical so as to cause scavenging capability. The nature of the central metal ions is a controlling factor for antioxidant capacity, as every metal chelate carries the same coordination geometry.


Subject(s)
Antioxidants/chemical synthesis , Coordination Complexes/chemical synthesis , Edetic Acid/chemistry , Macrocyclic Compounds/chemical synthesis , Antioxidants/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Density Functional Theory , Iron/chemistry , Macrocyclic Compounds/chemistry , Manganese/chemistry , Molecular Structure , Spectrometry, Mass, Electrospray Ionization , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
18.
Environ Res ; 177: 108615, 2019 10.
Article in English | MEDLINE | ID: mdl-31400562

ABSTRACT

Norfloxacin (NOR) is a synthetic broad-spectrum fluoroquinolone antibiotic classified as an emerging contaminant. Here, we investigate Mn(III) porphyrin-catalyzed NOR degradation using peroxides or peracids (H2O2, t-BuOOH, or Oxone®) as oxidants. We evaluate three Mn(III) porphyrins: the 1st-generation tetraphenylporphyrin and 2nd -generation porphyrins bearing halogen atoms at the ortho-positions of the porphyrin macrocycle meso-aryl groups. Experiments were carried out in aqueous medium under mild conditions. NOR degradation was 67%. Products were proposed by mass spectrometry (MS) analysis. Oxone® was the best oxidant for NOR degradation despite its possible decomposition in the reaction medium. The second-generation Mn(III) porphyrins were more resistant than the first-generation Mn(III) porphyrin, indicating that the bulky groups introduced into the porphyrin macrocycle meso-aryl groups led to more robust catalysts. The degradation products did not present cytotoxic behavior under the employed conditions. In conclusion, Mn(III) porphyrin-catalyzed NOR degradation is a promising strategy to degrade fluoroquinolones and other pollutants.


Subject(s)
Anti-Bacterial Agents/chemistry , Cytochrome P-450 Enzyme System/metabolism , Manganese/chemistry , Norfloxacin/chemistry , Porphyrins/analysis , Water Pollutants, Chemical/chemistry , Biomimetics , Catalysis , Hydrogen Peroxide , Oxidation-Reduction
19.
J Mater Sci Mater Med ; 30(7): 86, 2019 Jul 13.
Article in English | MEDLINE | ID: mdl-31302783

ABSTRACT

Bioactive glasses (BGs) are widely used for bone regeneration, and allow the incorporation of different ions with therapeutic properties into the glass network. Amongst the different ions with therapeutic benefits, manganese (Mn) has been shown to influence bone metabolism and activate human osteoblasts integrins, improving cell adhesion, proliferation and spreading. Mn has also been incorporated into bioceramics as a therapeutic ion for improved osteogenesis. Here, up to 4.4 mol% MnO was substituted for CaO in the 58S composition (60 mol% SiO2, 36 mol% CaO, 4 mol% P2O5) and its effects on the glass properties and capability to influence the osteogenic differentiation were evaluated. Mn-containing BGs with amorphous structure, high specific surface area and nanoporosity were obtained. The presence of Mn2+ species was confirmed by X-ray photoelectron spectroscopy (XPS). Mn-containing BGs presented no cytotoxic effect on human mesenchymal stem cells (hMSCs) and enabled sustained ion release in culture medium. hMSCs osteogenic differentiation stimulation and influence on the mineralisation process was also confirmed through the alkaline phosphatase (ALP) activity, and expression of osteogenic differentiation markers, such as collagen type I, osteopontin and osteocalcin, which presented higher expression in the presence of Mn-containing samples compared to control. Results show that the release of manganese ions from bioactive glass provoked human mesenchymal stem cell (hMSC) differentiation down a bone pathway, whereas hMSCs exposed to the Mn-free glass did not differentiate. Mn incorporation offers great promise for obtaining glasses with superior properties for bone tissue regeneration.


Subject(s)
Ceramics/pharmacology , Manganese/chemistry , Osteogenesis/physiology , Phase Transition , Alkaline Phosphatase/metabolism , Bone Marrow Cells/cytology , Bone Regeneration , Calcification, Physiologic/drug effects , Cell Adhesion , Cell Differentiation , Cell Proliferation , Glass , Humans , Ions , Materials Testing , Microscopy, Fluorescence , Osteoblasts/cytology , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared
20.
J Hazard Mater ; 378: 120748, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31226586

ABSTRACT

Atrazine (ATZ) is an herbicide that has been considered an environmental pollutant worldwide. ATZ contaminates groundwaters and can persist in soils for up to a year causing several environmental and health problems. This study aimed to investigate ATZ degradation catalyzed by manganese porphyrins as biomimetic cytochrome P450 models. We used PhIO, PhI(OAc)2, H2O2, t-BuOOH, m-CPBA, or Oxone® as oxidant under mild conditions and evaluated a range of manganese porphyrins as catalyst. Concerning oxidant, iodosylbenzene provided the best result-ATZ degradation catalyzed by one of the studied manganese porphyrins in acetonitrile was as high as 47%. We studied the same catalyst/oxidant systems in natural water from a Brazilian river as solvent and obtained up to 100% ATZ degradation when iodobenzene diacetate was the oxidant, regardless of the manganese porphyrin. Besides the already known ATZ degradation products, we also identified unexpected degradation compounds (ring-opening products). Toxicity tests showed that the latter products were capable of proliferate blood cells because they did not show toxicity under the evaluated conditions.


Subject(s)
Atrazine/chemistry , Biodegradation, Environmental , Leukocytes, Mononuclear/drug effects , Porphyrins/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Acetonitriles/chemistry , Biomimetics , Brazil , Catalysis , Cell Survival/drug effects , Herbicides , Humans , Iodobenzenes/chemistry , Manganese/chemistry , Oxidants/chemistry , Peroxides/chemistry , Pesticides/chemistry , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL