Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.397
1.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38719750

Celiac disease (CD) is an autoimmune enteropathy resulting from an interaction between diet, genome, and immunity. Although many patients respond to a gluten-free diet, in a substantive number of individuals, the intestinal injury persists. Thus, other factors might amplify the ongoing inflammation. Candida albicans is a commensal fungus that is well adapted to the intestinal life. However, specific conditions increase Candida pathogenicity. The hypothesis that Candida may be a trigger in CD has been proposed after the observation of similarity between a fungal wall component and two CD-related gliadin T-cell epitopes. However, despite being implicated in intestinal disorders, Candida may also protect against immune pathologies highlighting a more intriguing role in the gut. Herein, we postulated that a state of chronic inflammation associated with microbial dysbiosis and leaky gut are favorable conditions that promote C. albicans pathogenicity eventually contributing to CD pathology via a mast cells (MC)-IL-9 axis. However, the restoration of immune and microbial homeostasis promotes a beneficial C. albicans-MC cross-talk favoring the attenuation of CD pathology to alleviate CD pathology and symptoms.


Candida albicans , Celiac Disease , Homeostasis , Mast Cells , Celiac Disease/immunology , Celiac Disease/microbiology , Celiac Disease/metabolism , Humans , Candida albicans/pathogenicity , Candida albicans/immunology , Mast Cells/immunology , Mast Cells/metabolism , Gastrointestinal Microbiome/immunology , Dysbiosis/immunology , Candidiasis/immunology , Candidiasis/microbiology , Animals , Candida/pathogenicity , Candida/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism
2.
Nat Commun ; 15(1): 4521, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806452

Topologically associated domains (TADs) restrict promoter-enhancer interactions, thereby maintaining the spatiotemporal pattern of gene activity. However, rearrangements of the TADs boundaries do not always lead to significant changes in the activity pattern. Here, we investigated the consequences of the TAD boundaries deletion on the expression of developmentally important genes encoding tyrosine kinase receptors: Kit, Kdr, Pdgfra. We used genome editing in mice to delete the TADs boundaries at the Kit locus and characterized chromatin folding and gene expression in pure cultures of fibroblasts, mast cells, and melanocytes. We found that although Kit is highly active in both mast cells and melanocytes, deletion of the TAD boundary between the Kit and Kdr genes results in ectopic activation only in melanocytes. Thus, the epigenetic landscape, namely the mutual arrangement of enhancers and actively transcribing genes, is important for predicting the consequences of the TAD boundaries removal. We also found that mice without a TAD border between the Kit and Kdr genes have a phenotypic manifestation of the mutation - a lighter coloration. Thus, the data obtained shed light on the principles of interaction between the 3D chromatin organization and epigenetic marks in the regulation of gene activity.


Chromatin , Fibroblasts , Mast Cells , Melanocytes , Proto-Oncogene Proteins c-kit , Animals , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Mice , Mast Cells/metabolism , Melanocytes/metabolism , Fibroblasts/metabolism , Chromatin/metabolism , Chromatin/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Promoter Regions, Genetic/genetics , Enhancer Elements, Genetic/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Epigenesis, Genetic , Genetic Loci , Mice, Inbred C57BL , Organ Specificity/genetics , Gene Editing , Ectopic Gene Expression , Male
3.
Immunohorizons ; 8(5): 371-383, 2024 May 01.
Article En | MEDLINE | ID: mdl-38780542

Our previous work demonstrated that basophils regulate a suite of malaria phenotypes, including intestinal mastocytosis and permeability, the immune response to infection, gametocytemia, and parasite transmission to the malaria mosquito Anopheles stephensi. Given that activated basophils are primary sources of the regulatory cytokines IL-4 and IL-13, we sought to examine the contributions of these mediators to basophil-dependent phenotypes in malaria. We generated mice with basophils depleted for IL-4 and IL-13 (baso IL-4/IL-13 (-)) and genotype controls (baso IL-4/IL-13 (+)) by crossing mcpt8-Cre and Il4/Il13fl/fl mice and infected them with Plasmodium yoelii yoelii 17XNL. Conditional deletion was associated with ileal mastocytosis and mast cell (MC) activation, increased intestinal permeability, and increased bacterial 16S levels in blood, but it had no effect on neutrophil activation, parasitemia, or transmission to A. stephensi. Increased intestinal permeability in baso IL-4/IL-13 (-) mice was correlated with elevated plasma eotaxin (CCL11), a potent eosinophil chemoattractant, and increased ileal MCs, proinflammatory IL-17A, and the chemokines MIP-1α (CCL3) and MIP-1ß (CCL4). Blood bacterial 16S copies were positively but weakly correlated with plasma proinflammatory cytokines IFN-γ and IL-12p40, suggesting that baso IL-4/IL-13 (-) mice failed to control bacterial translocation into the blood during malaria infection. These observations suggest that basophil-derived IL-4 and IL-13 do not contribute to basophil-dependent regulation of parasite transmission, but these cytokines do orchestrate protection of intestinal barrier integrity after P. yoelii infection. Specifically, basophil-dependent IL-4/IL-13 control MC activation and prevent infection-induced intestinal barrier damage and bacteremia, perhaps via regulation of eosinophils, macrophages, and Th17-mediated inflammation.


Bacterial Translocation , Basophils , Interleukin-13 , Interleukin-4 , Malaria , Plasmodium yoelii , Animals , Interleukin-13/metabolism , Basophils/immunology , Basophils/metabolism , Malaria/immunology , Mice , Plasmodium yoelii/immunology , Interleukin-4/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred C57BL , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/parasitology , Mice, Knockout , Female , Anopheles/parasitology , Anopheles/immunology , Anopheles/microbiology
4.
Front Immunol ; 15: 1353922, 2024.
Article En | MEDLINE | ID: mdl-38745645

Introduction: During an innate inflammation, immune cells form distinct pro- and anti-inflammatory regions around pathogen-containing core-regions. Mast cells are localized in an anti-inflammatory microenvironment during the resolution of an innate inflammation, suggesting antiinflammatory roles of these cells. Methods: High-content imaging was used to investigated mast cell-dependent changes in the regional distribution of immune cells during an inflammation, induced by the toll-like receptor (TLR)-2 agonist zymosan. Results: The distance between the zymosan-containing core-region and the anti-inflammatory region, described by M2-like macrophages, increased in mast cell-deficient mice. Absence of mast cells abolished dendritic cell (DC) activation, as determined by CD86-expression and localized the DCs in greater distance to zymosan particles. The CD86- DCs had a higher expression of the pro-inflammatory interleukins (IL)-1ß and IL-12/23p40 as compared to activated CD86+ DCs. IL-4 administration restored CD86 expression, cytokine expression profile and localization of the DCs in mast cell-deficient mice. The IL-4 effects were mast cell-specific, since IL-4 reduction by eosinophil depletion did not affect activation of DCs. Discussion: We found that mast cells induce DC activation selectively at the site of inflammation and thereby determine their localization within the inflammation. Overall, mast cells have antiinflammatory functions in this inflammation model and limit the size of the pro-inflammatory region surrounding the zymosan-containing core region.


Dendritic Cells , Inflammation , Interleukin-4 , Mast Cells , Mice, Inbred C57BL , Toll-Like Receptor 2 , Zymosan , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice , Inflammation/immunology , Inflammation/metabolism , Interleukin-4/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Mice, Knockout
5.
J Immunol Methods ; 529: 113682, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705372

BACKGROUND: The measurement of antigen-specific serum IgE is common in clinical assessments of type I allergies. However, the interaction between antigens and IgE won't invariably trigger mast cell activation. We previously developed the IgE crosslinking-induced luciferase expression (EXiLE) method using the RS-ATL8 mast cell line; however, the method may not be sensitive enough in some cases. METHODS: In this study, we introduced an NF-AT-regulated luciferase reporter gene into the RBL-2H3 rat mast cell line and expressed a chimeric high-affinity IgE receptor (FcεRI) α chain gene, comprising an extracellular domain from humans and transmembrane/intracellular domains from rats. RESULTS: We generated multiple clones expressing the chimeric receptor. Based on their responsiveness and proliferation, we selected the HuRa-40 clone. This cell line exhibited significantly elevated human α chain expression compared to RS-ATL8 cells, demonstrating a 10-fold enhancement of antigen-specific reactivity. Reproducibility across different batches and operators was excellent. Moreover, we observed a detectable response inhibition by an anti-allergy drugs (omalizumab and cyclosporin A). CONCLUSIONS: HuRa-40 cells-which carry the human-rat chimeric IgE receptor-comprise a valuable reporter cell line for the EXiLE method. Their versatility extends to various applications and facilitates high-throughput screening of anti-allergy drugs.


Immunoglobulin E , Luciferases , Mast Cells , Receptors, IgE , Receptors, IgE/metabolism , Receptors, IgE/genetics , Receptors, IgE/immunology , Animals , Humans , Mast Cells/immunology , Mast Cells/metabolism , Rats , Immunoglobulin E/immunology , Luciferases/genetics , Luciferases/metabolism , Cell Line , Genes, Reporter , Reproducibility of Results , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism
6.
Exp Dermatol ; 33(5): e15091, 2024 May.
Article En | MEDLINE | ID: mdl-38711220

KIT ligand and its associated receptor KIT serve as a master regulatory system for both melanocytes and mast cells controlling survival, migration, proliferation and activation. Blockade of this pathway results in cell depletion, while overactivation leads to mastocytosis or melanoma. Expression defects are associated with pigmentary and mast cell disorders. KIT ligand regulation is complex but efficient targeting of this system would be of significant benefit to those suffering from melanocytic or mast cell disorders. Herein, we review the known associations of this pathway with cutaneous diseases and the regulators of this system both in skin and in the more well-studied germ cell system. Exogenous agents modulating this pathway will also be presented. Ultimately, we will review potential therapeutic opportunities to help our patients with melanocytic and mast cell disease processes potentially including vitiligo, hair greying, melasma, urticaria, mastocytosis and melanoma.


Mast Cells , Mastocytosis , Melanocytes , Proto-Oncogene Proteins c-kit , Stem Cell Factor , Humans , Stem Cell Factor/metabolism , Melanocytes/metabolism , Mast Cells/metabolism , Mastocytosis/drug therapy , Mastocytosis/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Melanoma/metabolism , Melanoma/drug therapy , Vitiligo/metabolism , Vitiligo/drug therapy , Vitiligo/therapy , Pigmentation Disorders/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/drug therapy , Animals
7.
Cells ; 13(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38786055

Infertility is an important personal and society disease, of which the male factor represents half of all causes. One of the aspects less studied in male infertility is the immunological testicular microenvironment. Mast cells (MCs), having high potential for regulating spermatogenesis due to fine-tuning the state of the integrative buffer metabolic environment, are one of the most crucial cellular subpopulations of the testicular interstitium. One important component of the MC secretome is proteases that can act as proinflammatory agents and in extracellular matrix (ECM) remodeling. In the testis, MCs are an important cell component of the testicular interstitial tissue (TIT). However, there are still no studies addressing the analysis of a specific MC protease-carboxypeptidase A3 (CPA3)-in cases with altered spermatogenesis. The cytological and histotopographic features of testicular CPA3+ MCs were examined in a study involving 34 men with azoospermia. As revealed, in cases with non-obstructive azoospermia, a higher content of CPA3+ MCs in the TIT and migration to the microvasculature and peritubular tissue of seminiferous tubules were observed when compared with cases with obstructive azoospermia. Additionally, a high frequency of CPA3+ MCs colocalization with fibroblasts, Leydig cells, and elastic fibers was detected in cases with NOA. Thus, CPA3 seems to be of crucial pathogenetic significance in the formation of a profibrogenic background of the tissue microenvironment, which may have direct and indirect effects on spermatogenesis.


Azoospermia , Mast Cells , Testis , Male , Humans , Mast Cells/metabolism , Mast Cells/pathology , Azoospermia/pathology , Azoospermia/metabolism , Testis/metabolism , Testis/pathology , Adult , Carboxypeptidases A/metabolism , Spermatogenesis
8.
Int J Biol Macromol ; 269(Pt 2): 132128, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723807

Selenium-rich tea polysaccharides (Se-TPS) were extracted via high hydrostatic pressure technology with a pressure of 400 MPa (200-500 MPa) for 10 min (3-20 min) at a material-to-solvent ratio of 1:40 (1:20-1:50). Subsequently, Se-TPS1-4 were isolated and purified, with Se-TPS3-4 as the main components. A spectral analysis proved that Se, which has antioxidant activity, existed. An in vitro study found that among Se-TPS, Se-TPS3-4 attenuated the release of ß-hexosaminidase, histamine, and interleukin (IL)-4. Furthermore, in vivo experiments revealed that treatment with Se-TPS downregulated IL-4 levels and upregulated TGF-ß and interferon-γ levels to improve imbalanced Th1/Th2 immunity in tropomyosin-sensitized mice. Moreover, Se-TPS promoted Lactobacillus and norank_f_Muribaculaceaek growth and upregulated metabolites such as genipin and coniferyl alcohol. Overall, these results showed the strong anti-allergy potential of Se-TPS by regulating mast cell-mediated allergic inflammatory responses and microbiota regulation, highlighting the potential of Se-TPS as a novel therapeutic agent to regulate allergy-associated metabolic disorders.


Gastrointestinal Microbiome , Hydrostatic Pressure , Polysaccharides , Tea , Animals , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Tea/chemistry , Mast Cells/metabolism , Mast Cells/drug effects , Mast Cells/immunology , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/chemistry , Anti-Allergic Agents/isolation & purification , beta-N-Acetylhexosaminidases/metabolism , Cytokines/metabolism , Male , Tropomyosin/metabolism , Tropomyosin/immunology
9.
Medicine (Baltimore) ; 103(20): e38117, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758896

Human immunodeficiency virus (HIV) infection continues to pose significant global health challenges, necessitating advancements in diagnostic and prognostic approaches to optimize disease management. While primarily recognized for their roles in allergic responses, mast cells have emerged as potential markers with diagnostic and prognostic significance in the context of HIV/AIDS. This paper aims to synthesize current insights and delineate future directions regarding the utility of mast cell markers in diagnosing HIV infection, predicting disease progression, and guiding therapeutic strategies. Mast cells, equipped with distinct markers such as tryptase, chymase, carboxypeptidase A3, and c-kit/CD117 receptors, exhibit tissue-specific expression patterns that offer potential as diagnostic indicators for HIV infection. Understanding the dynamics of these markers in different tissues and body fluids holds promise for accurate HIV diagnosis, disease staging, and monitoring treatment responses. Moreover, the prognostic significance of mast cell markers in HIV/AIDS lies in their potential to predict disease progression, immune dysregulation, and clinical outcomes. The integration of mast cell markers into clinical applications offers promising avenues for refining diagnostic assays, patient monitoring protocols, and therapeutic strategies in HIV/AIDS. Future research directions involve the development of novel diagnostic tools and targeted therapies based on mast cell-specific markers, potentially revolutionizing clinical practice and enhancing patient care in the management of HIV/AIDS. Continued investigations into mast cell markers' diagnostic and prognostic implications hold immense potential to advance our understanding and improve outcomes in HIV/AIDS management.


Biomarkers , HIV Infections , Mast Cells , Humans , Mast Cells/metabolism , Biomarkers/metabolism , Biomarkers/analysis , Prognosis , HIV Infections/diagnosis , Tryptases/blood , Tryptases/metabolism , Disease Progression , Carboxypeptidases A/metabolism , Chymases/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Acquired Immunodeficiency Syndrome/diagnosis
10.
J Headache Pain ; 25(1): 87, 2024 May 28.
Article En | MEDLINE | ID: mdl-38802819

BACKGROUND: Pain, an evolutionarily conserved warning system, lets us recognize threats and motivates us to adapt to those threats. Headache pain from migraine affects approximately 15% of the global population. However, the identity of any putative threat that migraine or headache warns us to avoid is unknown because migraine pathogenesis is poorly understood. Here, we show that a stress-induced increase in pituitary adenylate cyclase-activating polypeptide-38 (PACAP38), known as an initiator of allosteric load inducing unbalanced homeostasis, causes headache-like behaviour in male mice via mas-related G protein-coupled receptor B2 (MrgprB2) in mast cells. METHODS: The repetitive stress model and dural injection of PACAP38 were performed to induce headache behaviours. We assessed headache behaviours using the facial von Frey test and the grimace scale in wild-type and MrgprB2-deficient mice. We further examined the activities of trigeminal ganglion neurons using in vivo Pirt-GCaMP Ca2+ imaging of intact trigeminal ganglion (TG). RESULTS: Repetitive stress and dural injection of PACAP38 induced MrgprB2-dependent headache behaviours. Blood levels of PACAP38 were increased after repetitive stress. PACAP38/MrgprB2-induced mast cell degranulation sensitizes the trigeminovascular system in dura mater. Moreover, using in vivo intact TG Pirt-GCaMP Ca2+ imaging, we show that stress or/and elevation of PACAP38 sensitized the TG neurons via MrgprB2. MrgprB2-deficient mice showed no sensitization of TG neurons or mast cell activation. We found that repetitive stress and dural injection of PACAP38 induced headache behaviour through TNF-a and TRPV1 pathways. CONCLUSIONS: Our findings highlight the PACAP38-MrgprB2 pathway as a new target for the treatment of stress-related migraine headache. Furthermore, our results pertaining to stress interoception via the MrgprB2/PACAP38 axis suggests that migraine headache warns us of stress-induced homeostatic imbalance.


Mast Cells , Pituitary Adenylate Cyclase-Activating Polypeptide , Stress, Psychological , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Mast Cells/metabolism , Male , Mice , Stress, Psychological/complications , Stress, Psychological/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Trigeminal Ganglion/metabolism , Headache/etiology , Headache/metabolism , Headache/physiopathology , Mice, Knockout , Mice, Inbred C57BL , Disease Models, Animal
11.
Mol Immunol ; 170: 60-75, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626622

Liver diseases caused by viral infections, alcoholism, drugs, or chemical poisons are a significant health problem: Liver diseases are a leading contributor to mortality, with approximately 2 million deaths per year worldwide. Liver fibrosis, as a common liver disease characterized by excessive collagen deposition, is associated with high morbidity and mortality, and there is no effective treatment. Numerous studies have shown that the accumulation of mast cells (MCs) in the liver is closely associated with liver injury caused by a variety of factors. This study investigated the relationship between MCs and carbon tetrachloride (CCl4)-induced liver fibrosis in rats and the effects of the MC stabilizers sodium cromoglycate (SGC) and ketotifen (KET) on CCl4-induced liver fibrosis. The results showed that MCs were recruited or activated during CCl4-induced liver fibrosis. Coadministration of SCG or KET alleviated the liver fibrosis by decreasing SCF/c-kit expression, inhibiting the TGF-ß1/Smad2/3 pathway, depressing the HIF-1a/VEGF pathway, activating Nrf2/HO-1 pathway, and increasing the hepatic levels of GSH, GSH-Px, and GR, thereby reducing hepatic oxidative stress. Collectively, recruitment or activation of MCs is linked to liver fibrosis and the stabilization of MCs may provide a new approach to the prevention of liver fibrosis.


Carbon Tetrachloride , Cromolyn Sodium , Liver Cirrhosis , Liver , Mast Cells , Animals , Mast Cells/metabolism , Mast Cells/immunology , Mast Cells/drug effects , Carbon Tetrachloride/toxicity , Rats , Male , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/immunology , Liver Cirrhosis/chemically induced , Cromolyn Sodium/pharmacology , Liver/pathology , Liver/metabolism , Liver/drug effects , Transforming Growth Factor beta1/metabolism , Rats, Sprague-Dawley , Ketotifen/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Vascular Endothelial Growth Factor A/metabolism
12.
J Ethnopharmacol ; 330: 118105, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38631485

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) XYQFT is composed of 10 herbs. According to the NHIRD, XYQFT is one of the top ten most commonly used TCM prescriptions for asthma treatment. AIM OF THE STUDY: The aim of this study was to explore whether XYQFT reduces asthma symptoms in a mouse model of chronic asthma and determine the immunomodulatory mechanism of mast cells. MATERIALS AND METHODS: BALB/c mice were intratracheally (it) stimulated with 40 µL (2.5 µg/µL) of Dermatophagoides pteronyssinus (Der p) once a week for 6 consecutive weeks and orally administered XYQFT at 1 g/kg 30 min before Der p stimulation. Airway hypersensitivity, inflammatory cells in the BALF and total IgE in the blood were assessed in mice. In addition, RBL-2H3 cells (mast cells) were stimulated with DNP-IgE, after which different concentrations of XYQFT were added for 30 min to evaluate the effect of XYQFT on the gene expression and degranulation of DNP-stimulated RBL-2H3 cells. After the compounds in XYQFT were identified using LC‒MS/MS, the PBD method was used to identify the chemical components that inhibited the expression of the GM-CSF and COX-2 genes in mast cells. RESULTS: The airway hypersensitivity assay demonstrated that XYQFT significantly alleviated Der p-induced airway hypersensitivity. Moreover, cell counting and typing of bronchoalveolar lavage fluid revealed a significant reduction in Der p-induced inflammatory cell infiltration with XYQFT treatment. ELISA examination further indicated a significant decrease in Der p-induced total IgE levels in serum following XYQFT administration. In addition, XYQFT inhibited the degranulation and expression of genes (IL-3, IL-4, ALOX-5, IL-13, GM-CSF, COX-2, TNF-α, and MCP-1) in RBL-2H3 cells after DNP stimulation. The compounds timosaponin AIII and genkwanin in XYQFT were found to be key factors in the inhibition of COX-2 and GM-CSF gene expression in mast cells. CONCLUSION: By regulating mast cells, XYQFT inhibited inflammatory cell infiltration, airway hypersensitivity and specific immunity in a mouse model of asthma. In addition, XYQFT synergistically inhibited the expression of the GM-CSF and COX-2 genes in mast cells through timosaponin AIII and genkwanin.


Asthma , Cyclooxygenase 2 , Drugs, Chinese Herbal , Granulocyte-Macrophage Colony-Stimulating Factor , Mast Cells , Mice, Inbred BALB C , Animals , Drugs, Chinese Herbal/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Mast Cells/drug effects , Mast Cells/metabolism , Asthma/drug therapy , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Mice , Rats , Immunoglobulin E/blood , Male , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cell Line , Anti-Asthmatic Agents/pharmacology , Disease Models, Animal
13.
Immunity ; 57(5): 1056-1070.e5, 2024 May 14.
Article En | MEDLINE | ID: mdl-38614091

A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEß7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.


Interleukin-33 , Mast Cells , Phosphate-Binding Proteins , Mast Cells/immunology , Mast Cells/metabolism , Animals , Interleukin-33/metabolism , Interleukin-33/immunology , Mice , Phosphate-Binding Proteins/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Cell Communication/immunology
14.
Cells ; 13(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38667305

The significant role of mast cells in the development of allergic and inflammatory diseases is well-established. Among the various mechanisms of mast cell activation, the interaction of antigens/allergens with IgE and the subsequent binding of this complex to the high-affinity IgE receptor FcεRI stand out as the most studied and fundamental pathways. This activation process leads to the rapid exocytosis of granules containing preformed mediators, followed by the production of newly synthesized mediators, including a diverse array of cytokines, chemokines, arachidonic acid metabolites, and more. While conventional approaches to allergy control primarily focus on allergen avoidance and the use of antihistamines (despite their associated side effects), there is increasing interest in exploring novel methods to modulate mast cell activity in modern medicine. Recent evidence suggests a role for autophagy in mast cell activation, offering potential avenues for utilizing low-molecular-weight autophagy regulators in the treatment of allergic diseases. More specifically, mitochondria, which play an important role in the regulation of autophagy as well as mast cell activation, emerge as promising targets for drug development. This review examines the existing literature regarding the involvement of the molecular machinery associated with autophagy in FcεRI-dependent mast cell activation.


Autophagy , Mast Cells , Receptors, IgE , Autophagy/drug effects , Mast Cells/metabolism , Mast Cells/immunology , Humans , Receptors, IgE/metabolism , Animals , Mitochondria/metabolism , Hypersensitivity/immunology , Hypersensitivity/drug therapy
15.
Cardiovasc Res ; 120(7): 681-698, 2024 May 29.
Article En | MEDLINE | ID: mdl-38630620

Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.


Cardiovascular Diseases , Mast Cells , Humans , Mast Cells/metabolism , Mast Cells/immunology , Mast Cells/drug effects , Mast Cells/pathology , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Signal Transduction , Phenotype , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Cardiovascular Agents/therapeutic use , Cardiovascular Agents/pharmacology , Cell Plasticity/drug effects , Inflammation Mediators/metabolism
16.
Inflamm Res ; 73(6): 945-960, 2024 Jun.
Article En | MEDLINE | ID: mdl-38587532

OBJECTIVE AND DESIGN: Mast cells (MCs), as the fastest immune responders, play a critical role in the progression of neuroinflammation-related diseases, especially in depression. Quercetin (Que) and kaempferol (Kae), as two major diet-derived flavonoids, inhibit MC activation and exhibit significant antidepressant effect due to their anti-inflammatory capacity. The study aimed to explore the mechanisms of inhibitory effect of Que and Kae on MC activation, and whether Que and Kae suppress hippocampal mast cell activation in LPS-induced depressive mice. SUBJECTS AND TREATMENT: In vitro assays, human mast cells (HMC-1) were pretreated with Que or Kae for 1 h, then stimulated by phorbol 12-myristate 13-acetate (PMA) and 2,5-di-t-butyl-1,4-benzohydroquinone (tBHQ) for 3 h or 12 h. In vivo assays, Que or Kae was administered by oral gavage once daily for 14 days and then lipopolysaccharide (LPS) intraperitoneally injection to induce depressive behaviors. METHODS: The secretion and expression of TNF-α were determined by ELISA and Western blotting. The nuclear factor of activated T cells (NFAT) transcriptional activity was measured in HMC-1 stably expressing NFAT luciferase reporter gene. Nuclear translocation of NFATc2 was detected by nuclear protein extraction and also was fluorescently detected in HMC-1 stably expressing eGFP-NFATc2. We used Ca2+ imaging to evaluate changes of store-operated calcium entry (SOCE) in HMC-1 stably expressing fluorescent Ca2+ indicator jGCamP7s. Molecular docking was used to assess interaction between the Que or Kae and calcium release-activated calcium modulator (ORAI). The  hippocampal mast cell accumulation and activation  were detected by toluidine blue staining and immunohistochemistry with ß-tryptase. RESULTS: In vitro assays of HMC-1 activated by PtBHQ (PMA and tBHQ), Que and Kae significantly decreased expression and secretion of TNF-α. Moreover, NFAT transcriptional activity and nuclear translocation of NFATc2 were remarkably inhibited by Que and Kae. In addition, the Ca2+ influx mediated by SOCE was suppressed by Que, Kae and the YM58483 (ORAI inhibitor), respectively. Importantly, the combination of YM58483 with Que or Kae had no additive effect on the inhibition of SOCE. The molecular docking also showed that Que and Kae both exhibit high binding affinities with ORAI at the same binding site as YM58483. In vivo assays, Que and Kae significantly reversed LPS-induced depression-like behaviors in mice, and inhibited hippocampal mast cell activation  in LPS-induced depressive mice. CONCLUSIONS: Our results indicated that suppression of SOCE/NFATc2 pathway-mediated by ORAI channels may be the mechanism of inhibitory effect of Que and Kae on MC activation, and also suggested Que and Kae may exert the antidepressant effect through suppressing hippocampal mast cell activation.


Depression , Hippocampus , Kaempferols , Lipopolysaccharides , Mast Cells , NFATC Transcription Factors , Quercetin , Animals , Mast Cells/drug effects , Mast Cells/metabolism , NFATC Transcription Factors/metabolism , Kaempferols/pharmacology , Kaempferols/therapeutic use , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Quercetin/pharmacology , Quercetin/therapeutic use , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Cell Line , Signal Transduction/drug effects , Mice , Calcium/metabolism , Calcium Channels/metabolism , Mice, Inbred C57BL , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
17.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674081

Marrubiin is a diterpene with a long history of a wide range of biological activities. In this study, the anti-inflammatory effects of marrubiin were investigated using several in vitro and in vivo assays. Marrubiin inhibited carrageenan-induced peritoneal inflammation by preventing inflammatory cell infiltration and peritoneal mast cell degranulation. The anti-inflammatory activity was further demonstrated by monitoring a set of biochemical parameters, showing that the peritoneal fluid of animals treated with marrubiin had lower levels of proteins and lower myeloperoxidase activity compared with the fluid of animals that were not treated. Marrubiin exerted the most pronounced cytotoxic activity towards peripheral mononuclear cells, being the main contributors to peritoneal inflammation. Additionally, a moderate lipoxygenase inhibition activity of marrubiin was observed.


Anti-Inflammatory Agents , Carrageenan , Diterpenes , Mast Cells , Animals , Carrageenan/adverse effects , Mice , Diterpenes/pharmacology , Mast Cells/drug effects , Mast Cells/metabolism , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL , Peritonitis/chemically induced , Peritonitis/drug therapy , Peritonitis/metabolism , Peritonitis/pathology , Male , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/chemically induced , Inflammation/pathology , Cell Degranulation/drug effects , Peroxidase/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism
18.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674083

The connective tissue mast cell (MC), a sentinel tissue-residing secretory immune cell, has been preserved in all vertebrate classes since approximately 500 million years. No physiological role of the MC has yet been established. Considering the power of natural selection of cells during evolution, it is likely that the MCs exert essential yet unidentified life-promoting actions. All vertebrates feature a circulatory system, and the MCs interact readily with the vasculature. It is notable that embryonic MC progenitors are generated from endothelial cells. The MC hosts many surface receptors, enabling its activation via a vast variety of potentially harmful exogenous and endogenous molecules and via reproductive hormones in the female sex organs. Activated MCs release a unique composition of preformed and newly synthesized bioactive molecules, like heparin, histamine, serotonin, proteolytic enzymes, cytokines, chemokines, and growth factors. MCs play important roles in immune responses, tissue remodeling, cell proliferation, angiogenesis, inflammation, wound healing, tissue homeostasis, health, and reproduction. As recently suggested, MCs enable perpetuation of the vertebrates because of key effects-spanning generations-in ovulation and pregnancy, as in life-preserving activities in inflammation and wound healing from birth till reproductive age, thus creating a permanent life-sustaining loop. Here, we present recent advances that further indicate that the MC is a specific life-supporting and progeny-safeguarding cell.


Mast Cells , Reproduction , Mast Cells/metabolism , Humans , Animals , Connective Tissue/metabolism , Female
19.
Front Cell Infect Microbiol ; 14: 1358873, 2024.
Article En | MEDLINE | ID: mdl-38638822

SARS-CoV-2-induced excessive inflammation in brain leads to damage of blood-brain barrier, hypoxic-ischemic injury, and neuron degeneration. The production of inflammatory cytokines by brain microvascular endothelial cells and microglia is reported to be critically associated with the brain pathology of COVID-19 patients. However, the cellular mechanisms for SARS-CoV-2-inducing activation of brain cells and the subsequent neuroinflammation remain to be fully delineated. Our research, along with others', has recently demonstrated that SARS-CoV-2-induced accumulation and activation of mast cells (MCs) in mouse lung could further induce inflammatory cytokines and consequent lung damages. Intracerebral MCs activation and their cross talk with other brain cells could induce neuroinflammation that play important roles in neurodegenerative diseases including virus-induced neuro-pathophysiology. In this study, we investigated the role of MC activation in SARS-CoV-2-induced neuroinflammation. We found that (1) SARS-CoV-2 infection triggered MC accumulation in the cerebrovascular region of mice; (2) spike/RBD (receptor-binding domain) protein-triggered MC activation induced inflammatory factors in human brain microvascular endothelial cells and microglia; (3) MC activation and degranulation destroyed the tight junction proteins in brain microvascular endothelial cells and induced the activation and proliferation of microglia. These findings reveal a cellular mechanism of SARS-CoV-2-induced neuroinflammation.


COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , SARS-CoV-2/metabolism , COVID-19/metabolism , Endothelial Cells/metabolism , Mast Cells/metabolism , Neuroinflammatory Diseases , Microglia/metabolism , Brain/metabolism , Inflammation/metabolism , Cytokines/metabolism
20.
Bioorg Chem ; 146: 107320, 2024 May.
Article En | MEDLINE | ID: mdl-38569323

Spleen tyrosine kinase (Syk) plays a crucial role as a target for allergy treatment due to its involvement in immunoreceptor signaling. The purpose of this study was to identify natural inhibitors of Syk and assess their effects on the IgE-mediated allergic response in mast cells and ICR mice. A list of eight compounds was selected based on pharmacophore and molecular docking, showing potential inhibitory effects through virtual screening. Among these compounds, sophoraflavanone G (SFG) was found to inhibit Syk activity in an enzymatic assay, with an IC50 value of 2.2 µM. To investigate the conformational dynamics of the SYK-SFG system, we performed molecular dynamics simulations. The stability of the binding between SFG and Syk was evaluated using root mean square deviation (RMSD) and root mean square fluctuation (RMSF). In RBL-2H3 cells, SFG demonstrated a dose-dependent suppression of IgE/BSA-induced mast cell degranulation, with no significant cytotoxicity observed at concentrations below 10.0 µM within 24 h. Furthermore, SFG reduced the production of TNF-α and IL-4 in RBL-2H3 cells. Mechanistic investigations revealed that SFG inhibited downstream signaling proteins, including phospholipase Cγ1 (PLCγ1), as well as mitogen-activated protein kinases (AKT, Erk1/2, p38, and JNK), in mast cells in a dose-dependent manner. Passive cutaneous anaphylaxis (PCA) experiments demonstrated that SFG could reduce ear swelling, mast cell degranulation, and the expression of COX-2 and IL-4. Overall, our findings identify naturally occurring SFG as a direct inhibitor of Syk that effectively suppresses mast cell degranulation both in vitro and in vivo.


Interleukin-4 , Mast Cells , Mice , Animals , Interleukin-4/metabolism , Interleukin-4/pharmacology , Mast Cells/metabolism , Passive Cutaneous Anaphylaxis , Molecular Docking Simulation , Immunoglobulin E/metabolism , Immunoglobulin E/pharmacology , Mice, Inbred ICR , Mice, Inbred BALB C
...