Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81.989
Filter
1.
Clin Oral Investig ; 28(8): 463, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39090476

ABSTRACT

OBJECTIVES: The first aim of this study was to determine whether there is a difference in degree of conversion (DC) of touch-cure cements polymerized by self-curing with adhesive or dual-curing under reduced light. The second aim was to compare interfacial adaptation of zirconia restoration cemented using touch-cure cements self-cured or dual-cured by reduced light. METHODS: The DC of touch-cure resin cements with adhesive was measured continuously using Fourier transform infrared spectrometry. Experimental groups differed depending on touch-cure cement. Each group had three subgroups of polymerization method. For subgroup 1, the DC was measured by self-curing. For subgroups 2 and 3, the DCs were measured by dual-curing with reduced light penetrating 3 mm and 1 mm zirconia blocks, respectively. For interfacial adaptation evaluation, Class I cavity was prepared on an extracted third molar, and zirconia restoration was fabricated. The restoration was cemented using the same cement. Groups and subgroups for interfacial adaptation were the same as those of the DC measurement. After thermo-cycling, interfacial adaptation at the tooth-restoration interface was evaluated using swept-source optical coherence tomography imaging. RESULTS: The DC of touch-cure cement differed depending on the measurement time, resin cement, and polymerization method (p < 0.05). Interfacial adaptation was different depending on the resin cement and polymerization method (p < 0.05). CONCLUSION: For touch-cure cement, light-curing with higher irradiance presented a higher DC and superior interfacial adaptation than light-curing with lower irradiance or self-curing. CLINICAL RELEVANCE: Although some adhesives accelerate the self-curing of touch-cure cement, light-curing for touch-cure cement is necessary for zirconia cementation.


Subject(s)
Materials Testing , Polymerization , Resin Cements , Zirconium , Resin Cements/chemistry , Zirconium/chemistry , Spectroscopy, Fourier Transform Infrared , Self-Curing of Dental Resins , Curing Lights, Dental , Light-Curing of Dental Adhesives , Surface Properties , In Vitro Techniques , Humans , Molar, Third , Dental Restoration, Permanent/methods
2.
Clin Oral Investig ; 28(8): 465, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098966

ABSTRACT

OBJECTIVE: To evaluate the effect of four different photoactivation protocols (according to "photoactivated faces" - mesial/distal, cervical/incisal or center - and "photoactivation time" - 6-3 s) of a high-power photo activator (Valo Cordless®-Ultradent) on the shear bond strength (SBS) between metal brackets and dental enamel and on the degree of conversion (DC) of an orthodontic resin. MATERIALS AND METHODS: 40 bovine incisor crowns were randomly assigned to 4 groups (n = 10). The brackets were bonded with Transbond XT® resin using 4 protocols according to the "photoactivation protocol" factor (which was subdivided into photoactivated faces and photoactivation time): V3C = 3 s + center; V6C = 6 s + center; V3M3D = 3 s on mesial + 3 s on distal; V3C3I = 3 s on cervical + 3 s on incisal. All the samples were stored for 4 months (water,37ºC) and then subjected to a SBS test (100KgF,1 mm/min). 40 resin discs were made to evaluate the monomer degree of conversion. Data from the SBS and DC were assessed by One-way ANOVA and Tukey's test (5%). Bond failures were analyzed according to the Adhesive Remnant Index (ARI) and evaluated by the Kruskal-Wallis test (5%). RESULTS: There was a statistically significant difference (p = 0.008) in the One-way ANOVA result for SBS values between all groups, but the protocols showed statistically similar results (p ≥ 0.05-Tukey's tests) concerning the photoactivated faces (V6C, V3M3D and V3C3I) and photoactivation time (V3C and V6C) factors individually. There was no statistically significant difference (p ≥ 0.05) in the One-way ANOVA result for DC values. CONCLUSION: The SBS and DC values will vary depending on the protocol applied. CLINICAL RELEVANCE: It is possible to maintain the bracket fixation quality with the use of a high-power LED photo activator associated with a shorter photoactivation time. However, it is assumed that not all types of protocols that might be applied will provide quality bonding, such as V3C, V3M3D and V3C3I, which may - depending on the SBS and DC values - affect the final treatment time, due to brackets debonding, or increase of possibility of damage to dental enamel during bracket removal. Clinical studies are suggested to confirm the hypotheses of this research.


Subject(s)
Dental Bonding , Dental Enamel , Dental Stress Analysis , Materials Testing , Orthodontic Brackets , Random Allocation , Resin Cements , Shear Strength , Animals , Cattle , Dental Bonding/methods , Resin Cements/chemistry , Dental Enamel/chemistry , Surface Properties , In Vitro Techniques , Time Factors , Tooth Crown , Polymerization
3.
Shanghai Kou Qiang Yi Xue ; 33(3): 235-238, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39104335

ABSTRACT

PURPOSE: The fatigue resistance of mechanical nickel-titanium files was tested by phase-locked infrared flaw detection method, in order to timely detect instrument wear, providing reference for clinical safe use and timely abandonment of nickel-titanium files. METHODS: Twenty sets of mechanical nickel-titanium files were selected from Reciproc-Blue(RB), MTWO and S3 respectively, and resin simulated root canals with 60° and 90° bending were prepared, which were divided into 6 subgroups. The fatigue value after use, the number of uses before breaking and the length of fracture of file 25# of each group of files were recorded and compared with SPSS 26.0 software package. RESULTS: With the increase of the times of use, the fatigue value of the three kinds of files increased gradually. Among the two types of curved root canals, the number of uses before fracture in RB group was significantly increased compared with that in MTWO group and S3 group (P<0.05). The number of uses of the three kinds of files in the 90° curved root canal were significantly less than in the corresponding groups in the 60° curved root canal(P<0.05). There was no significant difference in the length of fracture among the three kinds of files(P>0.05). CONCLUSIONS: Phase-locked infrared flaw detection method can be used for non-destructive testing and quantitative analysis of the fatigue degree of nickel-titanium files.


Subject(s)
Nickel , Titanium , Nickel/chemistry , Titanium/chemistry , Root Canal Preparation/instrumentation , Root Canal Preparation/methods , Materials Testing/methods , Equipment Failure , Stress, Mechanical , Dental Pulp Cavity
4.
Biomed Mater ; 19(5)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105245

ABSTRACT

Bioresorbable chitosan scaffolds have shown potential for osteochondral repair applications. Thein vivodegradation of chitosan, mediated by lysozyme and releasing glucosamine, enables progressive replacement by ingrowing tissue. Here the degradation process of a chitosan-nHA based bioresorbable scaffold was investigated for mass loss, mechanical properties and degradation products released from the scaffold when subjected to clinically relevant enzyme concentrations. The scaffold showed accelerated mass loss during the early stages of degradation but without substantial reduction in mechanical strength or structure deterioration. Although not cytotoxic, the medium in which the scaffold was degraded for over 2 weeks showed a transient decrease in mesenchymal stem cell viability, and the main degradation product (glucosamine) demonstrated a possible adverse effect on viability when added at its peak concentration. This study has implications for the design and biomedical application of chitosan scaffolds, underlining the importance of modelling degradation products to determine suitability for clinical translation.


Subject(s)
Cell Survival , Chitosan , Materials Testing , Mesenchymal Stem Cells , Tissue Engineering , Tissue Scaffolds , Chitosan/chemistry , Cell Survival/drug effects , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Animals , Tissue Engineering/methods , Biocompatible Materials/chemistry , Cells, Cultured , Glucosamine/chemistry , Humans , Muramidase/chemistry , Absorbable Implants
5.
Int J Esthet Dent ; 19(3): 282-293, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39092821

ABSTRACT

AIM: The objective of the present study was to evaluate the influence of different adhesive strategies regarding shear bond strength (SBS) of provisional resin--based materials bonded to the enamel surface as well as on the enamel surface roughness. MATERIALS AND METHODS: Bovine incisors were randomly divided into six groups (n = 10) according to the adhesive strategy used: BRControl (bis-acrylic resin); Spot-etch+BR (spot-etch + bis-acrylic resin); Spot--etchSB2+BR (spot-etch + adhesive + bis-acrylic resin); Spot-etchZ350Flow+BR (spot-etch + flowable composite resin + bis-acrylic resin); SBU+BR (universal adhesive + bis-acrylic resin); Spot-etchSBMP+Z350 (spot-etch + adhesive + composite resin). The enamel surface roughness was determined by a surface profil-ometer. An SBS test was performed in a universal testing machine, and failure modes were classified under magnification. The SBS data were analyzed by one-way analysis of variance (ANOVA). A paired t test was used for enamel surface roughness intragroup comparisons, and the Friedman one-way repeated meas-ures analysis of variance by ranks was used for differences in enamel surface roughness between groups, with the Tukey post hoc test (a = 0.05). RESULTS: BRControl had the lowest SBS values (MPa), with a significant difference (P ≤ 0.001) from the other groups. Spot-etch+BR had the highest SBS values but with no significant differences from the other groups in which the spot-etch technique was also used. Adhesive failure mode was predominant for all groups. BRControl had the lowest surface roughness difference, significantly different (P = 0.001) from all the other groups. CONCLUSIONS: Spot-etch and other adhesive strategies could be applied to increase the SBS values of provisional restorations to enamel compared with no surface pretreatment. However, the adhesive strategy may change the enamel surface roughness, revealing the importance of cleaning the tooth surface.


Subject(s)
Composite Resins , Dental Bonding , Dental Enamel , Dental Veneers , Shear Strength , Surface Properties , Animals , Cattle , Composite Resins/chemistry , Dental Bonding/methods , Acid Etching, Dental/methods , Dental Stress Analysis , Acrylic Resins/chemistry , Materials Testing , Random Allocation
6.
BMC Oral Health ; 24(1): 893, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098928

ABSTRACT

BACKGROUND: Polymethylmethacrylate (PMMA) bone cement is used in orthopedics and dentistry to get primary fixation to bone but doesn't provide a mechanically and biologically stable bone interface. Therefore, there was a great demand to improve the properties of the PMMA bone cement to reduce its clinical usage limitations and enhance its success rate. Recent studies demonstrated that the addition of halloysite nanotubes (HNTs) to a polymeric-based material can improve its mechanical and thermal characteristics. OBJECTIVES: The purpose of the study is to assess the compressive strength, flexural strength, maximum temperature, and setting time of traditional PMMA bone cements that have been manually blended with 7 wt% HNT fillers. METHODS: PMMA powder and monomer liquid were combined to create the control group, the reinforced group was made by mixing the PMMA powder with 7 wt% HNT fillers before liquid mixing. Chemical characterization of the HNT fillers was employed by X-ray fluorescence (XRF). The morphological examination of the cements was done using a scanning electron microscope (SEM). Analytical measurements were made for the compressive strength, flexural strength, maximum temperature, and setting time. Utilizing independent sample t-tests, the data was statistically assessed to compare mean values (p < 0.05). RESULTS: The findings demonstrated that the novel reinforced PMMA-based bone cement with 7 wt% HNT fillers showed higher mean compressive strength values (93 MPa) and higher flexural strength (72 MPa). and lower maximum temperature values (34.8 °C) than the conventional PMMA bone cement control group, which was (76 MPa), (51 MPa), and (40 °C), respectively (P < 0.05). While there was no significant difference in the setting time between the control and the modified groups. CONCLUSION: The novel PMMA-based bone cement with the addition of 7 wt% HNTs can effectively be used in orthopedic and dental applications, as they have the potential to enhance the compressive and flexural strength and reduce the maximum temperatures.


Subject(s)
Bone Cements , Clay , Compressive Strength , Flexural Strength , Materials Testing , Microscopy, Electron, Scanning , Nanotubes , Polymethyl Methacrylate , Polymethyl Methacrylate/chemistry , Nanotubes/chemistry , Clay/chemistry , Bone Cements/chemistry , Aluminum Silicates/chemistry , Spectrometry, X-Ray Emission , Temperature , Surface Properties
7.
Orthod Fr ; 95(2): 169-175, 2024 08 06.
Article in French | MEDLINE | ID: mdl-39106191

ABSTRACT

Introduction: The aligner is a thermoformed plastic device composed of various chemical components: polyurethane, polyethylene terephthalate glycol, polypropylene… All these plastics must be sufficiently resistant to abrasion and translucent for aesthetic purposes, but their solubility to salivary enzymes, insertion-disinsertion fatigue and recyclability vary according to material. From an orthodontic point of view, they must facilitate tooth movement. However, their behavior differs from that of orthodontic archwires: their Young's modulus, resilience and unloading curve are distinct, resulting in mechanical properties that fall significantly below the orthodontic requirements of multi-bracket systems. Objective: The aim of this article was to review the chemical composition, recycling and mechanical properties of aligners, and to put them into perspective with therapeutic indications. Materials and Methods: Literature data were approximated to orthodontic needs. Results: Neither plastic nor direct printing can match the mechanical properties of our archwires or the procedures of a reliable vestibular multi-attachment appliance. Discussion: Aligners remain an interesting tool in targeted indications.


Introduction: L'aligneur est un dispositif en plastique thermoformé dont la composition chimique est diverse : polyuréthane, polyéthylène téréphtalate glycol, polypropylène… Tous ces plastiques doivent être suffisamment résistants à l'abrasion et translucides pour être esthétiques mais ils présentent une solubilité aux enzymes salivaires, une fatigue liée à l'insertion-désinsertion et une recyclabilité qui sont variables selon le matériau. D'un point de vue orthodontique, ils doivent permettre de déplacer les dents. Mais leur comportement ne ressemble pas à celui des arcs orthodontiques : leur module de Young, leur résilience et leur courbe de décharge en sont éloignés et confèrent des propriétés mécaniques très inférieures aux exigences orthodontiques des appareils multi-attaches. Objectif: L'objectif de l'article était de faire le point sur la composition chimique, le recyclage, les propriétés mécaniques des aligneurs et de les mettre en perspective avec les indications thérapeutiques. Matériel et méthode: Les données de la littérature sont approchées des besoins orthodontiques. Résultats: Ni le plastique, ni l'impression directe ne sont en capacité de rivaliser avec les propriétés mécaniques de nos arcs ou avec les procédures d'un appareil multi-attache vestibulaire fiables. Discussion: Les aligneurs restent un outil intéressant dans des indications ciblées.


Subject(s)
Tooth Movement Techniques , Humans , Tooth Movement Techniques/methods , Tooth Movement Techniques/instrumentation , Recycling/methods , Polyurethanes/chemistry , Orthodontic Wires , Orthodontic Appliance Design , Elastic Modulus , Polyethylene Glycols/chemistry , Materials Testing/methods , Polyethylene Terephthalates
8.
Braz Oral Res ; 38: e066, 2024.
Article in English | MEDLINE | ID: mdl-39109763

ABSTRACT

This study assessed the physicochemical and antibiofilm properties of white mineral trioxide aggregate (MTA) associated with 1 or 2% of farnesol. Setting time was evaluated based on ISO 6876/2012. Radiopacity was evaluated by radiographic analysis. pH was assessed after time intervals of 1, 3, 7, 14, 21, and 28 days. Solubility (% mass loss) and volumetric change (by micro-CT) of the cements were evaluated after immersion in distilled water. The presence of voids inside the materials was assessed by using micro-CT. Antibiofilm activity against Enterococcus faecalis was evaluated by crystal violet assay and the modified direct contact test performed with biofilm previously formed on bovine root dentin for 14 days. Data were submitted to ANOVA/Tukey tests with 5% significance level. The incorporation of farnesol into MTA increased its setting time, but decreased its solubility at 30 days and its volumetric loss in all periods (p < 0.05). Radiopacity and solubility after 7 days were similar among the materials (p > 0.05). The association of farnesol showed the highest pH value after 1 and 3 days (p < 0.05). The association of farnesol with MTA promoted a decrease in the presence of voids, and increased the antimicrobial activity on biofilm biomass of E. faecalis (p < 0.05). In conclusion, the addition of farnesol can be suggested to improve the antimicrobial properties and the consistency of MTA.


Subject(s)
Aluminum Compounds , Biofilms , Calcium Compounds , Drug Combinations , Enterococcus faecalis , Farnesol , Materials Testing , Oxides , Root Canal Filling Materials , Silicates , Solubility , Silicates/pharmacology , Silicates/chemistry , Oxides/pharmacology , Oxides/chemistry , Biofilms/drug effects , Calcium Compounds/pharmacology , Calcium Compounds/chemistry , Enterococcus faecalis/drug effects , Aluminum Compounds/pharmacology , Aluminum Compounds/chemistry , Farnesol/pharmacology , Farnesol/chemistry , Hydrogen-Ion Concentration , Time Factors , Cattle , Root Canal Filling Materials/pharmacology , Root Canal Filling Materials/chemistry , Animals , Analysis of Variance , Reproducibility of Results , Dentin/drug effects , Reference Values , Surface Properties/drug effects
9.
Braz Oral Res ; 38: e061, 2024.
Article in English | MEDLINE | ID: mdl-39109762

ABSTRACT

To evaluate the polymerization shrinkage stress and cuspal strain (CS) generated in an artificial (typodont) and in a natural tooth using different resin composites. Twenty artificial and 20 extracted natural molars were selected. Each tooth was prepared with a 4x4 mm MOD cavity. The natural and typodont teeth were divided into four experimental groups (n=10), according to the resin composite used: Filtek Z100 (3M Oral Care) and Beautifil II LS (Shofu Dental). The cavities were filled using two horizontal increments and the CS (µS) was measured by the strain gauge method. Samples were sectioned into stick-shaped specimens and the bond strength (BS) (MPa) was evaluated using a microtensile BS test. Shrinkage stress and CS were analyzed using 3D finite element analysis. No difference was found between the type of teeth for the CS as shown by the pooled averages: Natural tooth: 541.2 A; Typodont model: 591.4 A. Filtek Z100 CS values were higher than those obtained for Beautifil II LS, regardless of the type of teeth. No statistical difference was found for the BS data. Adhesive failures were more prevalent (79.9%). High shrinkage stress values were observed for Filtek Z100 resin, regardless of tooth type. The CS of typodont teeth showed a shrinkage stress effect, generated during restoration, equivalent to that of natural teeth.


Subject(s)
Composite Resins , Dental Stress Analysis , Finite Element Analysis , Materials Testing , Polymerization , Stress, Mechanical , Tensile Strength , Composite Resins/chemistry , Humans , Reference Values , Surface Properties , Reproducibility of Results , Dental Bonding/methods , Tooth Crown
10.
Clin Oral Investig ; 28(9): 473, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110133

ABSTRACT

PURPOSE: To investigate the effects of different surface treatments and thicknesses on the color, transparency, and surface roughness of ultra-transparent zirconia. METHODS: A total of 120 Katana ultra-translucent multi-layered zirconia specimens were divided into 12 groups according to the thickness (0.3, 0.5, and 0.7 mm) and surface treatment (control, airborne particle abrasion [APA], lithium disilicate coating, and glaze on). Color difference (ΔE00) and relative translucency parameter (RTP00) were calculated using a digital spectrophotometer. The surface roughness (Ra, Rq, Sa, and Sq) was measured using a non-contact profile scanner. The surface morphologies and microstructures of the samples were observed using a tungsten filament scanning electron microscope. Statistical analyses were performed by one-way and two-way analysis of variance (ANOVA) followed by post hoc multiple comparisons and Pearson's correlation (α = 0.05). RESULTS: The results showed that the surface treatment, ceramic thickness, and their interactions had significant effects on ΔE00 and RTP00 (p < 0.001). The surface treatment significantly altered the micromorphology and increased the surface roughness of the ceramic samples. APA exhibited the lowest transparency, largest color difference, and highest surface roughness. Zirconia with 0.3 mm and 0.7 mm thicknesses showed strong negative correlations between Sa and RTP00. CONCLUSIONS: The three internal surface treatments significantly altered the surface roughness, color difference, and transparency of ultra-transparent zirconia. As the thickness increased, the influence of the inner surface treatment on the color difference and transparency of zirconia decreased. CLINICAL IMPLICATIONS: For new zirconia internal surface treatment technologies, in addition to considering the enhancement effect on the bonding properties, the potential effects on the color and translucency of high-transparency zirconia should also be considered. Appropriately increasing the thickness of zirconia restorations helps minimize the effect of surface treatment on the optical properties.


Subject(s)
Color , Materials Testing , Microscopy, Electron, Scanning , Spectrophotometry , Surface Properties , Zirconium , Zirconium/chemistry , Dental Porcelain/chemistry , Dental Materials/chemistry , Dental Bonding/methods
11.
J Clin Pediatr Dent ; 48(4): 160-167, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39087226

ABSTRACT

Glass ionomer cements (GICs) are the common materials employed in pediatric dentistry because of their specific applications in class I restorations and atraumatic restoration treatments (ART) of deciduous teeth in populations at high risk of caries. Studies show a limited clinical durability of these materials. Attempts have thus been made to incorporate nanoparticles (NPs) into the glass ionomer for improving resistance and make it like the tooth structure. An in vitro experimental study was conducted using the required samples dimensions and prepared based on the test being carried out on the three groups with or without the modification of light-cured glass ionomer. Samples were grouped as follows: control group (G1_C), 2% silver phosphate/hydroxyapatite NPs group (G2_SPH), and 2% titanium dioxide NPs group (G3_TiO2). The physical tests regarding flexural strength (n = 10 per group), solubility (n = 10 per group), and radiopacity (n = 3 per group) were performed. The data were analyzed by Shapiro Wilks test, and one-way analysis of variance (one-way ANOVA), and multiple comparisons by post hoc Tukey's test. The p-value of < 0.05 was considered significant. No statistically significant difference was observed between the control group (G1_C) and (G2_SPH) (p = 0.704) in the flexural strength test, however differences were found between G2_SPH and G3_TiO2 groups, ANOVA (p = 0.006); post hoc Tukey's test (p = 0.014). Pertaining to the solubility, G2_SPH obtained the lowest among the three groups, ANOVA (p = 0.010); post hoc Tukey's test (p = 0.009). The three study groups obtained an adequate radiopacity of >1 mm Al, respectively. The resin-modified glass ionomer cement (RMGIC) was further modified with 2% silver phosphate/hydroxyapatite NPs to improve the physical properties such as enhancing the solubility and sorption without compromising the flexural strength and radiopacity behavior of modified RMGIC. The incorporation of 2% titanium dioxide NPs did not improve the properties studied.


Subject(s)
Durapatite , Glass Ionomer Cements , Nanoparticles , Phosphates , Titanium , Titanium/chemistry , Glass Ionomer Cements/chemistry , Durapatite/chemistry , Nanoparticles/chemistry , Phosphates/chemistry , In Vitro Techniques , Materials Testing , Humans , Silver Compounds/chemistry , Solubility , Flexural Strength
12.
Sci Rep ; 14(1): 17862, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090254

ABSTRACT

Orthodontic adhesive doped with sulfur-modified TiO2 promotes antibacterial effect. The objective of the study was to characterize the physical, mechanical and antibacterial properties of the orthodontic bracket adhesive, doped with modified titanium dioxide nanoparticles. Sulfur-doped TiO2 was synthetized and morphological topography was analyzed with TEM and SEM imaging. The catalytic performance during the degradation of rhodamine B was assessed. Nanomaterial was added at four concentration (1, 3, 6, and 10 wt%) to a commercial orthodontic adhesive. The shear bond strength and microhardness of a resin-based orthodontic adhesive containing S-TiO2 were evaluated. The inhibitory effect of the pure and doped adhesives against Escherichia coli and Streptococcus mutans was examined. As the results, the highest antimicrobial activity and good adhesive properties were noticed for light-cured orthodontic adhesive doped with 3% of S-TiO2. In this case, orthodontic adhesives with strong and long-lasting bactericidal properties can be created through the incorporation of modified TiO2 without negatively influencing microhardnesses, and bonding ability. White spot lesion and demineralization, which occurs very often in patients during orthodontic treatment, can be therefore minimized.


Subject(s)
Anti-Bacterial Agents , Dental Cements , Escherichia coli , Streptococcus mutans , Titanium , Titanium/chemistry , Titanium/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Streptococcus mutans/drug effects , Escherichia coli/drug effects , Dental Cements/chemistry , Dental Cements/pharmacology , Materials Testing , Shear Strength , Orthodontic Brackets , Humans , Sulfur/chemistry
13.
Sci Rep ; 14(1): 17885, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095406

ABSTRACT

Dental materials are challenged by wear processes in the oral environment and should be evaluated in laboratory tests prior to clinical use. Many laboratory wear-testing devices are high-cost investments and not available for cross-centre comparisons. The 'Rub&Roll' wear machine enables controlled application of force, chemical and mechanical loading, but the initial design was not able to test against rigid antagonist materials. The current study aimed to probe the sensitivity of a new 'Rub&Roll' set-up by evaluating the effect of force and test solution parameters (deionized water; water + abrasive medium; acid + abrasive medium) on the wear behaviour of direct and indirect dental resin-based composites (RBCs) compared with human molars against 3D-printed rod antagonists. Molars exhibited greater height loss than RBCs in all test groups, with the largest differences recorded with acidic solutions. Direct RBCs showed significantly greater wear than indirect RBCs in the groups containing abrasive media. The acidic + abrasive medium did not result in increased wear of RBC materials. The developed method using the 'Rub&Roll' wear machine in the current investigation has provided a sensitive wear test method to allow initial screening of resin-based composite materials compared with extracted human molars under the influence of different mechanical and erosive challenges.


Subject(s)
Composite Resins , Dental Materials , Materials Testing , Humans , Materials Testing/methods , Composite Resins/chemistry , Molar , Surface Properties
14.
PLoS One ; 19(8): e0300270, 2024.
Article in English | MEDLINE | ID: mdl-39106270

ABSTRACT

Total hip arthroplasty (THA) is one of the most successful orthopaedic interventions globally, with over 450,000 procedures annually in the U.S. alone. However, issues like aseptic loosening, dislocation, infection and stress shielding persist, necessitating complex, costly revision surgeries. This highlights the need for continued biomaterials innovation to enhance primary implant integrity and longevity. Implant materials play a pivotal role in determining long-term outcomes, with titanium alloys being the prominent choice. However, emerging evidence indicates scope for optimized materials. The nickel-free ß titanium alloy Ti-27Nb shows promise with excellent biocompatibility and mechanical properties. Using finite element analysis (FEA), this study investigated the biomechanical performance and safety factors of a hip bone implant made of nickel-free titanium alloy (Ti-27Nb) under actual loading during routine day life activities for different body weights. The FEA modelled physiological loads during walking, jogging, stair ascent/descent, knee bend, standing up, sitting down and cycling for 75 kg and 100 kg body weights. Comparative analyses were conducted between untreated versus 816-hour simulated body fluid (SBF) treated implant conditions to determine in vivo degradation effects. The FEA predicted elevated von Mises stresses in the implant neck for all activities, especially stair climbing, due to its smaller cross-section. Stresses increased substantially with a higher 100 kg body weight compared to 75 kg, implying risks for heavier patients. Safety factors were reduced by up to 58% between body weights, although remaining above the desired minimum value of 1. Negligible variations were observed between untreated and SBF-treated responses, attributed to Ti-27Nb's excellent biocorrosion resistance. This comprehensive FEA provided clinically relevant insights into the biomechanical behaviour and integrity of the Ti-27Nb hip implant under complex loading scenarios. The results can guide shape and material optimization to improve robustness against repetitive stresses over long-term use. Identifying damage accumulation and failure risks is crucial for hip implants encountering real-world variable conditions. The negligible SBF effects validate Ti-27Nb's resistance to physiological degradation. Overall, the study significantly advances understanding of Ti-27Nb's suitability for reliable, durable hip arthroplasties with low revision rates.


Subject(s)
Alloys , Finite Element Analysis , Hip Prosthesis , Stress, Mechanical , Titanium , Hip Prosthesis/adverse effects , Humans , Alloys/chemistry , Arthroplasty, Replacement, Hip/adverse effects , Weight-Bearing , Niobium/chemistry , Biomechanical Phenomena , Materials Testing , Prosthesis Design
15.
Sci Rep ; 14(1): 18014, 2024 08 03.
Article in English | MEDLINE | ID: mdl-39097612

ABSTRACT

Cerium oxide nanoparticles are known for their antibacterial effects resulting from Ce3+ to Ce4+ conversion. Application of such cerium oxide nanoparticles in dentistry has been previously considered but limited due to deterioration of mechanical properties. Hence, this study aimed to examine mesoporous silica (MCM-41) coated with cerium oxide nanoparticles and evaluate the antibacterial effects and mechanical properties when applied to dental composite resin. Cerium oxide nanoparticles were coated on the MCM-41 surface using the sol-gel method by adding cerium oxide nanoparticle precursor to the MCM-41 dispersion. The samples were tested for antibacterial activity against Streptococcus mutans via CFU and MTT assays. The mechanical properties were assessed by flexural strength and depth of cure according to ISO 4049. Data were analyzed using a t-test, one-way ANOVA, and Tukey's post-hoc test (p = 0.05). The experimental group showed significantly increased antibacterial properties compared to the control groups (p < 0.005). The flexural strength exhibited a decreasing trend as the amount of cerium oxide nanoparticle-coated MCM-41 increased. However, the flexural strength and depth of cure values of the silane group met the ISO 4049 standard. Antibacterial properties increased with increasing amounts of cerium oxide nanoparticles. Although the mechanical properties decreased, silane treatment overcame this drawback. Hence, the cerium oxide nanoparticles coated on MCM-41 may be used for dental resin composite.


Subject(s)
Anti-Bacterial Agents , Cerium , Composite Resins , Nanoparticles , Silicon Dioxide , Streptococcus mutans , Cerium/chemistry , Cerium/pharmacology , Silicon Dioxide/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Composite Resins/chemistry , Composite Resins/pharmacology , Streptococcus mutans/drug effects , Nanoparticles/chemistry , Acrylic Resins/chemistry , Materials Testing , Polyurethanes/chemistry , Polyurethanes/pharmacology , Flexural Strength , Porosity
16.
Clin Oral Investig ; 28(9): 468, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105859

ABSTRACT

OBJECTIVE: this study aimed to digitally compare wear behavior and retention between PEEK and nylon retentive inserts used in locator-retained, mandibular implant overdentures when attachment design and size were standardized. MATERIALS AND METHODS: A total of sixty-four inserts (32 PEEK and 32 nylon inserts); were picked-up in implant overdentures. Overdentures of both groups were submerged in artificial saliva and mounted to chewing simulator. After 480,000 chewing cycles (equivalent to 2 years of clinical use) all inserts were scanned by scanning electron microscope (SEM), then all acquired images were digitally analyzed by software to detect and compare quantitative and qualitative changes of inserts in both groups. On the other hand, retention of both groups was measured by universal testing machine and the collected data was statistically analyzed using one-way Analysis of Variance (ANOVA) test with significance level set at P ≤ 0.05. RESULTS: PEEK inserts showed significantly higher mean retentive values compared to the nylon inserts in the control group. Also, PEEK retentive inserts exhibited statistically lower mean wear values than the control group P ≥ 0.000. Qualitative investigation revealed significant and more pronounced changes in the surface roughness of nylon inserts compared to PEEK ones. CONCLUSIONS: Regarding retention, wear behavior and dimension stability, PEEK can be recommended as retentive insert material in cases of locator-retained mandibular implant overdentures. CLINICAL RELEVANCE: PEEK inserts offer enhanced retention, reduced wear, and greater dimensional stability over two years time interval. Clinically, this reduces prosthodontic maintenance and adjustments, improving patient satisfaction and long-term prosthetic success.


Subject(s)
Benzophenones , Dental Prosthesis, Implant-Supported , Denture Retention , Denture, Overlay , Ketones , Materials Testing , Microscopy, Electron, Scanning , Nylons , Polyethylene Glycols , Polymers , Surface Properties , Ketones/chemistry , Polyethylene Glycols/chemistry , Humans , In Vitro Techniques , Mandible , Dental Restoration Wear , Denture Design , Dental Stress Analysis , Saliva, Artificial
17.
J Appl Oral Sci ; 32: e20230462, 2024.
Article in English | MEDLINE | ID: mdl-39140577

ABSTRACT

OBJECTIVE: Several materials have been developed to preserve pulp vitality. They should have ideal cytocompatibility characteristics to promote the activity of stem cells of human exfoliated deciduous teeth (SHED) and thus heal pulp tissue. OBJECTIVE: To evaluate the cytotoxicity of different dilutions of bioceramic material extracts in SHED. METHODOLOGY: SHED were immersed in αMEM + the material extract according to the following experimental groups: Group 1 (G1) -BBio membrane, Group 2 (G2) - Bio-C Repair, Group 3 (G3) - MTA Repair HP, Group 4 (G4) - TheraCal LC, and Group 5 (G5) - Biodentine. Positive and negative control groups were maintained respectively in αMEM + 10% FBS and Milli-Q Water. The methods to analyze cell viability and proliferation involved MTT and Alamar Blue assays at 24, 48, and 72H after the contact of the SHED with bioceramic extracts at 1:1 and 1:2 dilutions. Data were analyzed by the three-way ANOVA, followed by Tukey's test (p<0.05). RESULTS: At 1:1 dilution, SHED in contact with the MTA HP Repair extract showed statistically higher cell viability than the other experimental groups and the negative control (p<0.05), except for TheraCal LC (p> 0.05). At 1:2 dilution, BBio Membrane and Bio-C showed statistically higher values in intra- and intergroup comparisons (p<0.05). BBio Membrane, Bio-C Repair, and Biodentine extracts at 1:1 dilution showed greater cytotoxicity than 1:2 dilution in all periods (p<0.05). CONCLUSION: MTA HP Repair showed the lowest cytotoxicity even at a 1:1 dilution. At a 1:2 dilution, the SHED in contact with the BBio membrane extract showed high cell viability. Thus, the BBio membrane would be a new non-cytotoxic biomaterial for SHED. Results offer possibilities of biomaterials that can be indicated for use in clinical regenerative procedures of the dentin-pulp complex.


Subject(s)
Aluminum Compounds , Biocompatible Materials , Calcium Compounds , Cell Proliferation , Cell Survival , Ceramics , Dental Pulp , Drug Combinations , Materials Testing , Oxides , Silicates , Stem Cells , Tooth, Deciduous , Humans , Tooth, Deciduous/drug effects , Silicates/chemistry , Silicates/toxicity , Silicates/pharmacology , Cell Survival/drug effects , Calcium Compounds/chemistry , Calcium Compounds/pharmacology , Calcium Compounds/toxicity , Stem Cells/drug effects , Time Factors , Oxides/chemistry , Oxides/toxicity , Cell Proliferation/drug effects , Dental Pulp/drug effects , Dental Pulp/cytology , Ceramics/chemistry , Ceramics/toxicity , Aluminum Compounds/chemistry , Aluminum Compounds/toxicity , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Analysis of Variance , Reproducibility of Results , Bismuth/chemistry , Bismuth/toxicity , Bismuth/pharmacology , Cells, Cultured , Reference Values , Tetrazolium Salts , Xanthenes/chemistry , Oxazines
18.
Clin Oral Investig ; 28(9): 476, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120764

ABSTRACT

OBJECTIVES: To synthesize casein enzymatic hydrolysate (CEH)-laden gelatin methacryloyl (GelMA) fibrous scaffolds and evaluate the cytocompatibility and anti-inflammatory effects on dental pulp stem cells (DPSCs). MATERIALS AND METHODS: GelMA fibrous scaffolds with 10%, 20%, and 30% CEH (w/w) and without CEH (control) were obtained via electrospinning. Chemo-morphological, degradation, and mechanical analyses were conducted to evaluate the morphology and composition of the fibers, mass loss, and mechanical properties, respectively. Adhesion/spreading and viability of DPSCs seeded on the scaffolds were also assessed. The anti-inflammatory potential on DPSCs was tested after the chronic challenge of cells with lipopolysaccharides (LPS), followed by treatment with extracts obtained after immersing the scaffolds in α-MEM. The synthesis of the pro-inflammatory cytokines IL-6, IL-1α, and TNF-α was measured by ELISA. Data were analyzed by ANOVA/post-hoc tests (α = 5%). RESULTS: CEH-laden electrospun fibers had a larger diameter than pure GelMA (p ≤ 0.036). GelMA scaffolds laden with 20% and 30% CEH had a greater mass loss. Tensile strength was reduced for the 10% CEH fibers (p = 0.0052), whereas no difference was observed for the 20% and 30% fibers (p ≥ 0.6736) compared to the control. Young's modulus decreased with CEH (p < 0.0001). Elongation at break increased for the 20% and 30% CEH scaffolds (p ≤ 0.0038). Over time, DPSCs viability increased across all groups, indicating cytocompatibility, with CEH-laden scaffolds exhibiting greater cell viability after seven days (p ≤ 0.0166). Also, 10% CEH-GelMA scaffolds decreased the IL-6, IL-1α, and TNF-α synthesis (p ≤ 0.035). CONCLUSION: CEH-laden GelMA scaffolds facilitated both adhesion and proliferation of DPSCs, and 10% CEH provided anti-inflammatory potential after chronic LPS challenge. CLINICAL RELEVANCE: CEH incorporated in GelMA fibrous scaffolds demonstrated the potential to be used as a cytocompatible and anti-inflammatory biomaterial for vital pulp therapy.


Subject(s)
Anti-Inflammatory Agents , Caseins , Cell Survival , Dental Pulp , Gelatin , Tissue Scaffolds , Gelatin/chemistry , Dental Pulp/cytology , Dental Pulp/drug effects , Tissue Scaffolds/chemistry , Humans , Anti-Inflammatory Agents/pharmacology , Cell Survival/drug effects , Methacrylates/chemistry , Materials Testing , Enzyme-Linked Immunosorbent Assay , Tensile Strength , Cells, Cultured , Stem Cells/drug effects , Cell Adhesion/drug effects , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Cytokines/metabolism , Surface Properties
19.
PLoS One ; 19(8): e0306984, 2024.
Article in English | MEDLINE | ID: mdl-39116082

ABSTRACT

In this study, phase change materials (PCMs) were innovatively incorporated into hybrid fiber concrete. The properties of PCMs, which absorb and release heat during phase transitions, enable the concrete to actively respond to complex and varying temperature environments. This integration reduces the internal temperature differentials within the concrete, thereby preventing temperature-induced cracks in deep wellbore structures. Through the temperature control model test of the frozen shaft wall, it can be seen that the hybrid fiber phase change concrete (HFPCC) significantly reduces the internal temperature difference, and the maximum temperature difference along the radial direction is 35.84% lower than that of benchmark concrete (BC). The numerical simulation results indicate that a moderate phase transition temperature should be selected in engineering. The phase change temperature should not be close to the ambient temperature and peak temperature. The peak temperature can be reduced by 9.32% and the maximum radial temperature difference can be reduced by 30.89% by selecting an appropriate phase change temperature. The peak temperature and radial maximum temperature difference are both proportional to the latent heat of phase change. The temperature control performance of phase change concrete can be further improved by increasing the latent heat of phase change materials.


Subject(s)
Construction Materials , Phase Transition , Freezing , Models, Theoretical , Materials Testing , Temperature
20.
BMC Oral Health ; 24(1): 876, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095862

ABSTRACT

BACKGROUND: The temperature changes, chemical agents, and brushing activity that resin composite restorations are exposed to in the oral environment can cause changes in surface roughness. In this study, the aim was to investigate in vitro the clinical one-year surface roughness changes of different types of composites (flowable or conventional) from the same companies by subjecting them to immersion in solutions, brushing, and thermal cycling procedures to simulate intraoral conditions. METHODS: Four different resin composite brands were included in the study using both their conventional (Charisma Smart, 3M Filtek Ultimate Universal, Omnichroma, Beautifil II) and flowable resin composites (Charisma Flow, 3M Filtek Ultimate Flowable, Omnichroma Flow, Beautifil Flow Plus F00), giving 4 groups with 2 types of resin composite in each. 40 samples were prepared for each group/resin type, for a total of 320 samples. After initial surface roughness measurements by a mechanical profilometer, the samples were divided into 4 subgroups (n = 10) and immersed in solutions (distilled water, tea, coffee, or wine) for 12 days. The samples were then subjected to 10,000 cycles of brushing simulation and 10,000 cycles of thermal aging. Surface roughness measurements were repeated after the procedures. For statistical analysis, the 3-way analysis of variance and the Tukey test were used (p < 0.05). RESULTS: It was concluded that composite groups and types had an effect on surface roughness at time t0 (p < 0.001). At time t1, the highest surface roughness value was obtained in the Beautifil-conventional interaction. When the surface roughness values between time t0 and t1 were compared, an increase was observed in the Beautifil II and Beautifil Flow Plus F00, while a decrease was observed in the other composite groups. CONCLUSION: Composite groups, types, and solutions had an effect on the surface roughness of resin composites. After aging procedures, it was concluded that the Beautifil group could not maintain the surface structure as it exceeded the threshold value of 0.2 µm for bacterial adhesion.


Subject(s)
Coffee , Composite Resins , Materials Testing , Surface Properties , Toothbrushing , Composite Resins/chemistry , Water/chemistry , Time Factors , Tea , Temperature , Humans , Dental Materials/chemistry , Immersion , Methacrylates/chemistry , In Vitro Techniques , Polyurethanes/chemistry , Polymethacrylic Acids/chemistry , Polyethylene Glycols/chemistry , Bisphenol A-Glycidyl Methacrylate
SELECTION OF CITATIONS
SEARCH DETAIL