Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.960
Filter
1.
Methods Mol Biol ; 2843: 119-136, 2024.
Article in English | MEDLINE | ID: mdl-39141297

ABSTRACT

Bacterial extracellular vesicles (BEVs) are nano- or micrometer-sized membrane-bound lipid vesicles released from both Gram-negative and Gram-positive bacteria. Cellular transport, communication, pathogenesis, and host-pathogen interactions are some of the major biological processes impacted by BEVs. Among these, host-pathogen interactions and bacterial pathogenesis are emerging as highly important targetable avenues underlined by the issues of antimicrobial resistance, thus demanding novel targets and approaches to treat bacterial infections. In this aspect, the study of the interaction of BEVs with bacteria and/or host cells becomes imperative and brings the membrane fusion process to the forefront. Furthermore, membrane fusion also underscores the performance of BEVs as nano-therapeutic delivery platforms. Here, we report methods to study fusion kinetics between mycobacteria-derived extracellular vesicles, which we refer to as MEVs, and intact mycobacteria or MEVs themselves. We also discuss the isolation of MEVs and their characterization. We outline critical factors that affect fusion kinetics by MEVs. The same principle can be extended for studying fusion between BEVs and mammalian host cells important for understanding how BEVs influence host-pathogen crosstalk.


Subject(s)
Extracellular Vesicles , Host-Pathogen Interactions , Membrane Fusion , Extracellular Vesicles/metabolism , Humans , Mycobacterium/metabolism , Animals
2.
J Cell Biol ; 223(11)2024 Nov 04.
Article in English | MEDLINE | ID: mdl-39172125

ABSTRACT

Membrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step. Our results highlight how the actin cytoskeleton tunes its structure to adapt to dynamic changes in the biophysical properties of membranes.


Subject(s)
Actin Cytoskeleton , Actins , Cell Membrane , Animals , Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Actins/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Rats , Mice , Membrane Fusion
3.
J Cell Biol ; 223(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38980206

ABSTRACT

Synaptotagmin-1 (Syt1) is a calcium sensor that regulates synaptic vesicle fusion in synchronous neurotransmitter release. Syt1 interacts with negatively charged lipids and the SNARE complex to control the fusion event. However, it remains incompletely understood how Syt1 mediates Ca2+-trigged synaptic vesicle fusion. Here, we discovered that Syt1 undergoes liquid-liquid phase separation (LLPS) to form condensates both in vitro and in living cells. Syt1 condensates play a role in vesicle attachment to the PM and efficiently recruit SNAREs and complexin, which may facilitate the downstream synaptic vesicle fusion. We observed that Syt1 condensates undergo a liquid-to-gel-like phase transition, reflecting the formation of Syt1 oligomers. The phase transition can be blocked or reversed by Ca2+, confirming the essential role of Ca2+ in Syt1 oligomer disassembly. Finally, we showed that the Syt1 mutations causing Syt1-associated neurodevelopmental disorder impair the Ca2+-driven phase transition. These findings reveal that Syt1 undergoes LLPS and a Ca2+-sensitive phase transition, providing new insights into Syt1-mediated vesicle fusion.


Subject(s)
Calcium , Synaptic Vesicles , Synaptotagmin I , Synaptotagmin I/metabolism , Synaptotagmin I/genetics , Calcium/metabolism , Humans , Animals , Synaptic Vesicles/metabolism , Protein Multimerization , SNARE Proteins/metabolism , SNARE Proteins/genetics , Phase Transition , Mutation/genetics , HEK293 Cells , Membrane Fusion , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Phase Separation
4.
Methods Enzymol ; 701: 175-236, 2024.
Article in English | MEDLINE | ID: mdl-39025572

ABSTRACT

Biomembranes and vesicles cover a wide range of length scales. Indeed, small nanovesicles have a diameter of a few tens of nanometers whereas giant vesicles can have diameters up to hundreds of micrometers. The remodeling of giant vesicles on the micron scale can be observed by light microscopy and understood by the theory of curvature elasticity, which represents a top-down approach. The theory predicts the formation of multispherical shapes as recently observed experimentally. On the nanometer scale, much insight has been obtained via coarse-grained molecular dynamics simulations of nanovesicles, which provides a bottom-up approach based on the lipid numbers assembled in the two bilayer leaflets and the resulting leaflet tensions. The remodeling processes discussed here include the shape transformations of vesicles, their morphological responses to the adhesion of condensate droplets, the instabilities of lipid bilayers and nanovesicles, as well as the topological transformations of vesicles by membrane fission and fusion. The latter processes determine the complex topology of the endoplasmic reticulum.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Lipid Bilayers/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Membrane Fusion/physiology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Animals , Humans
5.
Nat Commun ; 15(1): 5606, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961055

ABSTRACT

Viral mutations frequently outpace technologies used to detect harmful variants. Given the continual emergence of SARS-CoV-2 variants, platforms that can identify the presence of a virus and its propensity for infection are needed. Our electronic biomembrane sensing platform recreates distinct SARS-CoV-2 host cell entry pathways and reports the progression of entry as electrical signals. We focus on two necessary entry processes mediated by the viral Spike protein: virus binding and membrane fusion, which can be distinguished electrically. We find that closely related variants of concern exhibit distinct fusion signatures that correlate with trends in cell-based infectivity assays, allowing us to report quantitative differences in their fusion characteristics and hence their infectivity potentials. We use SARS-CoV-2 as our prototype, but we anticipate that this platform can extend to other enveloped viruses and cell lines to quantifiably assess virus entry.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , Membrane Fusion , Cell-Free System , Mutation , Virus Attachment
6.
PLoS Biol ; 22(7): e3002671, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949997

ABSTRACT

Mitochondrial shape and network formation have been primarily associated with the well-established processes of fission and fusion. However, recent research has unveiled an intricate and multifaceted landscape of mitochondrial morphology that extends far beyond the conventional fission-fusion paradigm. These less-explored dimensions harbor numerous unresolved mysteries. This review navigates through diverse processes influencing mitochondrial shape and network formation, highlighting the intriguing complexities and gaps in our understanding of mitochondrial architecture. The exploration encompasses various scales, from biophysical principles governing membrane dynamics to molecular machineries shaping mitochondria, presenting a roadmap for future research in this evolving field.


Subject(s)
Mitochondria , Mitochondrial Dynamics , Mitochondrial Dynamics/physiology , Mitochondria/metabolism , Animals , Humans , Mitochondrial Membranes/metabolism , Organelle Shape , Mitochondrial Proteins/metabolism , Membrane Fusion/physiology
7.
Nano Lett ; 24(28): 8609-8618, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954738

ABSTRACT

Although biomacromolecules are promising cytosolic drugs which have attracted tremendous attention, the major obstacles were the cellular membrane hindering the entrance and the endosome entrapment inducing biomacromolecule degradation. How to avoid those limitations to realize directly cytosolic delivery was still a challenge. Here, we prepared oligoarginine modified lipid to assemble a nanovesicle for biomacromolecules delivery, including mRNA (mRNA) and proteins which could be directly delivered into the cytoplasm of dendritic cells through subendocytosis-mediated membrane fusion. We named this membrane fusion lipid nanovesicle as MF-LNV. The mRNA loaded MF-LNV as nanovaccines showed efficient antigen expression to elicit robust immuno responses for cancer therapy. What's more, the antigen protein loaded MF-LNV as nanovaccines elicits much stronger CD8+ T cell specific responses than lipid nanoparticles through normal uptake pathways. This MF-LNV represented a refreshing strategy for intracellular delivery of the biomacromolecule.


Subject(s)
Lipids , Lipids/chemistry , Animals , Humans , Nanoparticles/chemistry , Dendritic Cells , RNA, Messenger/genetics , RNA, Messenger/administration & dosage , Mice , Membrane Fusion , Drug Delivery Systems , CD8-Positive T-Lymphocytes/immunology
8.
Methods Enzymol ; 700: 127-159, 2024.
Article in English | MEDLINE | ID: mdl-38971598

ABSTRACT

The natural asymmetry of the lipid bilayer in biological membranes is, in part, a testament to the complexity of the structure and function of this barrier limiting and protecting cells (or organelles). These lipid bilayers consist of two lipid leaflets with different lipid compositions, resulting in unique interactions within each leaflet. These interactions, combined with interactions between the two leaflets, determine the overall behavior of the membrane. Model membranes provide the most suitable option for investigating the fundamental interactions of lipids. This report describes a comprehensive method to make asymmetric giant unilamellar vesicles (aGUVs) using the technique of hemifusion. In this method, calcium ions induce the hemifusion of giant unilamellar vesicles (GUVs) with a supported lipid bilayer (SLB), both having different lipid compositions. During hemifusion, a stalk, or a more commonly seen hemifusion diaphragm, connects the outer leaflets of GUVs and the SLB. The lateral diffusion of lipids naturally promotes the lipid exchange between the connected outer leaflets. After calcium chelation to prevent further fusion, a mechanical shear detaches aGUVs from the SLB. A fluorescence quench assay is employed to test the extent of bilayer asymmetry. A fluorescence quenching assay tests bilayer asymmetry and verifies dye and lipid migration to a GUV's outer leaflet.


Subject(s)
Calcium , Lipid Bilayers , Unilamellar Liposomes , Unilamellar Liposomes/chemistry , Lipid Bilayers/chemistry , Calcium/chemistry , Calcium/metabolism , Membrane Fusion
9.
J Neurosci ; 44(31)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38951039

ABSTRACT

The release of neurotransmitters (NTs) at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Among those dedicated molecules, the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain proteins that bind soluble N-ethylmaleimide sensitive factor attachment protein receptor complexes, conferring both inhibitory and stimulatory functions. Using systematic mutagenesis and comparing reconstituted in vitro membrane fusion assays with electrophysiology in cultured neurons from mice of either sex, we deciphered the function of the N-terminus of complexin (Cpx) II. The N-terminus (amino acid 1-27) starts with a region enriched in hydrophobic amino acids (1-12), which binds lipids. Mutants maintaining this hydrophobic character retained the stimulatory function of Cpx, whereas exchanges introducing charged residues perturbed both spontaneous and evoked exocytosis. Mutants in the more distal region of the N-terminal domain (amino acid 11-18) showed a spectrum of effects. On the one hand, mutation of residue A12 increased spontaneous release without affecting evoked release. On the other hand, replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release but also impaired evoked release. Most surprising, this substitution reduced the size of the readily releasable pool, a novel function for Cpx at mammalian synapses. Thus, the exact amino acid composition of the Cpx N-terminus fine-tunes the degree of spontaneous and evoked NT release.


Subject(s)
Nerve Tissue Proteins , Synaptic Vesicles , Animals , Synaptic Vesicles/metabolism , Synaptic Vesicles/genetics , Mice , Male , Female , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/chemistry , Mutation , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/chemistry , Membrane Fusion/physiology , Membrane Fusion/genetics , Cells, Cultured , Phenotype , Neurons/metabolism , Synaptic Transmission/genetics , Synaptic Transmission/physiology , Mice, Inbred C57BL , Exocytosis/physiology , Exocytosis/genetics
10.
Cell Rep ; 43(7): 114482, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38985670

ABSTRACT

Secretory granule (SG) fusion is an intermediate step in SG biogenesis. However, the precise mechanism of this process is not completely understood. We show that Golgi-derived mast cell (MC) SGs enlarge through a mechanism that is dependent on phosphoinositide (PI) remodeling and fusion with LC3+ late endosomes (amphisomes), which serve as hubs for the fusion of multiple individual SGs. Amphisome formation is regulated by the tyrosine phosphatase PTPN9, while the subsequent SG fusion event is additionally regulated by the tetraspanin protein CD63 and by PI4K. We also demonstrate that fusion with amphisomes imparts to SGs their capacity of regulated release of exosomes. Finally, we show that conversion of PI(3,4,5)P3 to PI(4,5)P2 and the subsequent recruitment of dynamin stimulate SG fission. Our data unveil a key role for lipid-regulated interactions with the endocytic and autophagic systems in controlling the size and number of SGs and their capacity to release exosomes.


Subject(s)
Exosomes , Mast Cells , Secretory Vesicles , Exosomes/metabolism , Mast Cells/metabolism , Animals , Secretory Vesicles/metabolism , Tetraspanin 30/metabolism , Mice , Endosomes/metabolism , Membrane Fusion , Golgi Apparatus/metabolism
11.
Proc Natl Acad Sci U S A ; 121(30): e2313609121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012824

ABSTRACT

Mitofusins (Mfn1 and Mfn2) are the mitochondrial outer-membrane fusion proteins in mammals and belong to the dynamin superfamily of multidomain GTPases. Recent structural studies of truncated variants lacking alpha helical transmembrane domains suggested that Mfns dimerize to promote the approximation and the fusion of the mitochondrial outer membranes upon the hydrolysis of guanine 5'-triphosphate disodium salt (GTP). However, next to the presence of GTP, the fusion activity seems to require multiple regulatory factors that control the dynamics and kinetics of mitochondrial fusion through the formation of Mfn1-Mfn2 heterodimers. Here, we purified and reconstituted the full-length murine Mfn2 protein into giant unilamellar vesicles (GUVs) with different lipid compositions. The incubation with GTP resulted in the fusion of Mfn2-GUVs. High-speed video-microscopy showed that the Mfn2-dependent membrane fusion pathway progressed through a zipper mechanism where the formation and growth of an adhesion patch eventually led to the formation of a membrane opening at the rim of the septum. The presence of physiological concentration (up to 30 mol%) of dioleoyl-phosphatidylethanolamine (DOPE) was shown to be a requisite to observe GTP-induced Mfn2-dependent fusion. Our observations show that Mfn2 alone can promote the fusion of micron-sized DOPE-enriched vesicles without the requirement of regulatory cofactors, such as membrane curvature, or the assistance of other proteins.


Subject(s)
GTP Phosphohydrolases , Membrane Fusion , Animals , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Mice , Membrane Fusion/physiology , Unilamellar Liposomes/metabolism , Unilamellar Liposomes/chemistry , Guanosine Triphosphate/metabolism , Phosphatidylethanolamines/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism
12.
PLoS One ; 19(6): e0304345, 2024.
Article in English | MEDLINE | ID: mdl-38857287

ABSTRACT

Irreversible electroporation induces permanent permeabilization of lipid membranes of vesicles, resulting in vesicle rupture upon the application of a pulsed electric field. Electrofusion is a phenomenon wherein neighboring vesicles can be induced to fuse by exposing them to a pulsed electric field. We focus how the frequency of direct current (DC) pulses of electric field impacts rupture and electrofusion in cell-sized giant unilamellar vesicles (GUVs) prepared in a physiological buffer. The average time, probability, and kinetics of rupture and electrofusion in GUVs have been explored at frequency 500, 800, 1050, and 1250 Hz. The average time of rupture of many 'single GUVs' decreases with the increase in frequency, whereas electrofusion shows the opposite trend. At 500 Hz, the rupture probability stands at 0.45 ± 0.02, while the electrofusion probability is 0.71 ± 0.01. However, at 1250 Hz, the rupture probability increases to 0.69 ± 0.03, whereas the electrofusion probability decreases to 0.46 ± 0.03. Furthermore, when considering kinetics, at 500 Hz, the rate constant of rupture is (0.8 ± 0.1)×10-2 s-1, and the rate constant of fusion is (2.4 ± 0.1)×10-2 s-1. In contrast, at 1250 Hz, the rate constant of rupture is (2.3 ± 0.8)×10-2 s-1, and the rate constant of electrofusion is (1.0 ± 0.1)×10-2 s-1. These results are discussed by considering the electrical model of the lipid bilayer and the energy barrier of a prepore.


Subject(s)
Electroporation , Unilamellar Liposomes , Unilamellar Liposomes/chemistry , Kinetics , Electroporation/methods , Probability , Membrane Fusion
13.
Nat Commun ; 15(1): 5227, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898033

ABSTRACT

Cells depend on their endolysosomal system for nutrient uptake and downregulation of plasma membrane proteins. These processes rely on endosomal maturation, which requires multiple membrane fusion steps. Early endosome fusion is promoted by the Rab5 GTPase and its effector, the hexameric CORVET tethering complex, which is homologous to the lysosomal HOPS. How these related complexes recognize their specific target membranes remains entirely elusive. Here, we solve the structure of CORVET by cryo-electron microscopy and revealed its minimal requirements for membrane tethering. As expected, the core of CORVET and HOPS resembles each other. However, the function-defining subunits show marked structural differences. Notably, we discover that unlike HOPS, CORVET depends not only on Rab5 but also on phosphatidylinositol-3-phosphate (PI3P) and membrane lipid packing defects for tethering, implying that an organelle-specific membrane code enables fusion. Our data suggest that both shape and membrane interactions of CORVET and HOPS are conserved in metazoans, thus providing a paradigm how tethering complexes function.


Subject(s)
Cryoelectron Microscopy , Endosomes , Phosphatidylinositol Phosphates , Endosomes/metabolism , Phosphatidylinositol Phosphates/metabolism , Membrane Fusion , rab5 GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/genetics , Humans , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cell Membrane/metabolism , Animals , Lysosomes/metabolism
14.
Elife ; 132024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831693

ABSTRACT

A change in the electric charge of autophagosome membranes controls the recruitment of SNARE proteins to ensure that membrane fusion occurs at the right time during autophagy.


Subject(s)
Autophagosomes , Autophagy , Membrane Fusion , SNARE Proteins , Autophagy/physiology , Autophagosomes/metabolism , SNARE Proteins/metabolism , Humans , Animals
15.
J Gen Physiol ; 156(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38860965

ABSTRACT

The release of neurotransmitter from a single synaptic vesicle generates a quantal response, which at excitatory synapses in voltage-clamped neurons is referred to as a miniature excitatory postsynaptic current (mEPSC). We analyzed mEPSCs in cultured mouse hippocampal neurons and in HEK cells expressing postsynaptic proteins enabling them to receive synaptic inputs from cocultured neurons. mEPSC amplitudes and rise-times varied widely within and between cells. In neurons, mEPSCs with larger amplitudes had longer rise-times, and this correlation was stronger in neurons with longer mean rise-times. In HEK cells, this correlation was weak and unclear. Standard mechanisms thought to govern mEPSCs cannot account for these results. We therefore developed models to simulate mEPSCs and assess their dependence on different factors. Modeling indicated that longer diffusion times for transmitters released by larger vesicles to reach more distal receptors cannot account for the correlation between rise-time and amplitude. By contrast, incorporating the vesicle size dependence of fusion pore expulsion time recapitulated experimental results well. Larger vesicles produce mEPSCs with larger amplitudes and also take more time to lose their content. Thus, fusion pore flux directly contributes to mEPSC rise-time. Variations in fusion pores account for differences among neurons, between neurons and HEK cells, and the correlation between rise-time and the slope of rise-time versus amplitude plots. Plots of mEPSC amplitude versus rise-time are sensitive to otherwise inaccessible properties of a synapse and offer investigators a means of assessing the role of fusion pores in synaptic release.


Subject(s)
Hippocampus , Neurons , Synaptic Vesicles , Animals , Mice , Humans , Neurons/physiology , Neurons/metabolism , HEK293 Cells , Synaptic Vesicles/metabolism , Hippocampus/physiology , Hippocampus/metabolism , Excitatory Postsynaptic Potentials/physiology , Synapses/physiology , Synapses/metabolism , Cells, Cultured , Membrane Fusion/physiology , Miniature Postsynaptic Potentials/physiology
16.
Adv Mater ; 36(33): e2403935, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889294

ABSTRACT

Tissue-specific delivery of oligonucleotide therapeutics beyond the liver remains a key challenge in nucleic acid drug development. To address this issue, exploiting exosomes as a novel carrier has emerged as a promising approach for efficient nucleic acid drug delivery. However, current exosome-based delivery systems still face multiple hurdles in their clinical applications. Herein, this work presents a strategy for constructing a hybrid exosome vehicle (HEV) through a DNA zipper-mediated membrane fusion approach for tissue-specific siRNA delivery. As a proof-of-concept, this work successfully fuses a liposome encapsulating anti-NFKBIZ siRNAs with corneal epithelium cell (CEC)-derived exosomes to form a HEV construct for the treatment of dry eye disease (DED). With homing characteristics inherited from exosomes, the siRNA-bearing HEV can target its parent cells and efficiently deliver the siRNA payloads to the cornea. Subsequently, the NFKBIZ gene silencing significantly reduces pro-inflammatory cytokine secretions from the ocular surface, reshapes its inflammatory microenvironment, and ultimately achieves an excellent therapeutic outcome in a DED mouse model. As a versatile platform, this hybrid exosome with targeting capability and designed therapeutic siRNAs may hold great potential in various disease treatments.


Subject(s)
Exosomes , Liposomes , Membrane Fusion , RNA, Small Interfering , Exosomes/metabolism , Exosomes/chemistry , RNA, Small Interfering/metabolism , Animals , Mice , Liposomes/chemistry , Dry Eye Syndromes/therapy , Humans , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Gene Silencing , Cornea/metabolism
17.
Biophys J ; 123(16): 2455-2475, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38867448

ABSTRACT

Exchange of material across two membranes, as in the case of synaptic neurotransmitter release from a vesicle, involves the formation and poration of a hemifusion diaphragm (HD). The nontrivial geometry of the HD leads to environment-dependent control, regarding the stability and dynamics of the pores required for this kind of exocytosis. This work combines particle simulations, field-based calculations, and phenomenological modeling to explore the factors influencing the stability, dynamics, and possible control mechanisms of pores in HDs. We find that pores preferentially form at the HD rim, and that their stability is sensitive to a number of factors, including the three line tensions, membrane tension, HD size, and the ability of lipids to "flip-flop" across leaflets. Along with a detailed analysis of these factors, we discuss ways that vesicles or cells may use them to open and close pores and thereby quickly and efficiently transport material.


Subject(s)
Membrane Fusion , Porosity , Models, Biological , Cell Membrane/metabolism
18.
Soft Matter ; 20(32): 6332-6342, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38881306

ABSTRACT

Large-scale cellular transformations are triggered by subtle physical and structural changes to individual biomacromolecular and membrane components. A prototypical example of such an event is the orchestrated fusion of membranes within an endosome that enables transport of cargo and processing of biochemical moieties. In this work, we demonstrate how protein filaments on the endosomal membrane surface can leverage a rigid-to-flexible transformation to elicit a large-scale change in membrane flexibility to enable membrane fusion. We develop a polymer field-theoretic model that captures molecular alignment arising from nematic interactions with varying surface density and fraction of flexible filaments, which are biologically controlled within the endosomal membrane. We then predict the collective elasticity of the filament brush in response to changes in the filament alignment, predicting a greater than 20-fold increase of the effective membrane elasticity over the bare membrane elasticity that is triggered by filament alignment. These results show that the endosome can modulate the filament properties to orchestrate membrane fluidization that facilitates vesicle fusion, providing an example of how active processes that modulate local molecular properties can result in large-scale transformations that are essential to cellular survival.


Subject(s)
Endosomes , Membrane Fusion , Endosomes/metabolism , Elasticity , Cell Membrane/metabolism , Cell Membrane/chemistry
19.
Biomolecules ; 14(5)2024 May 19.
Article in English | MEDLINE | ID: mdl-38786007

ABSTRACT

During neurotransmission, neurotransmitters are released less than a millisecond after the arrival of the action potential. To achieve this ultra-fast event, the synaptic vesicle must be pre-docked to the plasma membrane. In this primed state, SNAREpins, the protein-coiled coils whose assembly provides the energy to trigger fusion, are partly zippered and clamped like a hairpin and held open and ready to snap close when the clamp is released. Recently, it was suggested that three types of regulatory factors, synaptophysin, synaptotagmins, and complexins act cooperatively to organize two concentric rings, a central and a peripheral ring, containing up to six SNAREpins each. We used a mechanical model of the SNAREpins with two separate states, half-zippered and fully zippered, and determined the energy landscape according to the number of SNAREpins in each ring. We also performed simulations to estimate the fusion time in each case. The presence of the peripheral SNAREpins generally smoothens the energy landscape and accelerates the fusion time. With the predicted physiological numbers of six central and six peripheral SNAREpins, the fusion time is accelerated at least 100 times by the presence of the peripheral SNAREpins, and fusion occurs in less than 10 µs, which is well within the physiological requirements.


Subject(s)
Membrane Fusion , SNARE Proteins , Synaptic Vesicles , Synaptic Vesicles/metabolism , SNARE Proteins/metabolism , Synaptic Transmission , Animals , Humans
20.
Cell Rep ; 43(5): 114026, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38809756

ABSTRACT

Synaptic vesicle docking and priming are dynamic processes. At the molecular level, SNAREs (soluble NSF attachment protein receptors), synaptotagmins, and other factors are critical for Ca2+-triggered vesicle exocytosis, while disassembly factors, including NSF (N-ethylmaleimide-sensitive factor) and α-SNAP (soluble NSF attachment protein), disassemble and recycle SNAREs and antagonize fusion under some conditions. Here, we introduce a hybrid fusion assay that uses synaptic vesicles isolated from mouse brains and synthetic plasma membrane mimics. We included Munc18, Munc13, complexin, NSF, α-SNAP, and an ATP-regeneration system and maintained them continuously-as in the neuron-to investigate how these opposing processes yield fusogenic synaptic vesicles. In this setting, synaptic vesicle association is reversible, and the ATP-regeneration system produces the most synchronous Ca2+-triggered fusion, suggesting that disassembly factors perform quality control at the early stages of synaptic vesicle association to establish a highly fusogenic state. We uncovered a functional role for Munc13 ancillary to the MUN domain that alleviates an α-SNAP-dependent inhibition of Ca2+-triggered fusion.


Subject(s)
Nerve Tissue Proteins , Synaptic Vesicles , Synaptic Vesicles/metabolism , Animals , Mice , Nerve Tissue Proteins/metabolism , Protein Domains , Calcium/metabolism , Membrane Fusion , Exocytosis , SNARE Proteins/metabolism , Mice, Inbred C57BL , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL