Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.079
Filter
1.
Vet Med Sci ; 10(4): e1537, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011594

ABSTRACT

OBJECTIVES: The standard treatment for canine and feline meningiomas includes radiotherapy, surgical excision or combined therapy. However, new therapeutic approaches are required due to the possible recurrence or progression of meningiomas despite initial therapy. Adjunctive therapy with synthetic long-acting somatostatin (SST) analogues has been described in humans with SST-expressing tumours. The expression of SST receptors (SSTRs) by feline meningiomas is currently unknown, and there are little data about canine meningiomas. We hypothesized that SSTR is expressed by canine and feline meningiomas (S1). METHODS: Seven canines and 11 felines with histologically confirmed meningiomas underwent STTR screening. RNA expressions of SSTR1, SSTR2, SSTR3 and SSTR5 (canine) and SSTR1-SSTR 5 (feline) in fresh frozen and formalin-fixed and paraffin-embedded (FFPE) samples were investigated using real-time (RT)-qPCR. The expression of SSTR1 and SSTR2 in FFPE samples was evaluated using immunohistochemistry (IHC). The specificity of applied antibodies for canine and feline species was confirmed by western blotting. RESULTS: In canine meningiomas (n = 7), RNA expression of SSTR1, SSTR2 and SSTR5 was detected in all samples; SSTR3 RNA expression was detected in only 33% of samples. In feline meningiomas (n = 12), RNA expression of SSTR1, SSTR4, SSTR5 and SSTR2 was detected in 91%, 46%, 46% and 36% of samples, respectively; SSTR3 was not expressed. Overall, the detection rate was lower in FFPE samples. IHC revealed the expression of SSTR1 and SSTR2 in all samples from both species. However, it is important to exercise caution when interpreting IHC results due to the presence of diffuse background staining. CONCLUSIONS: SSTRs are widely expressed in canine and feline meningiomas, thereby encouraging further studies investigating SSTR expression to conduct trials about the effect of adjunctive therapy with long-acting SST-analogues.


Subject(s)
Cat Diseases , Dog Diseases , Meningioma , Receptors, Somatostatin , Receptors, Somatostatin/metabolism , Receptors, Somatostatin/genetics , Animals , Dogs , Cats , Cat Diseases/metabolism , Cat Diseases/genetics , Meningioma/veterinary , Meningioma/metabolism , Meningioma/genetics , Dog Diseases/metabolism , Dog Diseases/genetics , Meningeal Neoplasms/veterinary , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/genetics , Female , Male
2.
FASEB J ; 38(13): e23737, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38953724

ABSTRACT

Meningiomas are the most common primary intracranial tumors and account for nearly 30% of all nervous system tumors. Approximately half of meningioma patients exhibit neurofibromin 2 (NF2) gene inactivation. Here, NF2 was shown to interact with the endoplasmic reticulum (ER) calcium (Ca2+) channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in IOMM-Lee, a high-grade malignant meningioma cell line, and the F1 subdomain of NF2 plays a critical role in this interaction. Functional assays indicated that NF2 promotes the phosphorylation of IP3R (Ser 1756) and IP3R-mediated endoplasmic reticulum (ER) Ca2+ release by binding to IP3R1, which results in Ca2+-dependent apoptosis. Knockout of NF2 decreased Ca2+ release and promoted resistance to apoptosis, which was rescued by wild-type NF2 overexpression but not by F1 subdomain deletion truncation overexpression. The effects of NF2 defects on the development of tumors were further studied in mouse models. The decreased expression level of NF2 caused by NF2 gene knockout or mutation affects the activity of the IP3R channel, which reduces Ca2+-dependent apoptosis, thereby promoting the development of tumors. We elucidated the interaction patterns of NF2 and IP3R1, revealed the molecular mechanism through which NF2 regulates IP3R1-mediated Ca2+ release, and elucidated the new pathogenic mechanism of meningioma-related NF2 variants. Our study broadens the current understanding of the biological function of NF2 and provides ideas for drug screening of NF2-associated meningioma.


Subject(s)
Apoptosis , Calcium Signaling , Calcium , Inositol 1,4,5-Trisphosphate Receptors , Meningeal Neoplasms , Meningioma , Animals , Humans , Mice , Calcium/metabolism , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/genetics , Meningioma/metabolism , Meningioma/pathology , Meningioma/genetics , Neurofibromin 2
3.
Neurosurg Rev ; 47(1): 278, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884687

ABSTRACT

This letter provides a critical assessment of a previous study on the utility of whole tumor apparent diffusion coefficient (ADC) histogram characteristics in predicting meningioma progesterone receptor expression. While acknowledging the benefits of employing classical diffusion-weighted imaging (DWI) for non-invasive tumor evaluation, it also emphasizes significant drawbacks. Advanced imaging techniques such as diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) were not used in the study, which could have provided a more comprehensive understanding of tumor microstructure and heterogeneity. Furthermore, the inclusion of necrotic and cystic areas in ADC analysis may distort results due to their different diffusion properties. While focusing on first-order ADC histogram characteristics is useful, it ignores the potential insights gained from higher-order features and texture analysis. These limitations indicate that future research should combine improved imaging modalities with thorough analytical methodologies to increase the predictive value of imaging biomarkers for meningioma features and progesterone receptor expression.


Subject(s)
Diffusion Magnetic Resonance Imaging , Meningeal Neoplasms , Meningioma , Receptors, Progesterone , Meningioma/diagnostic imaging , Meningioma/pathology , Meningioma/metabolism , Humans , Receptors, Progesterone/metabolism , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Diffusion Magnetic Resonance Imaging/methods , Female
4.
Turk Neurosurg ; 34(4): 647-654, 2024.
Article in English | MEDLINE | ID: mdl-38874241

ABSTRACT

AIM: To investigate the status of immune checkpoint molecules (CTLA-4 and TIM-3) in meningiomas and thus contribute to the development of new personalized treatment strategies. MATERIAL AND METHODS: We utilized 402 cases of meningioma for this study. New blocks were prepared using the tissue microarray method, and sections obtained from these blocks were immunohistochemically stained with CTLA-4 and TIM-3 antibodies. Subsequently, statistical analysis were performed. RESULTS: Our findings revealed that CTLA-4 expression were observed in 25.1% of meningiomas. CTLA-4 expression and the number of expressing lymphocytes were found to be significantly higher in high-grade tumors and in those with brain invasion. Meningiomas with staining of immune cells with TIM-3 are 3.5%, and the tumor grade was correlated with the number of immune cells expressing TIM-3. CONCLUSION: Immune checkpoint molecules (CTLA-4 and TIM-3) with varying levels of expression can serve as prognostic and predictive biomarkers, as well as important targets for therapy. Drugs developed for CTLA-4 and TIM-3 molecules may prove to be more effective in treating meningiomas with high-grade, brain-invading, spontaneous necrosis, and macronucleolus.


Subject(s)
CTLA-4 Antigen , Hepatitis A Virus Cellular Receptor 2 , Immunohistochemistry , Meningeal Neoplasms , Meningioma , Humans , Meningioma/immunology , Meningioma/pathology , Meningioma/metabolism , Male , Meningeal Neoplasms/immunology , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Female , Middle Aged , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/immunology , Hepatitis A Virus Cellular Receptor 2/metabolism , Aged , Adult , Biomarkers, Tumor/metabolism , Immune Checkpoint Proteins/metabolism , Aged, 80 and over , Young Adult , Adolescent
5.
CNS Neurosci Ther ; 30(6): e14784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828669

ABSTRACT

INTRODUCTION: Programmed death-ligand 1 (PD-L1) expression is an immune evasion mechanism that has been demonstrated in many tumors and is commonly associated with a poor prognosis. Over the years, anti-PD-L1 agents have gained attention as novel anticancer therapeutics that induce durable tumor regression in numerous malignancies. They may be a new treatment choice for neurofibromatosis type 2 (NF2) patients. AIMS: The aims of this study were to detect the expression of PD-L1 in NF2-associated meningiomas, explore the effect of PD-L1 downregulation on tumor cell characteristics and T-cell functions, and investigate the possible pathways that regulate PD-L1 expression to further dissect the possible mechanism of immune suppression in NF2 tumors and to provide new treatment options for NF2 patients. RESULTS: PD-L1 is heterogeneously expressed in NF2-associated meningiomas. After PD-L1 knockdown in NF2-associated meningioma cells, tumor cell proliferation was significantly inhibited, and the apoptosis rate was elevated. When T cells were cocultured with siPD-L1-transfected NF2-associated meningioma cells, the expression of CD69 on both CD4+ and CD8+ T cells was partly reversed, and the capacity of CD8+ T cells to kill siPD-L1-transfected tumor cells was partly restored. Results also showed that the PI3K-AKT-mTOR pathway regulates PD-L1 expression, and the mTOR inhibitor rapamycin rapidly and persistently suppresses PD-L1 expression. In vivo experimental results suggested that anti-PD-L1 antibody may have a synergetic effect with the mTOR inhibitor in reducing tumor cell proliferation and that reduced PD-L1 expression could contribute to antitumor efficacy. CONCLUSIONS: Targeting PD-L1 could be helpful for restoring the function of tumor-infiltrating lymphocytes and inducing apoptosis to inhibit tumor proliferation in NF2-associated meningiomas. Dissecting the mechanisms of the PD-L1-driven tumorigenesis of NF2-associated meningioma will help to improve our understanding of the mechanisms underlying tumor progression and could facilitate further refinement of current therapies to improve the treatment of NF2 patients.


Subject(s)
B7-H1 Antigen , Cell Proliferation , Meningeal Neoplasms , Meningioma , Neurofibromatosis 2 , T-Lymphocytes , Meningioma/metabolism , Meningioma/immunology , Meningioma/pathology , Humans , B7-H1 Antigen/metabolism , Cell Proliferation/drug effects , Cell Proliferation/physiology , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/immunology , Animals , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , Neurofibromatosis 2/metabolism , Mice , Male , Female , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Cell Line, Tumor , Middle Aged , Mice, Nude , Apoptosis/drug effects , Apoptosis/physiology
6.
Appl Immunohistochem Mol Morphol ; 32(6): 292-304, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38863278

ABSTRACT

OBJECTIVES: To find predictive biomarkers for recurrence and progression of meningioma. BACKGROUND: Despite great advances in meningioma treatment, the prognosis remained unfavorable due to the high recurrence rate. METHODS: In this study, we evaluated the immunohistochemical expression of FOXM1, MMP-9, and Ki67 in 50 cases of intracranial meningioma to detect its potential role in meningioma progression, recurrence, and patients' survival. RESULTS: Strong FOXM1 expression was detected in 20% of the cases and was significantly associated with meningioma grade ( P = 0.002) and peritumoral brain edema (PTBE; P <0.001). Strong MMP-9 expression was noted in 32% of the cases and was significantly associated with meningioma grade and PTBE ( P <0.001, P <0.001, respectively). High Ki67 was noted in 50% and significantly associated with tumor grade and PTBE ( P <0.001, P = 0.002, respectively). The follow-up period revealed that meningiomas with strong FOXM1, strong MMP-9, and high Ki67 expression were associated with tumor recurrence, shorter OS, and recurrence-free survival. Furthermore, up-regulation of FOXM1 and MMP-9 expression had a significant relation with poor clinical response to the therapy ( P = 0.010, P = 0. 001, respectively). However, high Ki67 cases were more sensitive to clinical therapy ( P = 0.005). CONCLUSION: Strong FOXM1, strong MMP-9, and high Ki67 in meningiomas indicate highly aggressive tumors with a shortened survival rate, dismal outcome, and high risk of recurrence after the standard protocol of therapy.


Subject(s)
Forkhead Box Protein M1 , Immunohistochemistry , Matrix Metalloproteinase 9 , Meningioma , Humans , Forkhead Box Protein M1/metabolism , Meningioma/metabolism , Meningioma/pathology , Meningioma/mortality , Female , Male , Matrix Metalloproteinase 9/metabolism , Middle Aged , Adult , Aged , Neoplasm Grading , Biomarkers, Tumor/metabolism , Ki-67 Antigen/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/mortality , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/metabolism , Gene Expression Regulation, Neoplastic
7.
Science ; 384(6702): eadh5548, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38900896

ABSTRACT

The molecular mechanisms that regulate breast cancer cell (BCC) metastasis and proliferation within the leptomeninges (LM) are poorly understood, which limits the development of effective therapies. In this work, we show that BCCs in mice can invade the LM by abluminal migration along blood vessels that connect vertebral or calvarial bone marrow and meninges, bypassing the blood-brain barrier. This process is dependent on BCC engagement with vascular basement membrane laminin through expression of the neuronal pathfinding molecule integrin α6. Once in the LM, BCCs colocalize with perivascular meningeal macrophages and induce their expression of the prosurvival neurotrophin glial-derived neurotrophic factor (GDNF). Intrathecal GDNF blockade, macrophage-specific GDNF ablation, or deletion of the GDNF receptor neural cell adhesion molecule (NCAM) from BCCs inhibits breast cancer growth within the LM. These data suggest integrin α6 and the GDNF signaling axis as new therapeutic targets against breast cancer LM metastasis.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Integrin alpha6 , Meningeal Neoplasms , Meninges , Neural Pathways , Animals , Female , Humans , Mice , Basement Membrane/metabolism , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Movement , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Integrin alpha6/metabolism , Laminin/metabolism , Macrophages/metabolism , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/secondary , Meninges/pathology , Neoplasm Invasiveness , Neural Cell Adhesion Molecules/metabolism , Neural Cell Adhesion Molecules/genetics , Signal Transduction , Neural Pathways/metabolism , Mice, SCID , Mice, Knockout
8.
Sci Rep ; 14(1): 14561, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914647

ABSTRACT

Variations in the biomechanical stiffness of brain tumors can not only influence the difficulty of surgical resection but also impact postoperative outcomes. In a prospective, single-blinded study, we utilize pre-operative magnetic resonance elastography (MRE) to predict the stiffness of intracranial tumors intraoperatively and assess the impact of increased tumor stiffness on clinical outcomes following microsurgical resection of vestibular schwannomas (VS) and meningiomas. MRE measurements significantly correlated with intraoperative tumor stiffness and baseline hearing status of VS patients. Additionally, MRE stiffness was elevated in patients that underwent sub-total tumor resection compared to gross total resection and those with worse postoperative facial nerve function. Furthermore, we identify tumor microenvironment biomarkers of increased stiffness, including αSMA + myogenic fibroblasts, CD163 + macrophages, and HABP (hyaluronic acid binding protein). In a human VS cell line, a dose-dependent upregulation of HAS1-3, enzymes responsible for hyaluronan synthesis, was observed following stimulation with TNFα, a proinflammatory cytokine present in VS. Taken together, MRE is an accurate, non-invasive predictor of tumor stiffness in VS and meningiomas. VS with increased stiffness portends worse preoperative hearing and poorer postoperative outcomes. Moreover, inflammation-mediated hyaluronan deposition may lead to increased stiffness.


Subject(s)
Elasticity Imaging Techniques , Meningioma , Neuroma, Acoustic , Humans , Meningioma/surgery , Meningioma/metabolism , Meningioma/pathology , Meningioma/diagnostic imaging , Neuroma, Acoustic/surgery , Neuroma, Acoustic/metabolism , Neuroma, Acoustic/pathology , Neuroma, Acoustic/diagnostic imaging , Elasticity Imaging Techniques/methods , Female , Male , Middle Aged , Biomarkers, Tumor/metabolism , Aged , Prospective Studies , Adult , Meningeal Neoplasms/surgery , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/diagnostic imaging , Treatment Outcome , Tumor Microenvironment , Magnetic Resonance Imaging/methods
9.
EBioMedicine ; 105: 105211, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38917510

ABSTRACT

BACKGROUND: External radiation therapy (RT) is often a primary treatment for inoperable meningiomas in the absence of established chemotherapy. Histone deacetylase 6 (HDAC6) overexpression, commonly found in cancer, is acknowledged as a driver of cellular growth, and inhibiting HDACs holds promise in improving radiotherapeutic efficacy. Downregulation of HDAC6 facilitates the degradation of ß-catenin. This protein is a key element in the Wnt/ß-catenin signalling pathway, contributing to the progression of meningiomas. METHODS: In order to elucidate the associations and therapeutic potential of HDAC6 inhibitors (HDAC6i) in conjunction with RT, we administered Cay10603, HDAC6i, to both immortalised and patient-derived meningioma cells prior to RT in this study. FINDINGS: Our findings reveal an increase in HDAC6 expression following exposure to RT, which is effectively mitigated with pre-treated Cay10603. The combination of Cay10603 with RT resulted in a synergistic augmentation of cytotoxic effects, as demonstrated through a range of functional assays conducted in both 2D as well as 3D settings; the latter containing syngeneic tumour microenvironment (TME). Radiation-induced DNA damage was augmented by pre-treatment with Cay10603, concomitant with the inhibition of ß-catenin and minichromosome maintenance complex component 2 (MCM2) accumulation within the nucleus. This subsequently inhibited c-myc oncogene expression. INTERPRETATION: Our findings demonstrate the therapeutic potential of Cay10603 to improve the radiosensitisation and provide rationale for combining HDAC6i with RT for the treatment of meningioma. FUNDING: This work was funded by Brain Tumour Research Centre of Excellence award to C Oliver Hanemann.


Subject(s)
Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Meningioma , Humans , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Meningioma/radiotherapy , Meningioma/pathology , Meningioma/metabolism , Meningioma/genetics , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , beta Catenin/metabolism , beta Catenin/genetics , Meningeal Neoplasms/radiotherapy , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/genetics , Wnt Signaling Pathway/drug effects , Cell Proliferation/drug effects , Tumor Microenvironment/radiation effects , Tumor Microenvironment/drug effects , DNA Damage/radiation effects
10.
Ann Clin Lab Sci ; 54(2): 170-178, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38802155

ABSTRACT

OBJECTIVE: Meningioma is the most common primary adult intracranial neoplasm, and proliferation indices (PI) rise with increasing grade from WHO CNS grade 1 to 3. Ki-67 immunohistochemistry (IHC) poses a variety of technical and interpretative challenges. Here, we specifically investigated the staining intensity and its effect on interpretation and final diagnosis. METHODS: 124 high and low-grade meningiomas of various grades were blindly evaluated using different counting strategies (CS) based on the staining intensity of the nuclei as darkest (CS1), darkest+intermediate (CS2), and any staining (CS3) in hot-spots (HS) and in the context of overall proliferative activity (OPA). RESULT: CSs in HS, OPA, and their average results were significantly different between low-grade and high-grade groups. PI obtained using CS3 yielded results that matched best with values expected for the corresponding WHO grade. CS had a profound impact on whether a LG meningioma would be diagnosed as one with a "high proliferation index." CONCLUSION: A large body of work exists on the counting methods, clinically significant cut-off values, and inter- and intra-observer variability for Ki-67 PI interpretation. We show that Ki-67 IHC staining intensity, which to our knowledge has not been previously systematically investigated, can have a significant effect on PI interpretation in settings that influence diagnostic and clinical management decisions.


Subject(s)
Cell Proliferation , Immunohistochemistry , Ki-67 Antigen , Meningeal Neoplasms , Meningioma , Humans , Meningioma/pathology , Meningioma/metabolism , Ki-67 Antigen/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Immunohistochemistry/methods , Neoplasm Grading , Female , Staining and Labeling/methods , Male , Middle Aged , Aged , Adult , Mitotic Index/methods
11.
PLoS One ; 19(5): e0303337, 2024.
Article in English | MEDLINE | ID: mdl-38758750

ABSTRACT

Meningioma is the most common primary brain tumor and many studies have evaluated numerous biomarkers for their prognostic value, often with inconsistent results. Currently, no reliable biomarkers are available to predict the survival, recurrence, and progression of meningioma patients in clinical practice. This study aims to evaluate the prognostic value of immunohistochemistry-based (IHC) biomarkers of meningioma patients. A systematic literature search was conducted up to November 2023 on PubMed, CENTRAL, CINAHL Plus, and Scopus databases. Two authors independently reviewed the identified relevant studies, extracted data, and assessed the risk of bias of the studies included. Meta-analyses were performed with the hazard ratio (HR) and 95% confidence interval (CI) of overall survival (OS), recurrence-free survival (RFS), and progression-free survival (PFS). The risk of bias in the included studies was evaluated using the Quality in Prognosis Studies (QUIPS) tool. A total of 100 studies with 16,745 patients were included in this review. As the promising markers to predict OS of meningioma patients, Ki-67/MIB-1 (HR = 1.03, 95%CI 1.02 to 1.05) was identified to associate with poor prognosis of the patients. Overexpression of cyclin A (HR = 4.91, 95%CI 1.38 to 17.44), topoisomerase II α (TOP2A) (HR = 4.90, 95%CI 2.96 to 8.12), p53 (HR = 2.40, 95%CI 1.73 to 3.34), vascular endothelial growth factor (VEGF) (HR = 1.61, 95%CI 1.36 to 1.90), and Ki-67 (HR = 1.33, 95%CI 1.21 to 1.46), were identified also as unfavorable prognostic biomarkers for poor RFS of meningioma patients. Conversely, positive progesterone receptor (PR) and p21 staining were associated with longer RFS and are considered biomarkers of favorable prognosis of meningioma patients (HR = 0.60, 95% CI 0.41 to 0.88 and HR = 1.89, 95%CI 1.11 to 3.20). Additionally, high expression of Ki-67 was identified as a prognosis biomarker for poor PFS of meningioma patients (HR = 1.02, 95%CI 1.00 to 1.04). Although only in single studies, KPNA2, CDK6, Cox-2, MCM7 and PCNA are proposed as additional markers with high expression that are related with poor prognosis of meningioma patients. In conclusion, the results of the meta-analysis demonstrated that PR, cyclin A, TOP2A, p21, p53, VEGF and Ki-67 are either positively or negatively associated with survival of meningioma patients and might be useful biomarkers to assess the prognosis.


Subject(s)
Biomarkers, Tumor , Meningeal Neoplasms , Meningioma , Meningioma/metabolism , Meningioma/pathology , Meningioma/mortality , Meningioma/diagnosis , Humans , Biomarkers, Tumor/metabolism , Prognosis , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/mortality , Meningeal Neoplasms/pathology , Meningeal Neoplasms/diagnosis , DNA Topoisomerases, Type II/metabolism , Ki-67 Antigen/metabolism , Tumor Suppressor Protein p53/metabolism , Vascular Endothelial Growth Factor A/metabolism , Immunohistochemistry , Poly-ADP-Ribose Binding Proteins
12.
Neurosurg Rev ; 47(1): 235, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795181

ABSTRACT

PURPOSE: This study investigated the value of whole tumor apparent diffusion coefficient (ADC) histogram parameters and magnetic resonance imaging (MRI) semantic features in predicting meningioma progesterone receptor (PR) expression. MATERIALS AND METHODS: The imaging, pathological, and clinical data of 53 patients with PR-negative meningiomas and 52 patients with PR-positive meningiomas were retrospectively reviewed. The whole tumor was outlined using Firevoxel software, and the ADC histogram parameters were calculated. The differences in ADC histogram parameters and MRI semantic features were compared between the two groups. The predictive values of parameters for PR expression were assessed using receiver operating characteristic curves. The correlation between whole-tumor ADC histogram parameters and PR expression in meningiomas was also analyzed. RESULTS: Grading was able to predict the PR expression in meningiomas (p = 0.012), though the semantic features of MRI were not (all p > 0.05). The mean, Perc.01, Perc.05, Perc.10, Perc.25, and Perc.50 histogram parameters were able to predict meningioma PR expression (all p < 0.05). The predictive performance of the combined histogram parameters improved, and the combination of grade and histogram parameters provided the optimal predictive value, with an area under the curve of 0.849 (95%CI: 0.766-0.911) and sensitivity, specificity, ACC, PPV, and NPV of 73.08%, 81.13%, 77.14%, 79.20%, and 75.40%, respectively. The mean, Perc.01, Perc.05, Perc.10, Perc.25, and Perc.50 histogram parameters were positively correlated with PR expression (all p < 0.05). CONCLUSION: Whole tumor ADC histogram parameters have additional clinical value in predicting PR expression in meningiomas.


Subject(s)
Diffusion Magnetic Resonance Imaging , Meningeal Neoplasms , Meningioma , Receptors, Progesterone , Humans , Meningioma/diagnostic imaging , Meningioma/pathology , Meningioma/metabolism , Female , Middle Aged , Male , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Receptors, Progesterone/metabolism , Adult , Diffusion Magnetic Resonance Imaging/methods , Aged , Retrospective Studies , Predictive Value of Tests
13.
Metab Brain Dis ; 39(5): 895-907, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38771413

ABSTRACT

Meningioma is a prevalent intracranial malignancy known for its aggressive growth. Circular RNAs (circRNAs) play a crucial role in the development of various cancers. However, their involvement in meningioma remains understudied. This study aimed to investigate the function and underlying mechanism of hsa_circ_0004872 in meningioma. The molecular expression of hsa_circ_0004872, PD-L1 and EIF4A3 was identified by RT-qPCR and/or western blot assays. Cell viability, migration, and invasion were assessed through CCK-8 and Transwell assays, respectively. Cytotoxicity was determined using an LDH assay, and cell apoptosis was monitored by flow cytometry. The RNA and protein interactions were assessed through RNA-protein immunoprecipitation (RIP) and RNA pull down analyses. Our findings revealed that hsa_circ_0004872 expression was significantly downregulated in both meningioma tissue samples and cells. Overexpression of hsa_circ_0004872 inhibited the proliferation, metastasis, and immune escape of meningioma cells, as well as enhanced the cytotoxicity of CD8+ T cells by suppressing PD-L1. Furthermore, hsa_circ_0004872 directly interacted with EIF4A3, leading to the degradation of PD-L1 mRNA. Finally, inhibiting EIF4A3 improved the proliferation, metastasis, and immune escape of meningioma cells, as well as the cytotoxicity of CD8+ T cells. Our study demonstrated that hsa_circ_0004872 mitigated the proliferation, metastasis,and immune escape of meningioma cells by targeting the EIF4A3/PD-L1 axis. These findings suggested that hsa_circ_0004872 and EIF4A3 might serve as promising biological markers and therapeutic targets for meningioma treatment.


Subject(s)
B7-H1 Antigen , Cell Proliferation , Eukaryotic Initiation Factor-4A , Meningeal Neoplasms , Meningioma , RNA, Circular , Meningioma/pathology , Meningioma/immunology , Meningioma/genetics , Meningioma/metabolism , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , RNA, Circular/genetics , Meningeal Neoplasms/pathology , Meningeal Neoplasms/genetics , Meningeal Neoplasms/immunology , Meningeal Neoplasms/metabolism , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement , Tumor Escape , Apoptosis , DEAD-box RNA Helicases
14.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674001

ABSTRACT

Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.


Subject(s)
Gene Expression Regulation, Neoplastic , Mechanistic Target of Rapamycin Complex 2 , Medulloblastoma , Meningeal Neoplasms , Otx Transcription Factors , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/metabolism , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/secondary , Otx Transcription Factors/metabolism , Otx Transcription Factors/genetics , Signal Transduction
15.
Zhonghua Bing Li Xue Za Zhi ; 53(5): 439-445, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38678323

ABSTRACT

Objective: To examine whether immunohistochemistry of methylthioadenosine phosphorylase (MTAP) and p16 could be used to predict the CDKN2A status in various brain tumors. Methods: A total of 118 cases of IDH-mutant astrocytomas, 16 IDH-wildtype glioblastoma, 17 polymorphic xanthoastrocytoma (PXA) and 20 meningiomas diagnosed at Xuanwu Hospital, Capital Medical University, Beijing, China from November 2017 to October 2023 were collected and analyzed. The CDKN2A status was detected by using fluorescence in situ hybridization or next-generation sequencing. Expression of MTAP and p16 proteins was detected with immunohistochemistry. The association of loss of MTAP/p16 expression with CDKN2A homozygous/heterozygous deletion was examined. Results: Among the 118 cases of IDH-mutant astrocytoma, 13 cases showed homozygous deletion of CDKN2A. All of them had no expression of MTAP while 9 cases had no expression of p16. Among the 16 cases of IDH wild-type glioblastoma, 6 cases showed homozygous deletion of CDKN2A. All 6 cases had no expression of MTAP, while 3 of these cases had no expression of p16 expression. Among the 17 PXA cases, 4 cases showed homozygous deletion of CDKN2A, and the expression of MTAP and p16 was also absent in these 4 cases. Among the 20 cases of meningiomas, 4 cases showed homozygous deletion of CDKN2A. Their expression of MTAP and p16 was also absent. Among the four types of brain tumors, MTAP was significantly correlated with CDKN2A homozygous deletion (P<0.05), with a sensitivity of 100%. However, it was only significantly correlated with the loss of heterozygosity (LOH) of CDKN2A in astrocytomas (P<0.001). P16 was associated with CDKN2A homozygous deletion in IDH-mutant astrocytoma and PXA (P<0.001), but not with the LOH of CDKN2A. Its sensitivity and specificity were lower than that of MTAP. Conclusions: MTAP could serve as a predictive surrogate for CDKN2A homozygous deletion in adult IDH-mutant astrocytoma, PXA, adult IDH-wildtype glioblastoma and meningioma. However, p16 could only be used in the first two tumor types, and its specificity and sensitivity are lower than that of MTAP.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Cyclin-Dependent Kinase Inhibitor p16 , Homozygote , Purine-Nucleoside Phosphorylase , Humans , Purine-Nucleoside Phosphorylase/genetics , Purine-Nucleoside Phosphorylase/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Astrocytoma/genetics , Astrocytoma/metabolism , Meningioma/genetics , Meningioma/metabolism , Meningioma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Immunohistochemistry , In Situ Hybridization, Fluorescence , Gene Deletion , Meningeal Neoplasms/genetics , Meningeal Neoplasms/metabolism , Mutation , Male , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Female , Adult , High-Throughput Nucleotide Sequencing
16.
Redox Biol ; 72: 103137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642502

ABSTRACT

The oncogene Aurora kinase A (AURKA) has been implicated in various tumor, yet its role in meningioma remains unexplored. Recent studies have suggested a potential link between AURKA and ferroptosis, although the underlying mechanisms are unclear. This study presented evidence of AURKA upregulation in high grade meningioma and its ability to enhance malignant characteristics. We identified AURKA as a suppressor of erastin-induced ferroptosis in meningioma. Mechanistically, AURKA directly interacted with and phosphorylated kelch-like ECH-associated protein 1 (KEAP1), thereby activating nuclear factor erythroid 2 related factor 2 (NFE2L2/NRF2) and target genes transcription. Additionally, forkhead box protein M1 (FOXM1) facilitated the transcription of AURKA. Suppression of AURKA, in conjunction with erastin, yields significant enhancements in the prognosis of a murine model of meningioma. Our study elucidates an unidentified mechanism by which AURKA governs ferroptosis, and strongly suggests that the combination of AURKA inhibition and ferroptosis-inducing agents could potentially provide therapeutic benefits for meningioma treatment.


Subject(s)
Aurora Kinase A , Ferroptosis , Forkhead Box Protein M1 , Meningioma , NF-E2-Related Factor 2 , Piperazines , Ferroptosis/drug effects , Ferroptosis/genetics , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Humans , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Animals , Mice , Meningioma/metabolism , Meningioma/genetics , Meningioma/pathology , Piperazines/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningeal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics
17.
J Clin Neurosci ; 124: 15-19, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631196

ABSTRACT

BACKGROUND: Meningiomas are the most common primary intracranial tumors in adults. Although benign in a majority of cases, they have a variable clinical course and may recur even after a thorough surgical resection. Ki-67, a nuclear protein involved in cell cycle regulation, has been widely studied as a marker of cellular proliferation in various cancers. However, the prognostic significance of Ki-67 in meningiomas remains controversial. Here, we investigate the Ki-67 index, as a predictive marker of meningioma recurrence following surgical resection and compare it to established prognostic markers such as WHO grade and degree of resection. METHODS: The medical records of 451 patients with previously untreated cranial meningiomas who underwent resections from January 2011 to January 2021 at North Shore University Hospital (NSUH) were reviewed. Collected data included WHO grade, Ki-67 proliferative index, degree of resection - gross (GTR) vs subtotal (STR) - as judged by the surgeon, tumor location, and meningioma recurrence. This study was approved by the NSUH Institutional Review Board IRB 21-1107. RESULTS: There were 290 patients with grade I, 154 with grade II, and 7 with grade III meningiomas. The average post-resection follow-up period was 4 years, and 82 tumors (18 %) recurred. Higher WHO grades were associated with higher rates of recurrence, with rates of 11.4 %, 27.9 %, and 71.4 % for grades 1, 2, and 3, respectively, and subtotal resection corresponded to a higher rate of recurrence than total resection (34.3 % and 13.4 %, respectively). Higher WHO grades also correlated with higher Ki-67 scores (2.59, 10.01, and 20.71) for grades 1, 2, and 3, respectively. A multivariate logistic regression model identified Ki-67 and degree of resection as independent predictive variables for meningioma recurrence, with Ki-67 specifically predicting recurrence in the WHO grade II subset when analyzed separately for WHO grades I and II. CONCLUSION: Our 10-year retrospective study suggests that the Ki-67 index is an important predictive marker for recurrence of intracranial meningiomas following surgical resection, particularly among patients with WHO grade II tumors. Our findings add to a growing body of data that support inclusion of Ki-67 index in the WHO grading criteria for patients with meningiomas.


Subject(s)
Ki-67 Antigen , Meningeal Neoplasms , Meningioma , Neoplasm Recurrence, Local , Humans , Meningioma/surgery , Meningioma/pathology , Meningioma/metabolism , Ki-67 Antigen/metabolism , Ki-67 Antigen/analysis , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Meningeal Neoplasms/surgery , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Female , Male , Middle Aged , Aged , Adult , Retrospective Studies , Neoplasm Grading , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Aged, 80 and over , Prognosis , Young Adult , Follow-Up Studies
18.
J Neurooncol ; 167(3): 455-465, 2024 May.
Article in English | MEDLINE | ID: mdl-38446374

ABSTRACT

PURPOSE: Meningiomas are the most common type of brain tumors and are generally benign, but malignant atypical meningiomas and anaplastic meningiomas frequently recur with poor prognosis. The metabolism of meningiomas is little known, so few effective treatment options other than surgery and radiation are available, and the targets for treatment of recurrence are not well defined. The Aim of this paper is to find the therapeutic target. METHODS: The effects of bone morphogenetic protein (BMP) signal inhibitor (K02288) and upstream regulator Gremlin2 (GREM2) on meningioma's growth and senescence were examined. In brief, we examined as follows: 1) Proliferation assay by inhibiting BMP signaling. 2) Comprehensive analysis of forced expression GREM2.3) Correlation between GREM2 mRNA expression and proliferation marker in 87 of our clinical samples. 4) Enrichment analysis between GREM2 high/low expressed groups using RNA-seq data (42 cases) from the public database GREIN. 5) Changes in metabolites and senescence markers associated with BMP signal suppression. RESULTS: Inhibitors of BMP receptor (BMPR1A) and forced expression of GREM2 shifted tryptophan metabolism from kynurenine/quinolinic acid production to serotonin production in malignant meningiomas, reduced NAD + /NADH production, decreased gene cluster expression involved in oxidative phosphorylation, and caused decrease in ATP. Finally, malignant meningiomas underwent cellular senescence, decreased proliferation, and eventually formed psammoma bodies. Reanalyzed RNA-seq data of clinical samples obtained from GREIN showed that increased expression of GREM2 decreased the expression of genes involved in oxidative phosphorylation, similar to our experimental results. CONCLUSIONS: The GREM2-BMPR1A-tryptophan metabolic pathway in meningiomas is a potential new therapeutic target.


Subject(s)
Bone Morphogenetic Proteins , Calcinosis , Meningeal Neoplasms , Meningioma , Signal Transduction , Humans , Meningioma/metabolism , Meningioma/pathology , Meningioma/genetics , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Calcinosis/pathology , Calcinosis/metabolism , Calcinosis/genetics , Cell Proliferation , Cellular Senescence , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics
19.
Vet Comp Oncol ; 22(2): 174-185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38332673

ABSTRACT

Meningiomas are the most common feline primary brain tumours, and calvarial hyperostosis (CH) is frequently documented in association with this neoplastic entity. The clinical significance of and mechanisms driving the formation of CH in cats with meningiomas are poorly understood, although tumour invasion into the skull and tumour production of cytokines and enzymes have been implicated as causes of CH in humans. This retrospective study investigated relationships between signalment, MRI or CT imaging features, histopathologic tumour characteristics, alkaline phosphatase (ALP) isoenzyme concentrations, tumour expression of matrix metalloproteinases (MMP)-2, MMP-9, and interleukin-6 (IL-6), and progression free survival times (PFS) following surgical treatment in 27 cats with meningiomas with (n = 15) or without (n = 12) evidence of CH. No significant differences in breed, age, sex, body weight, tumour grade, tumour volume, peritumoral edema burden, ALP isoenzyme concentrations, tumour Ki-67 labelling indices or MMP-2 or MMP-9 expression and activity, or PFS were noted between cats with or without CH. There was a trend towards higher serum (p = .06) and intratumoral (p = .07) concentrations of IL-6 in cats with CH, but these comparisons were not statistically significant. Histologic evidence of tumour invasion into bone was observed in 5/12 (42%) with CH and in no (0/6) cats without CH, although this was not statistically significant (p = .07). Tumour invasion into bone and tumour production of IL-6 may contribute to the formation of meningioma associated CH in cats, although larger studies are required to further substantiate these findings and determine their clinical relevance.


Subject(s)
Cat Diseases , Hyperostosis , Magnetic Resonance Imaging , Meningeal Neoplasms , Meningioma , Tomography, X-Ray Computed , Animals , Meningioma/veterinary , Meningioma/diagnostic imaging , Meningioma/pathology , Cats , Cat Diseases/diagnostic imaging , Cat Diseases/pathology , Magnetic Resonance Imaging/veterinary , Female , Male , Hyperostosis/veterinary , Hyperostosis/diagnostic imaging , Hyperostosis/pathology , Retrospective Studies , Tomography, X-Ray Computed/veterinary , Meningeal Neoplasms/veterinary , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Skull/diagnostic imaging , Skull/pathology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Interleukin-6/metabolism
20.
J Neurosurg ; 141(1): 100-107, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38335517

ABSTRACT

OBJECTIVE: CD44 is a major cell surface receptor involved in cell adhesion and migration. The overexpression of CD44 is a poor prognostic factor in many neoplasms, including meningiomas. The aim of this study was to investigate the association between CD44 gene expression and clinical signatures of primary meningiomas. METHODS: CD44 gene expression was quantitatively evaluated by snap freezing tumor tissues obtained from 106 patients with primary meningioma. The relationships between CD44 expression and clinical signatures of meningiomas, including histological malignancy, tumor volume, and peritumoral brain edema (PTBE), were analyzed. PTBE was assessed using the Steinhoff classification (SC) system (from SC 0 to SC III). RESULTS: CD44 gene expression in WHO grade 2 and 3 meningiomas was significantly higher than that in grade 1 meningiomas. In addition, CD44 expression increased with the severity of PTBE. Particularly, among the grade 1 meningiomas or small-sized tumors (maximum tumor diameter < 43 mm), CD44 expression in tumors with severe PTBE (SC II or III) was significantly higher than that in tumors without or with mild PTBE (SC 0 or I). Multivariate logistic regression analysis also revealed that overexpression of CD44 was an independent significant factor of severe PTBE development in primary meningiomas. CONCLUSIONS: In addition to tumor cell aggressiveness, CD44 expression promotes the development of PTBE in meningioma. Since PTBE is a strong factor of tumor-related epilepsy or cognitive dysfunction in patients with meningioma, CD44 is thus a potential therapeutic target in meningioma with PTBE.


Subject(s)
Brain Edema , Hyaluronan Receptors , Meningeal Neoplasms , Meningioma , Humans , Meningioma/metabolism , Meningioma/complications , Meningioma/pathology , Meningioma/genetics , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Brain Edema/metabolism , Brain Edema/etiology , Brain Edema/pathology , Male , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/complications , Meningeal Neoplasms/genetics , Female , Middle Aged , Aged , Adult , Aged, 80 and over , Clinical Relevance
SELECTION OF CITATIONS
SEARCH DETAIL