Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Cytokine ; 169: 156278, 2023 09.
Article in English | MEDLINE | ID: mdl-37356261

ABSTRACT

BACKGROUND: The innate immune response plays an important role during malaria. Toll-like receptors (TLR) are capable of recognizing pathogen molecules. We aimed to evaluate five polymorphisms in TLR-4, TLR-6, and TLR-9 genes and their association with cytokine levels and clinical parameters in malaria from the Brazil-French Guiana border. METHODS: A case-control study was conducted in Amapá, Brazil. P. vivax patients and individuals not infected were evaluated. Genotyping of five SNPs was carried out by qPCR. Circulating cytokines were measured by CBA. The MSP-119 IgG antibodies were performed by ELISA. RESULTS: An association between TLR4 A299G with parasitemia was observed. There was an increase for IFN-ɤ, TNF-ɑ, IL-6, and IL-10 in the TLR-4 A299G and T3911, TLR-6 S249P, and TLR-9 1486C/T, SNPs for the studied malarial groups. There were significant findings for the TLR-4 variants A299G and T3911, TLR-9 1237C/T, and 1486C/T. For the reactivity of MSP-119 antibodies levels, no significant results were found in malaria, and control groups. CONCLUSIONS: The profile of the immune response observed by polymorphisms in TLRs genes does not seem to be standard for all types of malaria infection around the world. This can depend on the human population and the species of Plasmodium.


Subject(s)
Malaria, Vivax , Malaria , Humans , Malaria, Vivax/genetics , Toll-Like Receptor 9 , Toll-Like Receptor 4/genetics , Toll-Like Receptor 6/genetics , Case-Control Studies , Brazil , French Guiana , Merozoite Surface Protein 1/genetics , Genotype , Genetic Predisposition to Disease , Toll-Like Receptors/genetics , Polymorphism, Single Nucleotide/genetics , Plasmodium vivax/genetics
2.
Infect Genet Evol ; 86: 104592, 2020 12.
Article in English | MEDLINE | ID: mdl-33059085

ABSTRACT

Plasmodium vivax merozoite surface proteins (PvMSP) 1 and 7 are considered vaccine targets. Genetic diversity knowledge is crucial to assess their potential as immunogens and to provide insights about population structure in different epidemiological contexts. Here, we investigate the variability of pvmsp-142, pvmsp-7E, and pvmsp-7F genes in 227 samples from the Brazilian Amazon (BA) and Rio de Janeiro Atlantic Forest (AF). pvmsp-142 has 63 polymorphisms - 57 nonsynonymous - generating a nucleotide diversity of π = 0.009 in AF, and π = 0.018 in BA. In pvmsp-7E, 134 polymorphisms - 103 nonsynonymous - generate the nucleotide diversity of π = 0.027 in AF, and π = 0.042 in BA. The pvmsp-7F has only two SNPs - A610G and A1054T -, with nucleotide diversity of π = 0.0004 in AF, and π = 0.0007 in BA. The haplotype diversity of pvmsp-142, pvmsp-7E, and pvmsp-7F genes is 0.997, 1.00, and 0.649, respectively. None of the pvmsp-142 or pvmsp-7E sequences are identical to the Salvador 1 strain's sequence. Conversely, most of pvmsp-7F sequences (94/48%) are identical to Sal-1. We evaluated eight B-cell epitopes in pvmsp-7E, four of them showed higher nucleotide diversity compared to pvmsp-7E's epitopes. Positive selection was detected in pvmsp-142, pvmsp-7E central region, and pvmsp-7F with Tajima's D. In pvmsp-7E, the significant nucleotide and haplotype diversities with low genetic differentiation, could be indicative of balancing selection. The genetic differentiation of pvmsp-142 (0.315) and pvmsp-7F (0.354) genes between AF and BA regions is significant, which is not the case for pvmsp-7E (0.193). We conclude that pvmsp-142 and pvmsp-7E have great genetic diversity even in AF region, an enclosure area with deficient transmission levels of P. vivax zoonotic malaria. In both Brazilian regions, pvmsp-119, pvmsp-7E, and pvmsp-7F are conserved, most likely due to their roles in parasite survival, and could be considered potential targets for a "blood-stage vaccine".


Subject(s)
Genetic Variation , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Membrane Proteins/genetics , Merozoite Surface Protein 1/genetics , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Brazil/epidemiology , Host-Parasite Interactions , Humans , Malaria, Vivax/transmission , Public Health Surveillance
3.
Vaccine ; 35(18): 2463-2472, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28341111

ABSTRACT

Plasmodium vivax is the most widely distributed malaria species and the most prevalent species of malaria in America and Asia. Vaccine development against P. vivax is considered a priority in the global program for the eradication of malaria. Earlier studies have characterized the Apical Membrane Antigen 1 (AMA-1) ectodomain and the C-terminal region (19kDa) of the Merozoite Surface Protein 1 (MSP-1) of P. vivax as immunodominant antigens. Based on this characterization, we designed a chimeric recombinant protein containing both merozoite immunodominant domains (PvAMA166-MSP119). The recombinant PvAMA166-MSP119 was successfully expressed in Pichia pastoris and used to immunize two different mouse strains (BALB/c and C57BL/6) in the presence of the Poly (I:C) as an adjuvant. Immunization with the chimeric protein induced high antibody titers against both proteins in both strains of mice as detected by ELISA. Antisera also recognized the native proteins expressed on the merozoites of mature P. vivax schizonts. Moreover, this antigen was able to induce IFN-gamma-secreting cells in C57BL/6 mice. These findings indicate that this novel yeast recombinant protein containing PvAMA166 and PvMSP119 is advantageous, because of improved antibody titers and cellular immune response. Therefore, this formulation should be further developed for pre-clinical trials in non-human primates as a potential candidate for a P. vivax vaccine.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Membrane Proteins/immunology , Merozoite Surface Protein 1/immunology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Recombinant Fusion Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/genetics , Membrane Proteins/genetics , Merozoite Surface Protein 1/genetics , Mice, Inbred BALB C , Mice, Inbred C57BL , Pichia/genetics , Poly I-C/administration & dosage , Protozoan Proteins/genetics , Recombinant Fusion Proteins/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
4.
Sci Rep ; 6: 39250, 2016 12 21.
Article in English | MEDLINE | ID: mdl-28000705

ABSTRACT

In vivo antigen targeting to dendritic cells (DCs) has been used as a way to improve immune responses. Targeting is accomplished with the use of monoclonal antibodies (mAbs) to receptors present on the DC surface fused with the antigen of interest. An anti-DEC205 mAb has been successfully used to target antigens to the DEC205+CD8α+ DC subset. The administration of low doses of the hybrid mAb together with DC maturation stimuli is able to activate specific T cells and induce production of high antibody titres for a number of different antigens. However, it is still not known if this approach would work with any fused protein. Here we genetically fused the αDEC205 mAb with two fragments (42-kDa and 19-kDa) derived from the ~200 kDa Plasmodium vivax merozoite surface protein 1 (MSP1), known as MSP142 and MSP119, respectively. The administration of two doses of αDEC-MSP142, but not of αDEC-MSP119 mAb, together with an adjuvant to two mouse strains induced high anti-MSP119 antibody titres that were dependent on CD4+ T cells elicited by peptides present in the MSP133 sequence, indicating that the presence of T cell epitopes in antigens targeted to DEC205+ DCs increases antibody responses.


Subject(s)
Antibody Formation/physiology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , Lectins, C-Type/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , CD4 Antigens/deficiency , CD4 Antigens/genetics , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation , Dendritic Cells/cytology , Dendritic Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/metabolism , Female , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Interferon-gamma/metabolism , Interleukin-2/metabolism , Merozoite Surface Protein 1/chemistry , Merozoite Surface Protein 1/genetics , Merozoite Surface Protein 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/immunology , Spleen/cytology , Spleen/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Infect Genet Evol ; 40: 324-330, 2016 06.
Article in English | MEDLINE | ID: mdl-26343495

ABSTRACT

Malaria is still a grave public health problem in tropical areas of the world. The greater genetic diversity of Plasmodium vivax at geographic sites with less control over infection evidences the importance of genetic studies of these parasites. The present genetic study compares P. vivax in Nicaragua, which is still in the control phase, with this species in several other countries. In Nicaragua, P. vivax causes over 80% of malaria cases, most occurring in two remote northern regions. Plasmodium asexual blood-stage antigens, implicated in reticulocyte invasion, are possible molecular markers for analyzing parasite population genetics and for developing vaccines. The aim of this work was to investigate the genetic structure of P. vivax based on the 42kDa merozoite surface protein-1 (PvMSP-142), which may represent a sensitive marker for evaluating malaria transmission control. From blood samples of patients with P. vivax, we amplified PvMSP-142, obtained the nucleotide sequences, and compared them to homologous sequences of parasites from other geographic sites, retrieved from the GenBank. The 92 nucleotide sequences of P. vivax resulted in the resolution of eight haplotypes, six exclusive to Nicaragua. The great nucleotide diversity (π=0.020), the minimal recombination events (Rm=11), and the dN-dS values were similar to other control phase countries. FST values between parasites were low (0.069) for Nicaragua versus Brazil but higher for Nicaragua versus other regions (0.134-0.482). The haplotype network revealed five lineages: two were very frequent in Nicaragua and closely related to American parasites; three have been detected in multiple geographic sites around the world. These results suggest that P. vivax in Nicaragua is a differentiated and genetically diverse population (mainly due to mutation, positive balancing selection and recombination) and that PvMSP-142 may be a sensitive marker for evaluating sustained reduction in malaria transmission and for developing vaccines.


Subject(s)
Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Merozoite Surface Protein 1/genetics , Plasmodium vivax/classification , Plasmodium vivax/genetics , Protein Domains/genetics , Evolution, Molecular , Genetic Variation , Genetics, Population , Haplotypes , Humans , Malaria, Vivax/diagnosis , Merozoite Surface Protein 1/chemistry , Nicaragua/epidemiology , Phylogeny , Phylogeography , Polymerase Chain Reaction , Recombination, Genetic , Selection, Genetic , Sequence Analysis, DNA
6.
Parasit Vectors ; 8: 651, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26691669

ABSTRACT

BACKGROUND: Reported malaria cases in the Americas had been reduced to about one-half million by 2012. To advance towards elimination of this disease, it is necessary to gain insights into how the malaria parasite is evolving, including the emergence, spread and persistence of new haplotypes in affected regions. In here, the genetic diversity of the three major P. vivax merozoite genes was analyzed. METHODS: From P. vivax-infected blood samples obtained in southern Mexico (SMX) during 2006-2007, nucleotide sequences were achieved for: the 42 kDa carboxyl fragment of the merozoite surface protein-1 (msp1 42 ), domains I-II of the apical membrane antigen-1 (ama1 I-II ), and domain II of the Duffy binding protein (dbp II ). Gene polymorphism was examined and haplotype networks were developed to depict parasite relationships in SMX. Then genetic diversity, recombination and natural selection were analyzed and the degree of differentiation was determined as FST values. RESULTS: The diversity of P. vivax merozoite genes in SMX was less than that of parasites from other geographic origins, with dbp II < ama1 I-II < msp1 42 . Ama1 I-II and msp1 42 exposed the more numerous haplotypes exclusive to SMX. While, all dbp II haplotypes from SMX were separated from one to three mutational steps, the networks of ama1 I-II and msp1 42 were more complex; loops and numerous mutational steps were evidenced, likely due to recombination. Sings of local diversification were more evident for msp1 42 . Sixteen combined haplotypes were determined; one of these haplotypes not detected in 2006 was highly frequent in 2007. The Rm value was higher for msp1 42 than for ama1 I-II, being insignificant for dbp II . The dN-dS value was highly significant for ama1 I-II and lesser so for dbp II . The F ST values were higher for dbp II than msp1 42 , and very low for ama1 I-II . CONCLUSIONS: In SMX, P. vivax ama1 I-II , dbp II and msp1 42 demonstrated limited diversity, and exhibited a differentiated parasite population. The results suggest that differential intensities of selective forces are operating on these gene fragments, and probably related to their timing, length of exposure and function during reticulocyte adhesion and invasion. Therefore, these finding are essential for mono and multivalent vaccine development and for epidemiological surveillance.


Subject(s)
Antigens, Protozoan/genetics , Genetic Variation , Membrane Proteins/genetics , Merozoite Surface Protein 1/genetics , Merozoites/classification , Plasmodium vivax/classification , Protozoan Proteins/genetics , Receptors, Cell Surface/genetics , Reticulocytes/parasitology , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Haplotypes , Mexico , Molecular Sequence Data , Plasmodium vivax/genetics , Sequence Analysis, DNA
7.
BMC Infect Dis ; 15: 529, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26572971

ABSTRACT

BACKGROUND: The merozoite surface protein 1 (MSP1) gene encodes the major surface antigen of invasive forms of the Plasmodium erythrocytic stages and is considered a candidate vaccine antigen against malaria. Due to its polymorphisms, MSP1 is also useful for strain discrimination and consists of a good genetic marker. Sequence diversity in MSP1 has been analyzed in field isolates of three human parasites: P. falciparum, P. vivax, and P. ovale. However, the extent of variation in another human parasite, P. malariae, remains unknown. This parasite shows widespread, uneven distribution in tropical and subtropical regions throughout South America, Asia, and Africa. Interestingly, it is genetically indistinguishable from P. brasilianum, a parasite known to infect New World monkeys in Central and South America. METHODS: Specific fragments (1 to 5) covering 60 % of the MSP1 gene (mainly the putatively polymorphic regions), were amplified by PCR in isolates of P. malariae and P. brasilianum from different geographic origin and hosts. Sequencing of the PCR-amplified products or cloned PCR fragments was performed and the sequences were used to construct a phylogenetic tree by the maximum likelihood method. Data were computed to give insights into the evolutionary and phylogenetic relationships of these parasites. RESULTS: Except for fragment 4, sequences from all other fragments consisted of unpublished sequences. The most polymorphic gene region was fragment 2, and in samples where this region lacks polymorphism, all other regions are also identical. The low variability of the P. malariae msp1 sequences of these isolates and the identification of the same haplotype in those collected many years apart at different locations is compatible with a low transmission rate. We also found greater diversity among P. brasilianum isolates compared with P. malariae ones. Lastly, the sequences were segregated according to their geographic origins and hosts, showing a strong genetic and geographic structure. CONCLUSIONS: Our data show that there is a low level of sequence diversity and a possible absence of allelic dimorphism of MSP1 in these parasites as opposed to other Plasmodium species. P. brasilianum strains apparently show greater divergence in comparison to P. malariae, thus P. malariae could derive from P. brasilianum, as it has been proposed.


Subject(s)
Genetic Variation , Merozoite Surface Protein 1/genetics , Plasmodium/genetics , Alleles , Animals , Brazil , Culicidae/parasitology , Humans , Likelihood Functions , Phylogeny , Plasmodium/isolation & purification , Plasmodium malariae/genetics , Polymorphism, Genetic
8.
Malar J ; 14: 442, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26546161

ABSTRACT

BACKGROUND: Polyparasitism is a common condition in humans but its impact on the host immune system and clinical diseases is still poorly understood. There are few studies of the prevalence and the effect of malaria-intestinal parasite co-infections in the immune response to malaria vaccine candidates. The present study determines whether the presence of malaria and intestinal parasites co-infection is associated with impaired IgG responses to Plasmodium vivax AMA-1 and MSP-119 in a rural population of the Brazilian Amazon. METHODS: A cross-sectional survey was performed in a rural area of Rondonia State and 279 individuals were included in the present study. At recruitment, whole blood was collected and Plasmodium and intestinal parasites were detected by microscopy and molecular tests. Blood cell count and haemoglobin were also tested and antibody response specific to P. vivax AMA-1 and MSP-119 was measured in plasma by ELISA. The participants were grouped according to their infection status: singly infected with Plasmodium (M); co-infected with Plasmodium and intestinal parasites (CI); singly infected with intestinal parasites (IP) and negative (N) for both malaria and intestinal parasites. RESULTS: The prevalence of intestinal parasites was significantly higher in individuals with malaria and protozoan infections were more prevalent. IgG antibodies to PvAMA-1 and/or PvMSP-119 were detected in 74 % of the population. The prevalence of specific IgG was similar for both proteins in all four groups and among the groups the lowest prevalence was in IP group. The cytophilic sub-classes IgG1 and IgG3 were predominant in all groups for PvAMA-1 and IgG1, IgG3 and IgG4 for PvMSP-119. In the case of non-cytophilic antibodies to PvAMA-1, IgG2 was significantly higher in IP and N group when compared to M and CI while IgG4 was higher in IP group. CONCLUSIONS: The presence of intestinal parasites, mainly protozoans, in malaria co-infected individuals does not seem to alter the antibody immune responses to P. vivax AMA-1 and MSP-119. However, IgG response to both AMA1 and MSP1 were lower in individuals with intestinal parasites.


Subject(s)
Antigens, Protozoan/genetics , Immunoglobulin G/immunology , Intestinal Diseases, Parasitic/epidemiology , Malaria/epidemiology , Membrane Proteins/genetics , Merozoite Surface Protein 1/genetics , Protozoan Proteins/genetics , Adult , Antigens, Protozoan/metabolism , Brazil/epidemiology , Coinfection/epidemiology , Coinfection/immunology , Coinfection/parasitology , Humans , Intestinal Diseases, Parasitic/immunology , Intestinal Diseases, Parasitic/parasitology , Malaria/immunology , Malaria/parasitology , Membrane Proteins/metabolism , Merozoite Surface Protein 1/metabolism , Plasmodium vivax/physiology , Prevalence , Protozoan Proteins/metabolism , Young Adult
9.
J Immunol Res ; 2014: 671050, 2014.
Article in English | MEDLINE | ID: mdl-24741614

ABSTRACT

The diversity of MSP1 in both Plasmodium falciparum and P. vivax is presumed be associated to parasite immune evasion. In this study, we assessed genetic diversity of the most variable domain of vaccine candidate N-terminal PvMSP1 (Block 2) in field isolates of Manaus. Forty-seven blood samples the polymorphism of PvMSP1 Block 2 generates four fragment sizes. In twenty-eight of them, sequencing indicated seven haplotypes of PvMSP1 Block 2 circulating among field isolates. Evidence of striking exchanges was observed with two stretches flanking the repeat region and two predicted recombination sites were described. Single nucleotide polymorphisms determined with concurrent infections per patient indicated that nonsynonymous substitutions occurred preferentially in the repeat-rich regions which also were predicted as B-cell epitopes. The comprehensive understanding of the genetic diversity of the promising Block 2 associated with clinical immunity and a reduced risk of infection by Plasmodium vivax would be important for the rationale of malaria vaccine designs.


Subject(s)
Antigens, Protozoan/genetics , Epitopes, B-Lymphocyte/chemistry , Merozoite Surface Protein 1/genetics , Plasmodium vivax/genetics , Amino Acid Sequence , Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Brazil , Epitopes, B-Lymphocyte/immunology , Haplotypes , Humans , Immune Evasion , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Merozoite Surface Protein 1/chemistry , Merozoite Surface Protein 1/immunology , Molecular Sequence Data , Plasmodium vivax/immunology , Plasmodium vivax/isolation & purification , Polymorphism, Single Nucleotide , Sequence Alignment
10.
Malar J ; 13: 35, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-24472213

ABSTRACT

BACKGROUND: Plasmodium vivax is a protozoan parasite with an extensive worldwide distribution, being highly prevalent in Asia as well as in Mesoamerica and South America. In southern Mexico, P. vivax transmission has been endemic and recent studies suggest that these parasites have unique biological and genetic features. The msp1 gene has shown high rate of nucleotide substitutions, deletions, insertions, and its mosaic structure reveals frequent events of recombination, maybe between highly divergent parasite isolates. METHODS: The nucleotide sequence variation in the polymorphic icb5-6 fragment of the msp1 gene of Mexican and worldwide isolates was analysed. To understand how genotype diversity arises, disperses and persists in Mexico, the genetic structure and genealogical relationships of local isolates were examined. To identify new sequence hybrids and their evolutionary relationships with other P. vivax isolates circulating worldwide two haplotype networks were constructed questioning that two portions of the icb5-6 have different evolutionary history. RESULTS: Twelve new msp1 icb5-6 haplotypes of P. vivax from Mexico were identified. These nucleotide sequences show mosaic structure comprising three partially conserved and two variable subfragments and resulted into five different sequence types. The variable subfragment sV1 has undergone recombination events and resulted in hybrid sequences and the haplotype network allocated the Mexican haplotypes to three lineages, corresponding to the Sal I and Belem types, and other more divergent group. In contrast, the network from icb5-6 fragment but not sV1 revealed that the Mexican haplotypes belong to two separate lineages, none of which are closely related to Sal I or Belem sequences. CONCLUSIONS: These results suggest that the new hybrid haplotypes from southern Mexico were the result of at least three different recombination events. These rearrangements likely resulted from the recombination between haplotypes of highly divergent lineages that are frequently distributed in South America and Asia and diversified rapidly.


Subject(s)
Malaria, Vivax/parasitology , Merozoite Surface Protein 1/genetics , Plasmodium vivax/genetics , Polymorphism, Genetic , Base Sequence , Evolution, Molecular , Haplotypes , Humans , Hybridization, Genetic , Merozoite Surface Protein 1/metabolism , Mexico , Molecular Sequence Data , Plasmodium vivax/metabolism , Recombination, Genetic , Sequence Alignment
11.
J Vet Med Sci ; 75(11): 1463-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23856760

ABSTRACT

In the present study, we screened blood DNA samples obtained from cattle bred in Brazil (n=164) and Ghana (n=80) for Babesia bovis using a diagnostic PCR assay and found prevalences of 14.6% and 46.3%, respectively. Subsequently, the genetic diversity of B. bovis in Thailand, Brazil and Ghana was analyzed, based on the DNA sequence of merozoite surface antigen-1 (MSA-1). In Thailand, MSA-1 sequences were relatively conserved and found in a single clade of the phylogram, while Brazilian MSA-1 sequences showed high genetic diversity and were dispersed across three different clades. In contrast, the sequences from Ghanaian samples were detected in two different clades, one of which contained only a single Ghanaian sequence. The identities among the MSA-1 sequences from Thailand, Brazil and Ghana were 99.0-100%, 57.5-99.4% and 60.3-100%, respectively, while the similarities among the deduced MSA-1 amino acid sequences within the respective countries were 98.4-100%, 59.4-99.7% and 58.7-100%, respectively. These observations suggested that the genetic diversity of B. bovis based on MSA-1 sequences was higher in Brazil and Ghana than in Thailand. The current data highlight the importance of conducting extensive studies on the genetic diversity of B. bovis before designing immune control strategies in each surveyed country.


Subject(s)
Babesia bovis/genetics , Babesiosis/parasitology , Cattle Diseases/parasitology , Genetic Variation/genetics , Phylogeny , Animals , Babesiosis/epidemiology , Base Sequence , Brazil/epidemiology , Cattle , Cattle Diseases/epidemiology , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Ghana , Merozoite Surface Protein 1/chemistry , Merozoite Surface Protein 1/genetics , Molecular Sequence Data , Polymerase Chain Reaction/veterinary , Prevalence , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Sequence Alignment , Sequence Analysis, DNA , Thailand/epidemiology
12.
PLoS One ; 7(11): e49871, 2012.
Article in English | MEDLINE | ID: mdl-23185469

ABSTRACT

BACKGROUND: Plasmodium vivax infection is characterized by a dormant hepatic stage, the hypnozoite that is activated at varying periods of time after clearance of the primary acute blood-stage, resulting in relapse. Differentiation between treatment failure and new infections requires characterization of initial infections, relapses, and clone multiplicity in vivax malaria infections. METHODOLOGY/PRINCIPAL FINDINGS: Parasite DNA obtained from primary/relapse paired blood samples of 30 patients with P. vivax infection in Brazil was analyzed using 10 molecular markers (8 microsatellites and MSP-1 blocks 2 and 10). Cloning of PCR products and genotyping was used to identify low-frequency clones of parasites. We demonstrated a high frequency of multiple-clone infections in both primary and relapse infections. Few alleles were identified per locus, but the combination of these alleles produced many haplotypes. Consequently, the majority of parasites involved in relapse showed haplotypes that were distinct from those of primary infections. Plasmodium vivax relapse was characterized by temporal variations in the predominant parasite clones. CONCLUSIONS/SIGNIFICANCE: The high rate of low frequency alleles observed in both primary and relapse infections, along with temporal variation in the predominant alleles, might be the source of reported heterologous hypnozoite activation. Our findings complicate the concept of heterologous activation, suggesting the involvement of undetermined mechanisms based on host or environmental factors in the simultaneous activation of multiple clones of hypnozoites.


Subject(s)
Host-Parasite Interactions , Malaria, Vivax , Plasmodium vivax , Adult , Alleles , Antimalarials/administration & dosage , Brazil , Chronic Disease , Female , Gene Frequency , Genotype , Haplotypes , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Malaria, Vivax/blood , Malaria, Vivax/drug therapy , Malaria, Vivax/genetics , Malaria, Vivax/parasitology , Male , Merozoite Surface Protein 1/genetics , Microsatellite Repeats/genetics , Middle Aged , Plasmodium vivax/genetics , Plasmodium vivax/metabolism , Plasmodium vivax/pathogenicity , Recurrence , Treatment Failure , Young Adult
13.
Parasitology ; 139(6): 701-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22339946

ABSTRACT

The majority of Plasmodium falciparum field isolates are defined as complex infections because they contain multiple genetically distinct clones. Studying interactions between clones in complex infections in vivo and in vitro could elucidate important phenomena in malaria infection, transmission and treatment. Using quantitative PCR (qPCR) of the P. falciparum merozoite surface protein 1, block 2 (PfMSP1-B2), we provide a sensitive and efficient genotyping method. This is important for epidemiological studies because it makes it possible to study genotype-specific growth dynamics. We compared 3 PfMSP1-B2 genotyping methods by analysing 79 field isolates from the Peruvian Amazon. In vivo observations from other studies using these techniques led to the hypothesis that clones within complex infections interact. By co-culturing clones with different PfMSP1-B2 genotypes, and measuring parasitaemia using qPCR, we found that suppression of clonal expansion was a factor of the collective density of all clones present in a culture. PfMSP1-B2 qPCR enabled us to find in vitro evidence for parasite-parasite interactions and could facilitate future investigations of growth trends in naturally occurring complex infections.


Subject(s)
Malaria, Falciparum/parasitology , Merozoite Surface Protein 1/genetics , Plasmodium falciparum/classification , Plasmodium falciparum/growth & development , Polymerase Chain Reaction/methods , Animals , DNA, Protozoan/analysis , Genotype , Humans , Merozoite Surface Protein 1/metabolism , Peru , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Sensitivity and Specificity
14.
Acta Trop ; 121(1): 6-12, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21982798

ABSTRACT

Describing genetic diversity of the Plasmodium falciparum parasite provides important information about the local epidemiology of malaria. In this study, we examined the genetic diversity of P. falciparum isolates from the Artibonite Valley in Haiti using the allelic families of merozoite surface protein 1 and 2 genes (msp-1 and msp-2). The majority of study subjects infected with P. falciparum had a single parasite genotype (56% for msp-1 and 69% for msp-2: n=79); 9 distinct msp-1 genotypes were identified by size differences on agarose gels. K1 was the most polymorphic allelic family with 5 genotypes (amplicons from 100 to 300 base pairs [bp]); RO33 was the least polymorphic, with a single genotype (120-bp). Although both msp-2 alleles (3D7/IC1, FC27) had similar number of genotypes (n=4), 3D7/IC1 was more frequent (85% vs. 26%). All samples were screened for the presence of the K76T mutation on the P. falciparum chloroquine resistance transporter (pfcrt) gene with 10 of 79 samples positive. Of the 2 (out of 10) samples from individuals follow-up for 21 days, P. falciparum parasites were present through day 7 after treatment with chloroquine. No parasites were found on day 21. Our results suggest that the level of genetic diversity is low in this area of Haiti, which is consistent with an area of low transmission.


Subject(s)
Antigens, Protozoan/genetics , Genetic Variation , Merozoite Surface Protein 1/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Gene Frequency , Genotype , Haiti , Humans , Malaria, Falciparum/parasitology , Male , Middle Aged , Plasmodium falciparum/isolation & purification , Young Adult
15.
Am J Trop Med Hyg ; 84(2 Suppl): 64-70, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21292880

ABSTRACT

Merozoite surface protein 1 (MSP-1) is a polymorphic malaria protein with functional domains involved in parasite erythrocyte interaction. Plasmodium vivax MSP-1 has a fragment (Pv200L) that has been identified as a potential subunit vaccine because it is highly immunogenic and induces partial protection against infectious parasite challenge in vaccinated monkeys. To determine the extent of genetic polymorphism and its effect on the translated protein, we sequenced the Pv200L coding region from isolates of 26 P. vivax-infected patients in a malaria-endemic area of Colombia. The extent of nucleotide diversity (π) in these isolates (0.061 ± 0.004) was significantly lower (P ≤ 0.001) than that observed in Thai and Brazilian isolates; 0.083 ± 0.006 and 0.090 ± 0.006, respectively. We found two new alleles and several previously unidentified dimorphic substitutions and significant size polymorphism. The presence of highly conserved blocks in this fragment has important implications for the development of Pv200L as a subunit vaccine candidate.


Subject(s)
Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Malaria, Vivax/epidemiology , Merozoite Surface Protein 1/genetics , Plasmodium vivax/genetics , Polymorphism, Genetic , Animals , Base Sequence , Colombia/epidemiology , Duffy Blood-Group System , Humans , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Phylogeny , Point Mutation
16.
Malar J ; 9: 178, 2010 Jun 23.
Article in English | MEDLINE | ID: mdl-20573199

ABSTRACT

BACKGROUND: Plasmodium vivax circumsporozoite variants have been identified in several geographical areas. The real implication of the genetic variation in this region of the P. vivax genome has been questioned for a long time. Although previous studies have observed significant association between VK210 and the Duffy blood group, we present here that evidences of this variation are limited to the CSP central portion. METHODS: The phylogenetic analyses were accomplished starting from the amplification of conserved domains of 18 SSU RNAr and Cyt B. The antibodies responses against the CSP peptides, MSP-1, AMA-1 and DBP were detected by ELISA, in plasma samples of individuals infected with two P. vivax CS genotypes: VK210 and P. vivax-like. RESULTS: These analyses of the two markers demonstrate high similarity among the P. vivax CS genotypes and surprisingly showed diversity equal to zero between VK210 and P. vivax-like, positioning these CS genotypes in the same clade. A high frequency IgG antibody against the N- and C-terminal regions of the P. vivax CSP was found as compared to the immune response to the R- and V- repetitive regions (p = 0.0005, Fisher's Exact test). This difference was more pronounced when the P. vivax-like variant was present in the infection (p = 0.003, Fisher's Exact test). A high frequency of antibody response against MSP-1 and AMA-1 peptides was observed for all P. vivax CS genotypes in comparison to the same frequency for DBP. CONCLUSIONS: This results target that the differences among the P. vivax CS variants are restrict to the central repeated region of the protein, mostly nucleotide variation with important serological consequences.


Subject(s)
Genetic Variation , Merozoite Surface Protein 1/genetics , Plasmodium vivax/genetics , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Cytochromes b/genetics , Genotype , Humans , Malaria, Vivax/parasitology , Membrane Proteins/genetics , Membrane Proteins/immunology , Merozoite Surface Protein 1/immunology , Molecular Sequence Data , Phylogeny , Plasmodium vivax/classification , Polymerase Chain Reaction , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA
17.
Mol Biochem Parasitol ; 172(2): 107-12, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20371255

ABSTRACT

Multiple genetically distinct strains of a pathogen circulate and compete for dominance within populations of animal reservoir hosts. Understanding the basis for genotypic strain structure is critical for predicting how pathogens respond to selective pressures and how shifts in pathogen population structure can lead to disease outbreaks. Evidence from related Apicomplexans such as Plasmodium, Toxoplasma, Cryptosporidium and Theileria suggests that various patterns of population dynamics exist, including but not limited to clonal, oligoclonal, panmictic and epidemic genotypic strain structures. In Babesia bovis, genetic diversity of variable merozoite surface antigen (VMSA) genes has been associated with disease outbreaks, including in previously vaccinated animals. However, the extent of VMSA diversity within a defined population in an endemic area has not been examined. We analyzed genotypic diversity and temporal change of MSA-1, a member of the VMSA family, in individual infected animals within a reservoir host population. Twenty-eight distinct MSA-1 genotypes were identified within the herd. All genotypically distinct MSA-1 sequences clustered into three groups based on sequence similarity. Two thirds of the animals tested changed their dominant MSA-1 genotypes during a 6-month period. Five animals within the population contained multiple genotypes. Interestingly, the predominant genotypes within those five animals also changed over the 6-month sampling period, suggesting ongoing transmission or emergence of variant MSA-1 genotypes within the herd. This study demonstrated an unexpected level of diversity for a single copy gene in a haploid genome, and illustrates the dynamic genotype structure of B. bovis within an individual animal in an endemic region. Co-infection with multiple diverse MSA-1 genotypes provides a basis for more extensive genotypic shifts that characterizes outbreak strains.


Subject(s)
Babesia bovis/genetics , Babesiosis/veterinary , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Endemic Diseases , Genetic Variation , Merozoite Surface Protein 1/genetics , Animals , Babesia bovis/classification , Babesia bovis/isolation & purification , Babesiosis/epidemiology , Babesiosis/parasitology , Cattle , Cluster Analysis , Genotype , Merozoite Surface Protein 1/classification , Mexico , Sequence Analysis, DNA , Sequence Homology
18.
Vaccine ; 28(16): 2818-26, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20170765

ABSTRACT

In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coli and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His(6)FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund's adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP1(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity.


Subject(s)
Flagellin/immunology , Malaria Vaccines/immunology , Merozoite Surface Protein 1/immunology , Plasmodium falciparum/immunology , Salmonella typhimurium/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Protozoan/blood , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Escherichia coli/genetics , Female , Flagellin/genetics , Gene Expression , Immunoglobulin G/blood , Injections, Subcutaneous , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/genetics , Merozoite Surface Protein 1/genetics , Mice , Mice, Inbred C57BL , Plasmodium falciparum/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Salmonella typhimurium/genetics , Spleen/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
19.
Malar J ; 9: 3, 2010 Jan 04.
Article in English | MEDLINE | ID: mdl-20047674

ABSTRACT

BACKGROUND: Plasmodium falciparum re-emerged in Iquitos, Peru in 1994 and is now hypoendemic (< 0.5 infections/person/year). Purportedly non-immune individuals with discrete (non-overlapping) P. falciparum infections can be followed using this population dynamic. Previous work demonstrated a strong association between this population's antibody response to PfMSP1-19KD and protection against febrile illness and parasitaemia. Therefore, some selection for PfMSP1-19KD allelic diversity would be expected if the protection is to allele-specific sites of PfMSP1-19KD. Here, the potential for allele-specific polymorphisms in this population is investigated, and the allele-specificity of antibody responses to PfMSP1-19KD are determined. METHODS: The 42KD region in PfMSP1 was genotyped from 160 individual infections collected between 2003 and 2007. Additionally, the polymorphic block 2 region of Pfmsp1 (Pfmsp1-B2) was genotyped in 781 infection-months to provide a baseline for population-level diversity. To test whether PfMSP1-19KD genetic diversity had any impact on antibody responses, ELISAs testing IgG antibody response were performed on individuals using all four allele-types of PfMSP1-19KD. An antibody depletion ELISA was used to test the ability of antibodies to cross-react between allele-types. RESULTS: Despite increased diversity in Pfmsp1-B2, limited diversity within Pfmsp1-42KD was observed. All 160 infections genotyped were Mad20-like at the Pfmsp1-33KD locus. In the Pfmsp1-19KD locus, 159 (99.4%) were the Q-KSNG-F haplotype and 1 (0.6%) was the E-KSNG-L haplotype. Antibody responses in 105 individuals showed that Q-KNG and Q-TSR alleles generated the strongest immune responses, while Q-KNG and E-KNG responses were more concordant with each other than with those from Q-TSR and E-TSR, and vice versa. The immuno-depletion ELISAs showed all samples responded to the antigenic sites shared amongst all allelic forms of PfMSP1-19KD. CONCLUSIONS: A non-allele specific antibody response in PfMSP1-19KD may explain why other allelic forms have not been maintained or evolved in this population. This has important implications for the use of PfMSP1-19KD as a vaccine candidate. It is possible that Peruvians have increased antibody responses to the shared sites of PfMSP1-19KD, either due to exposure/parasite characteristics or due to a human-genetic predisposition. Alternatively, these allelic polymorphisms are not immune-specific even in other geographic regions, implying these polymorphisms may be less important in immune evasion that previous studies suggest.


Subject(s)
Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Merozoite Surface Protein 1/immunology , Plasmodium falciparum/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Animals , Antigens, Protozoan/genetics , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay/methods , Female , Genotype , Humans , Immunoglobulin G/blood , Infant , Infant, Newborn , Male , Merozoite Surface Protein 1/genetics , Middle Aged , Peru , Young Adult
20.
Acta Trop ; 114(1): 67-70, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20060375

ABSTRACT

Assessment of the genetic diversity of Plasmodium falciparum in 110 Colombian isolates revealed that nearly all the parasites in the 97 isolates collected in endemic regions west of the Andes shared the same Pfmsp1 block 2 MAD20-type allelic variant, despite showing high diversity for other genetical markers. Analysis of published data indicated that the prevalence of this allelic variant of a major vaccine candidate antigen was already dominant since 1998. This phenomenon, which had not been hitherto recorded for a malaria blood stage antigen, is of biological and immunological interest but remains unexplained.


Subject(s)
Genetic Variation , Merozoite Surface Protein 1/genetics , Plasmodium falciparum/genetics , Alleles , Animals , Colombia , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Gene Frequency , Genotype , Humans , Malaria, Falciparum/parasitology , Molecular Sequence Data , Plasmodium falciparum/isolation & purification , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL