Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.811
Filter
1.
Methods Mol Biol ; 2850: 417-434, 2025.
Article in English | MEDLINE | ID: mdl-39363085

ABSTRACT

Golden Gate Assembly (GGA) represents a versatile method for assembling multiple DNA fragments into a single molecule, which is widely used in rapid construction of complex expression cassettes for metabolic engineering. Here we describe the GGA method for facile construction and optimization of lycopene biosynthesis pathway by the combinatorial assembly of different transcriptional units (TUs). Furthermore, we report the method for characterizing and improving lycopene production in the synthetic yeast chassis.


Subject(s)
Cloning, Molecular , Lycopene , Metabolic Engineering , Saccharomyces cerevisiae , Lycopene/metabolism , Metabolic Engineering/methods , Cloning, Molecular/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Carotenoids/metabolism , Biosynthetic Pathways/genetics
2.
Microb Biotechnol ; 17(10): e70024, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39365609

ABSTRACT

Phthalic acid esters (PAEs) are synthetic diesters derived from o-phthalic acid, commonly used as plasticizers. These compounds pose significant environmental and health risks due to their ability to leach into the environment and act as endocrine disruptors, carcinogens, and mutagens. Consequently, PAEs are now considered major emerging contaminants and priority pollutants. Microbial degradation, primarily by bacteria and fungi, offers a promising method for PAEs bioremediation. This article highlights the current state of microbial PAEs degradation, focusing on the major bottlenecks and associated challenges. These include the identification of novel and more efficient PAE hydrolases to address the complexity of PAE mixtures in the environment, understanding PAEs uptake mechanisms, characterizing novel o-phthalate degradation pathways, and studying the regulatory network that controls the expression of PAE degradation genes. Future research directions include mitigating the impact of PAEs on health and ecosystems, developing biosensors for monitoring and measuring bioavailable PAEs concentrations, and valorizing these residues into other products of industrial interest, among others.


Subject(s)
Bacteria , Biodegradation, Environmental , Esters , Phthalic Acids , Phthalic Acids/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/enzymology , Esters/metabolism , Metabolic Engineering/methods , Environmental Pollutants/metabolism , Hydrolases/metabolism , Hydrolases/genetics
3.
Nat Commun ; 15(1): 8764, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384563

ABSTRACT

As an abundant agricultural and forestry biomass resource, hemicelluloses are hard to be effectively degraded and utilized by microorganisms due to the constraints of membrane and metabolic regulations. Herein, we report a synthetic extracellular metabolic pathway with hemicellulose-degrading-enzymes controllably displayed on Escherichia coli surface as engineered bacterial consortia members for efficient utilization of xylan, the most abundant component in hemicellulose. Further, we develop a hemicellulose/O2 microbial fuel cell (MFC) configuring of enzyme-engineered bacterial consortia based bioanode and bacterial-displayed laccase based biocathode. The optimized MFC exhibited an open-circuit voltage of 0.71 V and a maximum power density (Pmax) of 174.33 ± 4.56 µW cm-2. Meanwhile, 46.6% (w/w) α-ketoglutarate was produced in this hemicellulose fed-MFC. Besides, the MFC retained over 95% of the Pmax during 6 days' operation. Therefore, this work establishes an effective and sustainable one-pot process for catalyzing renewable biomass into high-value products and electricity in an environmentally-friendly way.


Subject(s)
Bioelectric Energy Sources , Escherichia coli , Polysaccharides , Polysaccharides/metabolism , Bioelectric Energy Sources/microbiology , Escherichia coli/metabolism , Escherichia coli/genetics , Microbial Consortia/physiology , Laccase/metabolism , Laccase/genetics , Biomass , Electricity , Xylans/metabolism , Metabolic Engineering/methods , Electrodes
4.
Nat Commun ; 15(1): 8759, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384562

ABSTRACT

Protoberberine alkaloids and benzophenanthridine alkaloids (BZDAs) are subgroups of benzylisoquinoline alkaloids (BIAs), which represent a diverse class of plant-specialized natural metabolites with many pharmacological properties. Microbial biosynthesis has been allowed for accessibility and scalable production of high-value BIAs. Here, we engineer Saccharomyces cerevisiae to de novo produce a series of protoberberines and BZDAs, including palmatine, berberine, chelerythrine, sanguinarine and chelirubine. An ER compartmentalization strategy is developed to improve vacuole protein berberine bridge enzyme (BBE) activity, resulting in >200% increase on the production of the key intermediate (S)-scoulerine. Another promiscuous vacuole protein dihydrobenzophenanthridine oxidase (DBOX) has been identified to catalyze two-electron oxidation on various tetrahydroprotoberberines at N7-C8 position and dihydrobenzophenanthridine alkaloids. Furthermore, cytosolically expressed DBOX can alleviate the limitation on BBE. This study highlights the potential of microbial cell factories for the biosynthesis of a diverse group of BIAs through engineering of heterologous plant enzymes.


Subject(s)
Benzophenanthridines , Berberine Alkaloids , Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Benzophenanthridines/metabolism , Benzophenanthridines/biosynthesis , Metabolic Engineering/methods , Berberine Alkaloids/metabolism , Alkaloids/metabolism , Alkaloids/biosynthesis , Berberine/metabolism
5.
Microb Cell Fact ; 23(1): 261, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350198

ABSTRACT

BACKGROUND: ß-Arbutin, found in the leaves of bearberry, stands out as one of the globally acknowledged eco-friendly whitening additives in recent years. However, the natural abundance of ß-Arbutin is low, and the cost-effectiveness of using chemical synthesis or plant extraction methods is low, which cannot meet the requirements. While modifying the ß-Arbutin synthesis pathway of existing strains is a viable option, it is hindered by the limited synthesis capacity of these strains, which hinders further development and application. RESULTS: In this study, we established a biosynthetic pathway in Komagataella phaffii for ß-Arbutin production with a titer of 1.58 g/L. Through diverse metabolic strategies, including fusion protein construction, enhancing shikimate pathway flux, and augmenting precursor supplies (PEP, E4P, and UDPG), we significantly increased ß-Arbutin titer to 4.32 g/L. Further optimization of methanol concentration in shake flasks led to a titer of 6.32 g/L titer after 120 h of fermentation, representing a fourfold increase over the initial titer. In fed-batch fermentation, strain UA3-10 set a record with the highest production to date, reaching 128.6 g/L in a 5 L fermenter. CONCLUSIONS: This is the highest yield in the fermentation tank level of using microbial cell factories for de novo synthesis of ß-Arbutin. Applying combinatorial engineering strategies has significantly improved the ß-Arbutin yield in K. phaffii and is a promising approach for synthesizing functional products using a microbial cell factory. This study not only advances low-cost fermentation-based production of ß-Arbutin but also establishes K. phaffii as a promising chassis cell for synthesizing other aromatic amino acid metabolites.


Subject(s)
Arbutin , Fermentation , Metabolic Engineering , Saccharomycetales , Metabolic Engineering/methods , Arbutin/biosynthesis , Arbutin/metabolism , Saccharomycetales/metabolism , Biosynthetic Pathways
6.
Microb Cell Fact ; 23(1): 271, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39385269

ABSTRACT

BACKGROUND: Currently, the synthesis of compounds based on microbial cell factories is rapidly advancing, yet it encounters several challenges. During the production process, engineered strains frequently encounter disturbances in the cultivation environment or the impact of their metabolites, such as high temperature, acid-base imbalances, hypertonicity, organic solvents, toxic byproducts, and mechanical damage. These stress factors can constrain the efficiency of microbial fermentation, resulting in slow cell growth, decreased production, significantly increased energy consumption, and other issues that severely limit the application of microbial cell factories. RESULTS: This study demonstrated that sterol engineering in Kluyveromyces marxianus, achieved by overexpressing or deleting the coding genes for the last five steps of ergosterol synthase (Erg2-Erg6), altered the composition and ratio of sterols in its cell membrane, and affected its multiple tolerance. The results suggest that the knockout of the Erg5 can enhance the thermotolerance of K. marxianus, while the overexpression of the Erg4 can improve its acid tolerance. Additionally, engineering strain overexpressed Erg6 improved its tolerance to elevated temperature, hypertonic, and acid. YZB453, obtained by overexpressing Erg6 in an engineering strain with high efficiency in synthesizing xylitol, produced 101.22 g/L xylitol at 45oC and 75.11 g/L xylitol at 46oC. Using corncob hydrolysate for simultaneous saccharification and fermentation (SSF) at 46oC that xylose released from corncob hydrolysate by saccharification with hemicellulase, YZB453 can produce 45.98 g/L of xylitol, saving 53.72% of the cost of hemicellulase compared to 42oC. CONCLUSIONS: This study elucidates the mechanism by which K. marxianus acquires resistance to various antifungal drugs, high temperatures, high osmolarity, acidity, and other stressors, through alterations in the composition and ratio of membrane sterols. By employing sterol engineering, the fermentation temperature of this unconventional thermotolerant K. marxianus was further elevated, ultimately providing an efficient platform for synthesizing high-value-added xylitol from biomass via the SSF process at temperatures exceeding 45 °C.


Subject(s)
Fermentation , Kluyveromyces , Sterols , Xylitol , Kluyveromyces/metabolism , Kluyveromyces/genetics , Xylitol/biosynthesis , Xylitol/metabolism , Sterols/metabolism , Sterols/biosynthesis , Metabolic Engineering/methods , Fungal Proteins/metabolism , Fungal Proteins/genetics
7.
Microb Cell Fact ; 23(1): 262, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367393

ABSTRACT

D-Xylitol is a naturally occurring sugar alcohol present in diverse plants that is used as an alternative sweetener based on a sweetness similar to sucrose and several health benefits compared to conventional sugar. However, current industrial methods for D-xylitol production are based on chemical hydrogenation of D-xylose, which is energy-intensive and environmentally harmful. However, efficient conversion of L-arabinose as an additional highly abundant pentose in lignocellulosic materials holds great potential to broaden the range of applicable feedstocks. Both pentoses D-xylose and L-arabinose are converted to D-xylitol as a common metabolic intermediate in the native fungal pentose catabolism.To engineer a strain capable of accumulating D-xylitol from arabinan-rich agricultural residues, pentose catabolism was stopped in the ascomycete filamentous fungus Aspergillus niger at the stage of D-xylitol by knocking out three genes encoding enzymes involved in D-xylitol degradation (ΔxdhA, ΔsdhA, ΔxkiA). Additionally, to facilitate its secretion into the medium, an aquaglyceroporin from Saccharomyces cerevisiae was tested. In S. cerevisiae, Fps1 is known to passively transport glycerol and is regulated to convey osmotic stress tolerance but also exhibits the ability to transport other polyols such as D-xylitol. Thus, a constitutively open version of this transporter was introduced into A. niger, controlled by multiple promoters with varying expression strengths. The strain expressing the transporter under control of the PtvdA promoter in the background of the pentose catabolism-deficient triple knock-out yielded the most favorable outcome, producing up to 45% D-xylitol from L-arabinose in culture supernatants, while displaying minimal side effects during osmotic stress. Due to its additional ability to extract D-xylose and L-arabinose from lignocellulosic material via the production of highly active pectinases and hemicellulases, A. niger emerges as an ideal candidate cell factory for D-xylitol production from lignocellulosic biomasses rich in both pentoses.In summary, we are showing for the first time an efficient biosynthesis of D-xylitol from L-arabinose utilizing a filamentous ascomycete fungus. This broadens the potential resources to include also arabinan-rich agricultural waste streams like sugar beet pulp and could thus help to make alternative sweetener production more environmentally friendly and cost-effective.


Subject(s)
Arabinose , Aspergillus niger , Metabolic Engineering , Xylitol , Aspergillus niger/metabolism , Aspergillus niger/genetics , Arabinose/metabolism , Xylitol/metabolism , Xylitol/biosynthesis , Metabolic Engineering/methods , Xylose/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics
8.
Microb Cell Fact ; 23(1): 264, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367476

ABSTRACT

BACKGROUND: Whey, which has high biochemical oxygen demand and chemical oxygen demand, is mass-produced as a major by-product of the dairying industry. Microbial fermentation using whey as the carbon source may convert this potential pollutant into value-added products. This study investigated the potential of using whey powder to produce α-ketoisovalerate, an important platform chemical. RESULTS: Klebsiella oxytoca VKO-9, an efficient L-valine producing strain belonging to Risk Group 1 organism, was selected for the production of α-ketoisovalerate. The leucine dehydrogenase and branched-chain α-keto acid dehydrogenase, which catalyzed the reductive amination and oxidative decarboxylation of α-ketoisovalerate, respectively, were inactivated to enhance the accumulation of α-ketoisovalerate. The production of α-ketoisovalerate was also improved through overexpressing α-acetolactate synthase responsible for pyruvate polymerization and mutant acetohydroxyacid isomeroreductase related to α-acetolactate reduction. The obtained strain K. oxytoca KIV-7 produced 37.3 g/L of α-ketoisovalerate from lactose, the major utilizable carbohydrate in whey. In addition, K. oxytoca KIV-7 also produced α-ketoisovalerate from whey powder with a concentration of 40.7 g/L and a yield of 0.418 g/g. CONCLUSION: The process introduced in this study enabled efficient α-ketoisovalerate production from low-cost substrate whey powder. Since the key genes for α-ketoisovalerate generation were integrated in genome of K. oxytoca KIV-7 and constitutively expressed, this strain is promising in stable α-ketoisovalerate fermentation and can be used as a chassis strain for α-ketoisovalerate derivatives production.


Subject(s)
Fermentation , Hemiterpenes , Klebsiella oxytoca , Metabolic Engineering , Whey , Klebsiella oxytoca/metabolism , Klebsiella oxytoca/genetics , Whey/metabolism , Metabolic Engineering/methods , Hemiterpenes/metabolism , Powders , Acetolactate Synthase/metabolism , Acetolactate Synthase/genetics , Keto Acids
9.
Microb Cell Fact ; 23(1): 267, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375675

ABSTRACT

BACKGROUND: Gene expression noise (variation in gene expression among individual cells of a genetically uniform cell population) can result in heterogenous metabolite production by industrial microorganisms, with cultures containing both low- and high-producing cells. The presence of low-producing individuals may be a factor limiting the potential for high yields. This study tested the hypothesis that low-producing variants in yeast cell populations can be continuously counter-selected, to increase net production of glutathione (GSH) as an exemplar product. RESULTS: A counter-selection system was engineered in Saccharomyces cerevisiae based on the known feedback inhibition of gamma-glutamylcysteine synthetase (GSH1) gene expression, which is rate limiting for GSH synthesis: the GSH1 ORF and the counter-selectable marker GAP1 were expressed under control of the TEF1 and GSH-regulated GSH1 promoters, respectively. An 18% increase in the mean cellular GSH level was achieved in cultures of the engineered strain supplemented with D-histidine to counter-select cells with high GAP1 expression (i.e. low GSH-producing cells). The phenotype was non-heritable and did not arise from a generic response to D-histidine, unlike that with certain other test-constructs prepared with alternative markers. CONCLUSIONS: The results corroborate that the system developed here improves GSH production by targeting low-producing cells. This supports the potential for exploiting end-product/promoter interactions to enrich high-producing cells in phenotypically heterogeneous populations, in order to improve metabolite production by yeast.


Subject(s)
Glutamate-Cysteine Ligase , Glutathione , Phenotype , Saccharomyces cerevisiae , Glutathione/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Metabolic Engineering/methods , Promoter Regions, Genetic , Gene Expression Regulation, Fungal , Histidine/metabolism
10.
Biotechnol J ; 19(10): e202400237, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39380490

ABSTRACT

Squalene (C30H50) is an acyclic triterpenoid compound renowned for its myriad physiological functions, such as anticancer and antioxidative properties, rendering it invaluable in both the food and pharmaceutical sectors. Due to the natural resource constraints, microbial fermentation has emerged as a prominent trend. Schizochytrium sp., known to harbor the intact mevalonate acid (MVA) pathway, possesses the inherent capability to biosynthesize squalene. However, there is a dearth of reported key genes in both the MVA and the squalene synthesis pathways, along with the associated promoter elements for their modification. This study commenced by cloning and characterizing 13 endogenous promoters derived from transcriptome sequencing data. Subsequently, five promoters exhibiting varying expression intensities were chosen from the aforementioned pool to facilitate the overexpression of the squalene synthase gene squalene synthetase (SQS), pivotal in the MVA pathway. Ultimately, a transformed strain designated as SQS-3626, exhibiting squalene production 2.8 times greater than that of the wild-type strain, was identified. Finally, the optimization of nitrogen source concentrations and trace element contents in the fermentation medium was conducted. Following 120 h of fed-batch fermentation, the accumulated final squalene yield in the transformed strain SQS-3626 reached 2.2 g/L.


Subject(s)
Farnesyl-Diphosphate Farnesyltransferase , Fermentation , Mevalonic Acid , Promoter Regions, Genetic , Squalene , Stramenopiles , Squalene/metabolism , Stramenopiles/genetics , Stramenopiles/metabolism , Mevalonic Acid/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Metabolic Engineering/methods , Cloning, Molecular/methods
11.
Biotechnol J ; 19(10): e202400351, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39380497

ABSTRACT

Heme is a key ingredient required to mimic the color and flavor of meat in plant-based alternatives. This study aimed to develop a yeast-based microbial cell factory for efficient and sustainable production of heme. To this end, first, Hem12p (uroporphyrinogen decarboxylase) was identified as the rate-limiting enzyme in the heme biosynthetic pathway present in Saccharomyces cerevisiae D452-2. Next, we investigated the effects of disruption of the genes involved in the competition for heme biosynthesis precursors, transcriptional repression, and heme degradation (HMX1) on heme production efficiency. Of the knock-out strains constructed in this study, only the HMX1-deficient strain produced heme at a higher concentration than the background strain without gene disruption. In addition, overexpression of PUG1 encoding a plasma membrane transporter involved in protoporphyrin IX (the precursor to heme biosynthesis) uptake led to a significant increase in intracellular heme concentration. As a result, among the various engineered strains constructed in this study, the ΔHMX1/H3&12 + PUG1 strain, the HMX1-deficient strain overexpressing HEM3, HEM12, and PUG1, produced the highest concentration of heme (4.6 mg/L) in batch fermentation, which was 3.9-fold higher than that produced by the wild-type D452-2 strain. In a glucose-limited fed-batch fermentation, the ΔHMX1/H3&12 + PUG1 strain produced 28 mg/L heme in 66 h.


Subject(s)
Fermentation , Heme , Metabolic Engineering , Saccharomyces cerevisiae , Heme/metabolism , Heme/biosynthesis , Metabolic Engineering/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
12.
Commun Biol ; 7(1): 1263, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367037

ABSTRACT

Natural secondary metabolites are medically, agriculturally, and industrially beneficial to humans. For mass production, a heterologous production system is required, and various metabolic engineering trials have been reported in Escherichia coli and Saccharomyces cerevisiae to increase their production levels. Recently, filamentous fungi, especially Aspergillus oryzae, have been expected to be excellent hosts for the heterologous production of natural products; however, large-scale metabolic engineering has hardly been reported. Here, we elucidated candidate metabolic pathways to be modified for increased model terpene production by RNA-seq and metabolome analyses in A. oryzae and selected pathways such as ethanol fermentation, cytosolic acetyl-CoA production from citrate, and the mevalonate pathway. We performed metabolic modifications targeting these pathways using CRISPR/Cas9 genome editing and demonstrated their effectiveness in heterologous terpene production. Finally, a strain containing 13 metabolic modifications was generated, which showed enhanced heterologous production of pleuromutilin (8.5-fold), aphidicolin (65.6-fold), and ophiobolin C (28.5-fold) compared to the unmodified A. oryzae strain. Therefore, the strain generated by engineering multiple metabolic pathways can be employed as a versatile highly-producing host for a wide variety of terpenes.


Subject(s)
Aspergillus oryzae , Biological Products , Gene Editing , Metabolic Engineering , Metabolic Networks and Pathways , Metabolic Engineering/methods , Gene Editing/methods , Biological Products/metabolism , Aspergillus oryzae/genetics , Aspergillus oryzae/metabolism , Metabolic Networks and Pathways/genetics , CRISPR-Cas Systems , Terpenes/metabolism
13.
NPJ Syst Biol Appl ; 10(1): 109, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39353984

ABSTRACT

Engineered microorganisms have emerged as viable alternatives for limonene production. However, issues such as low enzyme abundance or activities, and regulatory feedback/forward inhibition may reduce yields. To understand the underlying metabolism, we adopted a systems biology approach for an engineered limonene-producing Escherichia coli strain K-12 MG1655. Firstly, we generated time-series metabolomics data and, secondly, developed a dynamic model based on enzyme dynamics to track the native metabolic networks and the engineered mevalonate pathway. After several iterations of model fitting with experimental profiles, which also included 13C-tracer studies, we performed in silico knockouts (KOs) of all enzymes to identify bottleneck(s) for optimal limonene yields. The simulations indicated that ALDH/ADH (aldehyde dehydrogenase/alcohol dehydrogenase) and LDH (lactate dehydrogenase) suppression, and HK (hexokinase) enhancement would increase limonene yields. Experimental confirmation was achieved, where ALDH-ADH and LDH KOs, and HK overexpression improved limonene yield by 8- to 11-fold. Our systems biology approach can guide microbial strain re-engineering for optimal target production.


Subject(s)
Escherichia coli , Limonene , Metabolic Engineering , Systems Biology , Limonene/metabolism , Systems Biology/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Metabolomics/methods , Computer Simulation , Terpenes/metabolism , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics , Models, Biological , Mevalonic Acid/metabolism
14.
Microb Biotechnol ; 17(9): e14525, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39222378

ABSTRACT

Expressing plant metabolic pathways in microbial platforms is an efficient, cost-effective solution for producing many desired plant compounds. As eukaryotic organisms, yeasts are often the preferred platform. However, expression of plant enzymes in a yeast frequently leads to failure because the enzymes are poorly adapted to the foreign yeast cellular environment. Here, we first summarize the current engineering approaches for optimizing performance of plant enzymes in yeast. A critical limitation of these approaches is that they are labour-intensive and must be customized for each individual enzyme, which significantly hinders the establishment of plant pathways in cellular factories. In response to this challenge, we propose the development of a cost-effective computational pipeline to redesign plant enzymes for better adaptation to the yeast cellular milieu. This proposition is underpinned by compelling evidence that plant and yeast enzymes exhibit distinct sequence features that are generalizable across enzyme families. Consequently, we introduce a data-driven machine learning framework designed to extract 'yeastizing' rules from natural protein sequence variations, which can be broadly applied to all enzymes. Additionally, we discuss the potential to integrate the machine learning model into a full design-build-test cycle.


Subject(s)
Metabolic Engineering , Metabolic Engineering/methods , Plants , Enzymes/genetics , Enzymes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Machine Learning , Metabolic Networks and Pathways/genetics
15.
Microb Cell Fact ; 23(1): 238, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223542

ABSTRACT

BACKGROUND: Benzyl acetate is an aromatic ester with a jasmine scent. It was discovered in plants and has broad applications in food, cosmetic, and pharmaceutical industries. Its current production predominantly relies on chemical synthesis. In this study, Escherichia coli was engineered to produce benzyl acetate. RESULTS: Two biosynthetic routes based on the CoA-dependent ß-oxidation pathway were constructed in E. coli for benzyl acetate production. In route I, benzoic acid pathway was extended to produce benzyl alcohol by combining carboxylic acid reductase and endogenous dehydrogenases and/or aldo-keto reductases in E. coli. Benzyl alcohol was then condensed with acetyl-CoA by the alcohol acetyltransferase ATF1 from yeast to form benzyl acetate. In route II, a plant CoA-dependent ß-oxidation pathway via benzoyl-CoA was assessed for benzyl alcohol and benzyl acetate production in E. coli. The overexpression of the phosphotransacetylase from Clostridium kluyveri (CkPta) further improved benzyl acetate production in E. coli. Two-phase extractive fermentation in situ was adopted and optimized for benzyl acetate production in a shake flask. The most optimal strain produced 3.0 ± 0.2 g/L benzyl acetate in 48 h by shake-flask fermentation. CONCLUSIONS: We were able to establish the whole pathway for benzyl acetate based on the CoA-dependent ß-oxidation in single strain for the first time. The highest titer for benzyl acetate produced from glucose by E. coli is reported. Moreover, cinnamyl acetate production as an unwanted by-product was very low. Results provided novel information regarding the engineering benzyl acetate production in microorganisms.


Subject(s)
Escherichia coli , Glucose , Metabolic Engineering , Metabolic Engineering/methods , Escherichia coli/metabolism , Escherichia coli/genetics , Glucose/metabolism , Fermentation , Acetates/metabolism , Oxidation-Reduction , Acetyl Coenzyme A/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Benzyl Compounds/metabolism
16.
Microb Cell Fact ; 23(1): 241, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242505

ABSTRACT

BACKGROUND: Metabolic engineering enables the sustainable and cost-efficient production of complex chemicals. Efficient production of terpenes in Saccharomyces cerevisiae can be achieved by recruiting an intermediate of the mevalonate pathway. The present study aimed to evaluate the engineering strategies of S. cerevisiae for the production of taxadiene, a precursor of taxol, an antineoplastic drug. RESULT: SCIGS22a, a previously engineered strain with modifications in the mevalonate pathway (MVA), was used as a background strain. This strain was engineered to enable a high flux towards farnesyl diphosphate (FPP) and the availability of NADPH. The strain MVA was generated from SCIGS22a by overexpressing all mevalonate pathway genes. Combining the background strains with 16 different episomal plasmids, which included the combination of 4 genes: tHMGR (3-hydroxy-3-methylglutaryl-CoA reductase), ERG20 (farnesyl pyrophosphate synthase), GGPPS (geranyl diphosphate synthase) and TS (taxadiene synthase) resulted in the highest taxadiene production in S. cerevisiae of 528 mg/L. CONCLUSION: Our study highlights the critical role of pathway balance in metabolic engineering, mainly when dealing with toxic molecules like taxadiene. We achieved significant improvements in taxadiene production by employing a combinatorial approach and focusing on balancing the downstream and upstream pathways. These findings emphasize the importance of minor gene expression modification levels to achieve a well-balanced pathway, ultimately leading to enhanced taxadiene accumulation.


Subject(s)
Metabolic Engineering , Mevalonic Acid , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Metabolic Engineering/methods , Mevalonic Acid/metabolism , Alkenes/metabolism , Polyisoprenyl Phosphates/metabolism , Diterpenes/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , NADP/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sesquiterpenes
17.
Microb Cell Fact ; 23(1): 246, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261865

ABSTRACT

BACKGROUND: Pseudomonas putida KT2440 has emerged as a promising host for industrial bioproduction. However, its strictly aerobic nature limits the scope of applications. Remarkably, this microbe exhibits high bioconversion efficiency when cultured in an anoxic bio-electrochemical system (BES), where the anode serves as the terminal electron acceptor instead of oxygen. This environment facilitates the synthesis of commercially attractive chemicals, including 2-ketogluconate (2KG). To better understand this interesting electrogenic phenotype, we studied the BES-cultured strain on a systems level through multi-omics analysis. Inspired by our findings, we constructed novel mutants aimed at improving 2KG production. RESULTS: When incubated on glucose, P. putida KT2440 did not grow but produced significant amounts of 2KG, along with minor amounts of gluconate, acetate, pyruvate, succinate, and lactate. 13C tracer studies demonstrated that these products are partially derived from biomass carbon, involving proteins and lipids. Over time, the cells exhibited global changes on both the transcriptomic and proteomic levels, including the shutdown of translation and cell motility, likely to conserve energy. These adaptations enabled the cells to maintain significant metabolic activity for several weeks. Acetate formation was shown to contribute to energy supply. Mutants deficient in acetate production demonstrated superior 2KG production in terms of titer, yield, and productivity. The ∆aldBI ∆aldBII double deletion mutant performed best, accumulating 2KG at twice the rate of the wild type and with an increased yield (0.96 mol/mol). CONCLUSIONS: By integrating transcriptomic, proteomic, and metabolomic analyses, this work provides the first systems biology insight into the electrogenic phenotype of P. putida KT2440. Adaptation to anoxic-electrogenic conditions involved coordinated changes in energy metabolism, enabling cells to sustain metabolic activity for extended periods. The metabolically engineered mutants are promising for enhanced 2KG production under these conditions. The attenuation of acetate synthesis represents the first systems biology-informed metabolic engineering strategy for enhanced 2KG production in P. putida. This non-growth anoxic-electrogenic mode expands our understanding of the interplay between growth, glucose phosphorylation, and glucose oxidation into gluconate and 2KG in P. putida.


Subject(s)
Gluconates , Metabolic Engineering , Pseudomonas putida , Systems Biology , Pseudomonas putida/metabolism , Pseudomonas putida/genetics , Gluconates/metabolism , Metabolic Engineering/methods , Systems Biology/methods , Glucose/metabolism , Proteomics , Multiomics
18.
Microb Cell Fact ; 23(1): 242, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252026

ABSTRACT

BACKGROUND: Sugarcane molasses, rich in sucrose, glucose, and fructose, offers a promising carbon source for industrial fermentation due to its abundance and low cost. However, challenges arise from the simultaneous utilization of multiple sugars and carbon catabolite repression (CCR). Despite its nutritional content, sucrose metabolism in Escherichia coli, except for W strain, remains poorly understood, hindering its use in microbial fermentation. In this study, E. coli W was engineered to enhance sugar consumption rates and overcome CCR. This was achieved through the integration of a synthetically designed csc operon and the optimization of glucose and fructose co-utilization pathways. These advancements facilitate efficient utilization of sugarcane molasses for the production of 3-hydroxypropionic acid (3-HP), contributing to sustainable biochemical production processes. RESULTS: In this study, we addressed challenges associated with sugar metabolism in E. coli W, focusing on enhancing sucrose consumption and improving glucose-fructose co-utilization. Through targeted engineering of the sucrose utilization system, we achieved accelerated sucrose consumption rates by modulating the expression of the csc operon components, cscB, cscK, cscA, and cscR. Our findings revealed that monocistronic expression of the csc genes with the deletion of cscR, led to optimal sucrose utilization without significant growth burden. Furthermore, we successfully alleviated fructose catabolite repression by modulating the binding dynamics of FruR with the fructose PTS regulon, enabling near-equivalent co-utilization of glucose and fructose. To validate the industrial applicability of our engineered strain, we pursued 3-HP production from sugarcane molasses. By integrating heterologous genes and optimizing metabolic pathways, we achieved improvements in 3-HP titers compared to previous studies. Additionally, glyceraldehyde-3-phosphate dehydrogenase (gapA) repression aids in carbon flux redistribution, enhancing molasses conversion to 3-HP. CONCLUSIONS: Despite limitations in sucrose metabolism, the redesigned E. coli W strain, adept at utilizing sugarcane molasses, is a valuable asset for industrial fermentation. Its synthetic csc operon enhances sucrose consumption, while mitigating CCR improves glucose-fructose co-utilization. These enhancements, coupled with repression of gapA, aim to efficiently convert sugarcane molasses into 3-HP, addressing limitations in sucrose and fructose metabolism for industrial applications.


Subject(s)
Escherichia coli , Fermentation , Fructose , Glucose , Metabolic Engineering , Molasses , Saccharum , Sucrose , Saccharum/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Metabolic Engineering/methods , Glucose/metabolism , Sucrose/metabolism , Fructose/metabolism , Operon , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Catabolite Repression , Lactic Acid/analogs & derivatives
19.
Microb Cell Fact ; 23(1): 249, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39272067

ABSTRACT

BACKGROUND: Engineering bacteria with the purpose of optimizing the production of interesting molecules often leads to a decrease in growth due to metabolic burden or toxicity. By delaying the production in time, these negative effects on the growth can be avoided in a process called a two-stage fermentation. MAIN TEXT: During this two-stage fermentation process, the production stage is only activated once sufficient cell mass is obtained. Besides the possibility of using external triggers, such as chemical molecules or changing fermentation parameters to induce the production stage, there is a renewed interest towards autoinducible systems. These systems, such as quorum sensing, do not require the extra interference with the fermentation broth to start the induction. In this review, we discuss the different possibilities of both external and autoinduction methods to obtain a two-stage fermentation. Additionally, an overview is given of the tuning methods that can be applied to optimize the induction process. Finally, future challenges and prospects of (auto)inducible expression systems are discussed. CONCLUSION: There are numerous methods to obtain a two-stage fermentation process each with their own advantages and disadvantages. Even though chemically inducible expression systems are well-established, an increasing interest is going towards autoinducible expression systems, such as quorum sensing. Although these newer techniques cannot rely on the decades of characterization and applications as is the case for chemically inducible promoters, their advantages might lead to a shift in future inducible expression systems.


Subject(s)
Fermentation , Quorum Sensing , Bacteria/metabolism , Bacteria/genetics , Metabolic Engineering/methods , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic
20.
Microb Cell Fact ; 23(1): 251, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39272184

ABSTRACT

BACKGROUND: Seven-carbon sugars, which rarely exist in nature, are the key constitutional unit of septacidin and hygromycin B in bacteria. These sugars exhibit a potential therapeutic effect for hypoglycaemia and cancer and serve as building blocks for the synthesis of C-glycosides and novel antibiotics. However, chemical and enzymatic approaches for the synthesis of seven-carbon sugars have faced challenges, such as complex reaction steps, low overall yields and high-cost feedstock, limiting their industrial-scale production. RESULTS: In this work, we propose a strain engineering approach for synthesising sedoheptulose using glucose as sole feedstock. The gene pfkA encoding 6-phosphofructokinase in Corynebacterium glutamicum was inactivated to direct the carbon flux towards the pentose phosphate pathway in the cellular metabolic network. This genetic modification successfully enabled the synthesis of sedoheptulose from glucose. Additionally, we identified key enzymes responsible for product formation through transcriptome analysis, and their corresponding genes were overexpressed, resulting in a further 20% increase in sedoheptulose production. CONCLUSION: We achieved a sedoheptulose concentration of 24 g/L with a yield of 0.4 g/g glucose in a 1 L fermenter, marking the highest value up to date. The produced sedoheptulose could further function as feedstock for synthesising structural seven-carbon sugars through coupling with enzymatic isomerisation, epimerisation and reduction reactions.


Subject(s)
Corynebacterium glutamicum , Glucose , Heptoses , Metabolic Engineering , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/enzymology , Metabolic Engineering/methods , Heptoses/biosynthesis , Heptoses/metabolism , Glucose/metabolism , Pentose Phosphate Pathway , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL