Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167433, 2024 10.
Article in English | MEDLINE | ID: mdl-39067538

ABSTRACT

BACKGROUND: Patients with diabetes are prone to acute kidney injury (AKI) with a high mortality rate, poor prognosis, and a higher risk of progression to chronic kidney disease than non-diabetic patients. METHODS: Streptozotocin (STZ)-treated type 1 and db/db type 2 diabetes model were established, AKI model was induced in mice by ischemia-reperfusion injury(IRI). Mouse proximal tubular cell cells were subjected to high glucose and hypoxia-reoxygenation in vitro. Transcriptional RNA sequencing was performed for clustering analysis and target gene screening. Renal structural damage was determined by histological staining, whereas creatinine and urea nitrogen levels were used to measure renal function. RESULTS: Deteriorated renal function and renal tissue damage were observed in AKI mice with diabetic background. RNA sequencing showed a decrease in fatty acid oxidation (FAO) pathway and an increase in abnormal glycolysis. Treatment with Dapa, Sitagliptin(a DPP-4 inhibitor)and insulin reduced blood glucose levels in mice, and improved renal function. However, Dapa had a superior therapeutic effect and alleviated aberrant FAO and glycosis. Dapa reduced cellular death in cultured cells under high glucose hypoxia-reoxygenation conditions, alleviated FAO dysfunction, and reduced abnormal glycolysis. RNA sequencing showed that SIRT3 expression was reduced in diabetic IRI, which was largely restored by Dapa intervention. 3-TYP, a SIRT3 inhibitor, reversed the renal protective effects of Dapa and mediated abnormal FAO and glycolysis in mice and tubular cells. CONCLUSION: Our study provides experimental evidence for the use of Dapa as a means to reduce diabetic AKI by ameliorating metabolic reprogramming in renal tubular cells.


Subject(s)
Acute Kidney Injury , Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Glucosides , Metabolic Reprogramming , Renal Insufficiency, Chronic , Animals , Male , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Glucosides/pharmacology , Glucosides/therapeutic use , Metabolic Reprogramming/drug effects , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , Signal Transduction/drug effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use
2.
Biochem Biophys Res Commun ; 728: 150262, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-38959530

ABSTRACT

BACKGROUND AND OBJECTIVE: Colorectal cancer (CRC) is one of the most common malignancies in China. At present, there is a problem that the CRC treatment drugs SHP099, L-OHP and 5-FU are insensitive to tumor cells. Combination medication is an important means to solve the insensitivity of medication alone. The purpose of this project was to explore the effect and molecular mechanism of SHP099 combination on the malignant biological behavior of L-OHP/5-FU resistant strains of CRC. METHODS: HT29 and SW480 cells were cultured in media supplemented with L-OHP or 5-FU to establish drug-resistant strains. HT29 and SW480 drug-resistant cells were subcutaneously injected into the ventral nerves of nude mice at a dose of 5 × 106 to establish CRC drug-resistant animal models. CCK-8, Western blot, flow cytometry, Transwell and kit detection were used to detect the regulatory mechanism of energy metabolism reprogramming in drug-resistant CRC cells. RESULTS: Compared with nonresistant strains, L-OHP/5-FU-resistant strains exhibited greater metabolic reprogramming. Functionally, SHP099 can restrain the metabolic reprogramming of L-OHP/5-FU-resistant strains and subsequently restrain the proliferation, colony formation, migration and spheroid formation of L-OHP/5-FU-resistant strains. Downstream mechanistic studies have shown that SHP099 interferes with the metabolic reprogramming of L-OHP/5-FU drug-resistant strains by suppressing the PI3K/AKT pathway, thereby restraining the malignant biological behavior of L-OHP/5-FU drug-resistant strains and alleviating CRC. CONCLUSION: The combination of SHP099 can restrain the malignant biological behavior of L-OHP/5-FU-resistant CRC cells and alleviate the progression of CRC by interfering with the reprogramming of energy metabolism. This study explored the effect of SHP099 combination on dual-resistant CRC cells for the first time, and provided a new therapeutic idea for solving the problem of SHP099 insensitivity to CRC cells.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Fluorouracil , Metabolic Reprogramming , Animals , Humans , Mice , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Fluorouracil/pharmacology , HT29 Cells , Metabolic Reprogramming/drug effects , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays
3.
Sci Total Environ ; 949: 174976, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39047838

ABSTRACT

Environmental exposure to crystalline silica (CS) particles is common and occurs during natural, industrial, and agricultural activities. Prolonged inhalation of CS particles can cause silicosis, a serious and incurable pulmonary fibrosis disease. However, the underlying mechanisms remain veiled. Herein, we aim to elucidate the novel mechanisms of interleukin-11 (IL-11) driving fibroblast metabolic reprogramming during the development of silicosis. We observed that CS exposure induced lung fibrosis in mice and activated fibroblasts, accompanied by increased IL-11 expression and metabolic reprogramming switched from mitochondrial respiration to glycolysis. Besides, we innovatively uncovered that elevated IL-11 promoted the glycolysis process, thereby facilitating the fibroblast-myofibroblast transition (FMT). Mechanistically, CS-stimulated IL-11 activated the extracellular signal-regulated kinase (ERK) pathway and the latter increased the expression of hypoxia inducible factor-1α (HIF-1α) via promoting the translation and delaying the degradation of the protein. HIF-1α further facilitated glycolysis, driving the FMT process and ultimately the formation of silicosis. Moreover, either silence or neutralization of IL-11 inhibited glycolysis augmentation and attenuated CS-induced lung myofibroblast generation and fibrosis. Overall, our findings elucidate the role of IL-11 in promoting fibroblast metabolic reprogramming through the ERK-HIF-1α axis during CS-induced lung fibrosis, providing novel insights into the molecular mechanisms and potential therapeutic targets of silicosis.


Subject(s)
Fibroblasts , Interleukin-11 , Metabolic Reprogramming , Pulmonary Fibrosis , Silicon Dioxide , Animals , Mice , Fibroblasts/drug effects , Glycolysis , Interleukin-11/metabolism , Metabolic Reprogramming/drug effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Silicon Dioxide/toxicity , Silicosis/metabolism
4.
Biochem Pharmacol ; 219: 115939, 2024 01.
Article in English | MEDLINE | ID: mdl-38000560

ABSTRACT

Carfilzomib, a second-generation proteasome inhibitor, has been approved as a treatment for relapsed and/or refractory multiple myeloma. Nevertheless, the molecular mechanism by which Carfilzomib inhibits esophageal squamous cell carcinoma (ESCC) progression largely remains to be determined. In the present study, we found that Carfilzomib demonstrated potent anti-tumor activity against esophageal squamous cell carcinoma both in vitro and in vivo. Mechanistically, carfilzomib triggers mitochondrial apoptosis and reprograms cellular metabolism in ESCC cells. Moreover, it has been identified that activating transcription factor 3 (ATF3) plays a crucial cellular target role in ESCC cells treated with Carfilzomib. Overexpression of ATF3 effectively antagonized the effects of carfilzomib on ESCC cell proliferation, apoptosis, and metabolic reprogramming. Furthermore, the ATF3 protein is specifically bound to lactate dehydrogenase A (LDHA) to effectively suppress LDHA-mediated metabolic reprogramming in response to carfilzomib treatment. Research conducted in xenograft models demonstrates that ATF3 mediates the anti-tumor activity of Carfilzomib. The examination of human esophageal squamous cell carcinoma indicated that ATF3 and LDHA have the potential to function as innovative targets for therapeutic intervention in the treatment of ESCC. Our findings demonstrate the novel function of Carfilzomib in modulating ESCC metabolism and progression, highlighting the potential of Carfilzomib as a promising therapeutic agent for the treatment of ESCC.


Subject(s)
Activating Transcription Factor 3 , Antineoplastic Agents , Carcinoma, Squamous Cell , Esophageal Neoplasms , Oligopeptides , Esophageal Neoplasms/drug therapy , Carcinoma, Squamous Cell/drug therapy , Oligopeptides/pharmacology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Heterografts , Neoplasm Transplantation , Humans , Animals , Mice , Mice, Inbred BALB C , Cell Proliferation/drug effects , Carcinogenesis/drug effects , Apoptosis , Metabolic Reprogramming/drug effects , Activating Transcription Factor 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL