Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.140
Filter
1.
Food Chem ; 462: 140961, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208724

ABSTRACT

The underlying toxicity mechanisms of microplastics on oysters have rarely been explored. To fill this gap, the present study investigated the metabolic profile and protein expression responses of oysters to microplastic stress through metabolomics and biochemical analyses. Oysters were exposed to microplastics for 21 days, and the results indicated that the microplastics induced oxidative stress, with a significant decrease in SOD activity in the 0.1 mg/L exposure group. Metabolomics revealed that exposure to microplastics disturbed many metabolic pathways, such as amino acid metabolism, lipid metabolism, biosynthesis of amino acids, aminoacyl-tRNA biosynthesis, and that different concentrations of microplastics induced diverse metabolomic profiles in oysters. Overall, the current study provides new reference data and insights for assessing food safety and consumer health risks caused by microplastic contamination.


Subject(s)
Crassostrea , Microplastics , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Animals , Crassostrea/metabolism , Crassostrea/drug effects , Crassostrea/chemistry , Microplastics/metabolism , Water Pollutants, Chemical/metabolism , Oxidative Stress/drug effects , Polystyrenes/chemistry , Polystyrenes/metabolism , Metabolome/drug effects , Shellfish/analysis , Metabolomics , Food Contamination/analysis
2.
J Environ Sci (China) ; 149: 676-687, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181677

ABSTRACT

Epithelial-mesenchymal transition (EMT) plays an irreplaceable role in the development of silicosis. However, molecular mechanisms of EMT induced by silica exposure still remain to be addressed. Herein, metabolic profiles of human alveolar type II epithelial cells (A549 cells) exposed directly to silica were characterized using non-targeted metabolomic approaches. A total of 84 differential metabolites (DMs) were identified in silica-treated A549 cells undergoing EMT, which were mainly enriched in metabolisms of amino acids (e.g., glutamate, alanine, aspartate), purine metabolism, glycolysis, etc. The number of DMs identified in the A549 cells obviously increased with the elevated exposure concentration of silica. Remarkably, glutamine catabolism was significantly promoted in the silica-treated A549 cells, and the levels of related metabolites (e.g., succinate) and enzymes (e.g., α-ketoglutarate (α-KG) dehydrogenase) were substantially up-regulated, with a preference to α-KG pathway. Supplementation of glutamine into the cell culture could substantially enhance the expression levels of both EMT-related markers and Snail (zinc finger transcription factor). Our results suggest that the EMT of human alveolar epithelial cells directly induced by silica can be essential to the development of silicosis.


Subject(s)
Alveolar Epithelial Cells , Epithelial-Mesenchymal Transition , Silicon Dioxide , Humans , Epithelial-Mesenchymal Transition/drug effects , Silicon Dioxide/toxicity , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , A549 Cells , Silicosis/metabolism , Metabolome/drug effects
3.
Methods Mol Biol ; 2852: 255-272, 2025.
Article in English | MEDLINE | ID: mdl-39235749

ABSTRACT

Metabolomics is the study of low molecular weight biochemical molecules (typically <1500 Da) in a defined biological organism or system. In case of food systems, the term "food metabolomics" is often used. Food metabolomics has been widely explored and applied in various fields including food analysis, food intake, food traceability, and food safety. Food safety applications focusing on the identification of pathogen-specific biomarkers have been promising. This chapter describes a nontargeted metabolite profiling workflow using gas chromatography coupled with mass spectrometry (GC-MS) for characterizing three globally important foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, from selective enrichment liquid culture media. The workflow involves a detailed description of food spiking experiments followed by procedures for the extraction of polar metabolites from media, the analysis of the extracts using GC-MS, and finally chemometric data analysis using univariate and multivariate statistical tools to identify potential pathogen-specific biomarkers.


Subject(s)
Biomarkers , Food Microbiology , Gas Chromatography-Mass Spectrometry , Listeria monocytogenes , Metabolomics , Metabolomics/methods , Gas Chromatography-Mass Spectrometry/methods , Biomarkers/analysis , Food Microbiology/methods , Listeria monocytogenes/metabolism , Listeria monocytogenes/isolation & purification , Salmonella enterica/metabolism , Escherichia coli O157/metabolism , Escherichia coli O157/isolation & purification , Foodborne Diseases/microbiology , Metabolome
4.
J Environ Sci (China) ; 148: 107-115, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095149

ABSTRACT

The evaluation of toxicity related to polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) is crucial for a comprehensive risk assessment in real-world exposure scenarios. This study employed a controlled feeding experiment to investigate the metabolic effects of dioxin-like compounds (DLCs) on laying hens via feed exposure. Diets enriched with two concentrations (1.17 and 5.13 pg toxic equivalents (TEQ)/g dry weight (dw)) were administered over 14 days, followed by 28 days of clean feed. Metabolomics analyses of blood samples revealed significant metabolic variations between PCDD/Fs and DL-PCBs exposed groups and controls, reflecting the induced metabolic disruption. Distinct changes were observed in sphingosine, palmitoleic acid, linoleate, linolenic acid, taurocholic acid, indole acrylic acid, and dibutyl phthalate levels, implying possible connections between PCDD/Fs and DL-PCBs toxic effects and energy-neuronal imbalances, along with lipid accumulation and anomalous amino acid metabolism, impacting taurine metabolism. Moreover, we identified three differential endogenous metabolites-L-tryptophan, indole-3-acetaldehyde, and indole acrylic acid-as potential ligands for the aryl hydrocarbon receptor (AhR), suggesting their role in mediating PCDD/Fs and DL-PCBs toxicity. This comprehensive investigation provides novel insights into the metabolic alterations induced by PCDD/Fs and DL-PCBs in laying hens, thereby enhancing our ability to assess risks associated with their exposure in human populations.


Subject(s)
Chickens , Animals , Dioxins and Dioxin-like Compounds/metabolism , Dioxins and Dioxin-like Compounds/toxicity , Female , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Polychlorinated Biphenyls/toxicity , Metabolomics , Metabolome/drug effects , Animal Feed/analysis , Polychlorinated Dibenzodioxins/toxicity
5.
Sci Immunol ; 9(99): eads7640, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39241056

ABSTRACT

Multi-omic analysis deciphers the impact of cell-intrinsic and systemic metabolomes on dengue vaccination immunogenicity.


Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Dengue Vaccines/immunology , Humans , Dengue/prevention & control , Dengue/immunology , Dengue Virus/immunology , Vaccination , Animals , Metabolome/immunology
6.
Sci Rep ; 14(1): 20575, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232046

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive type of cancer in the brain and has an inferior prognosis because of the lack of suitable medicine, largely due to its tremendous invasion. GBM has selfish metabolic pathways to promote migration, invasion, and proliferation compared to normal cells. Among various metabolic pathways, NAD (nicotinamide adenine dinucleotide) is essential in generating ATP and is used as a resource for cancer cells. LbNOX (Lactobacillus brevis NADH oxidase) is an enzyme that can directly manipulate the NAD+/NADH ratio. In this study, we found that an increased NAD+/NADH ratio by LbNOX or mitoLbNOX reduced intracellular glutamate and calcium responses and reduced invasion capacity in GBM. However, the invasion was not affected in GBM by rotenone, an ETC (Electron Transport Chain) complex I inhibitor, or nicotinamide riboside, a NAD+ precursor, suggesting that the crucial factor is the NAD+/NADH ratio rather than the absolute quantity of ATP or NAD+ for the invasion of GBM. To develop a more accurate and effective GBM treatment, our findings highlight the importance of developing a new medicine that targets the regulation of the NAD+/NADH ratio, given the current lack of effective treatment options for this brain cancer.


Subject(s)
Glioblastoma , Metabolome , NAD , Glioblastoma/metabolism , Glioblastoma/pathology , NAD/metabolism , Humans , Cell Line, Tumor , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Multienzyme Complexes/metabolism , Levilactobacillus brevis/metabolism , Neoplasm Invasiveness , Calcium/metabolism , Glutamic Acid/metabolism , Cell Movement , Adenosine Triphosphate/metabolism , NADH, NADPH Oxidoreductases
7.
NPJ Biofilms Microbiomes ; 10(1): 89, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300083

ABSTRACT

Gingivitis-the inflammation of the gums-is a reversible stage of periodontal disease. It is caused by dental plaque formation due to poor oral hygiene. However, gingivitis susceptibility involves a complex set of interactions between the oral microbiome, oral metabolome and the host. In this study, we investigated the dynamics of the oral microbiome and its interactions with the salivary metabolome during experimental gingivitis in a cohort of 41 systemically healthy participants. We use Parallel Factor Analysis (PARAFAC), which is a multi-way generalization of Principal Component Analysis (PCA) that can model the variability in the response due to subjects, variables and time. Using the modelled responses, we identified microbial subcommunities with similar dynamics that connect to the magnitude of the gingivitis response. By performing high level integration of the predicted metabolic functions of the microbiome and salivary metabolome, we identified pathways of interest that describe the changing proportions of Gram-positive and Gram-negative microbiota, variation in anaerobic bacteria, biofilm formation and virulence.


Subject(s)
Biofilms , Gingivitis , Host Microbial Interactions , Metabolome , Microbiota , Saliva , Humans , Gingivitis/microbiology , Saliva/microbiology , Biofilms/growth & development , Female , Adult , Male , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Principal Component Analysis , Mouth/microbiology , Young Adult , Healthy Volunteers
8.
Sci Rep ; 14(1): 21902, 2024 09 19.
Article in English | MEDLINE | ID: mdl-39300306

ABSTRACT

To elucidate the lipidomic and metabolomic alterations associated with hypertrophic cardiomyopathy (HCM) pathogenesis, we utilized cmybpc3-/- zebrafish model. Fatty acid profiling revealed variability of 10 fatty acids profiles, with heterozygous (HT) and homozygous (HM) groups exhibiting distinct patterns. Hierarchical cluster analysis and multivariate analyses demonstrated a clear separation of HM from HT and control (CO) groups related to cardiac remodeling. Lipidomic profiling identified 257 annotated lipids, with two significantly dysregulated between CO and HT, and 59 between HM and CO. Acylcarnitines and phosphatidylcholines were identified as key contributors to group differentiation, suggesting a shift in energy source. Untargeted metabolomics revealed 110 and 53 significantly dysregulated metabolites. Pathway enrichment analysis highlighted perturbations in multiple metabolic pathways in the HM group, including nicotinate, nicotinamide, purine, glyoxylate, dicarboxylate, glycerophospholipid, pyrimidine, and amino acid metabolism. Our study provides comprehensive insights into the lipidomic and metabolomic unique signatures associated with cmybpc3-/- induced HCM in zebrafish. The identified biomarkers and dysregulated pathways shed light on the metabolic perturbations underlying HCM pathology, offering potential targets for further investigation and potential new therapeutic interventions.


Subject(s)
Cardiomyopathy, Hypertrophic , Disease Models, Animal , Lipidomics , Metabolomics , Zebrafish , Animals , Zebrafish/metabolism , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Metabolomics/methods , Lipidomics/methods , Lipid Metabolism , Fatty Acids/metabolism , Metabolic Networks and Pathways , Metabolome
9.
Respir Res ; 25(1): 343, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300427

ABSTRACT

BACKGROUND: The COVID-19 pandemic has escalated into a severe global public health crisis, with persistent sequelae observed in some patients post-discharge. However, metabolomic characterization of the reconvalescent remains unclear. METHODS: In this study, serum and urine samples from COVID-19 survivors (n = 16) and healthy subjects (n = 16) underwent testing via the non-targeted metabolomics approach using UPLC-MS/MS. Univariate and multivariate statistical analyses were conducted to delineate the separation between the two sample groups and identify differentially expressed metabolites. By integrating random forest and cluster analysis, potential biomarkers were screened, and the differential metabolites were subsequently subjected to KEGG pathway enrichment analysis. RESULTS: Significant differences were observed in the serum and urine metabolic profiles between the two groups. In serum samples, 1187 metabolites were detected, with 874 identified as significant (457 up-regulated, 417 down-regulated); in urine samples, 960 metabolites were detected, with 39 deemed significant (12 up-regulated, 27 down-regulated). Eight potential biomarkers were identified, with KEGG analysis revealing significant enrichment in several metabolic pathways, including arginine biosynthesis. CONCLUSIONS: This study offers an overview of the metabolic profiles in serum and urine of COVID-19 survivors, providing a reference for post-discharge monitoring and the prognosis of COVID-19 patients.


Subject(s)
Biomarkers , COVID-19 , Metabolomics , Survivors , Humans , COVID-19/epidemiology , COVID-19/diagnosis , Male , Female , Metabolomics/methods , Middle Aged , Biomarkers/blood , Biomarkers/urine , Survivors/statistics & numerical data , China/epidemiology , Adult , Aged , Metabolome , Case-Control Studies
10.
Part Fibre Toxicol ; 21(1): 38, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300536

ABSTRACT

BACKGROUND: The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM2.5), which has been associated with adverse health effects (e.g., cardiovascular diseases). However, the molecular and cellular effects of atmospheric aging on aerosol toxicity have not been fully elucidated, especially in model systems that enable cell-to-cell signaling. METHODS: In this study, we aimed to elucidate the complexity of atmospheric aerosol toxicology by exposing a coculture model system consisting of an alveolar (A549) and an endothelial (EA.hy926) cell line seeded in a 3D orientation at the air‒liquid interface for 4 h to model aerosols. Simulation of atmospheric aging was performed on volatile biogenic (ß-pinene) or anthropogenic (naphthalene) precursors of SOA condensing on soot particles. The similar physical properties for both SOA, but distinct differences in chemical composition (e.g., aromatic compounds, oxidation state, unsaturated carbonyls) enabled to determine specifically induced toxic effects of SOA. RESULTS: In A549 cells, exposure to naphthalene-derived SOA induced stress-related airway remodeling and an early type I immune response to a greater extent. Transcriptomic analysis of EA.hy926 cells not directly exposed to aerosol and integration with metabolome data indicated generalized systemic effects resulting from the activation of early response genes and the involvement of cardiovascular disease (CVD) -related pathways, such as the intracellular signal transduction pathway (PI3K/AKT) and pathways associated with endothelial dysfunction (iNOS; PDGF). Greater induction following anthropogenic SOA exposure might be causative for the observed secondary genotoxicity. CONCLUSION: Our findings revealed that the specific effects of SOA on directly exposed epithelial cells are highly dependent on the chemical identity, whereas non directly exposed endothelial cells exhibit more generalized systemic effects with the activation of early stress response genes and the involvement of CVD-related pathways. However, a greater correlation was made between the exposure to the anthropogenic SOA compared to the biogenic SOA. In summary, our study highlights the importance of chemical aerosol composition and the use of cell systems with cell-to-cell interplay on toxicological outcomes.


Subject(s)
Aerosols , Coculture Techniques , Epithelial Cells , Particulate Matter , Signal Transduction , Transcriptome , Humans , Particulate Matter/toxicity , Signal Transduction/drug effects , Transcriptome/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , A549 Cells , Air Pollutants/toxicity , Metabolomics , Metabolome/drug effects
11.
Metabolomics ; 20(5): 104, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305446

ABSTRACT

BACKGROUND & OBJECTIVE: The progression of dengue fever to severe dengue (SD) is a major public health concern that impairs the capacity of the medical system to predict and treat dengue patients. Hence, the present study used a metabolomic approach integrated with machine models to identify differentially expressed metabolites in patients with SD compared to nonsevere patients and healthy controls. METHODS: Comprehensively, the plasma was collected at different clinical phases during dengue without warning signs (DWOW, N = 10), dengue with warning signs (DWW, N = 10), and SD (N = 10) at different stages [i.e., day of admission (DOA), day of defervescence (DOD), and day of convalescent (DOC)] in comparison to healthy control (HC). The samples were subjected to LC‒ESI‒MS/MS to identify metabolites. Statistical and machine learning analyses were performed using R and Python language. Further, biomarker, pathway and correlation analysis was performed to identify potential predictors of dengue. RESULTS & CONCLUSION: A total of 423 metabolites were identified in all the study groups. Paired and unpaired t-tests revealed 14 highly differentially expressed metabolites between and across the dengue groups, with four metabolites (shikimic acid, ureidosuccinic acid, propionyl carnitine, and alpha-tocopherol) showing significant differences compared to HC. Furthermore, biomarker (ROC) analysis revealed 11 potential molecules with a significant AUC value of 1 that could serve as potential biomarkers for identifying different dengue clinical stages that are beneficial for predicting dengue disease outcomes. The logistic regression model revealed that S-adenosylhomocysteine, hypotaurine, and shikimic acid metabolites could be beneficial indicators for predicting severe dengue, with an accuracy and AUC of 0.75. The data showed that dengue infection is related to lipid metabolism, oxidative stress, inflammation, metabolomic adaptation, and virus manipulation. Moreover, the biomarkers had a significant correlation with biochemical parameters like platelet count, and hematocrit. These results shed some light on host-derived small-molecule biomarkers that are associated with dengue severity and novel insights into metabolomics mechanisms interlinked with disease severity.


Subject(s)
Biomarkers , Dengue , Machine Learning , Metabolomics , Tandem Mass Spectrometry , Humans , Metabolomics/methods , Dengue/metabolism , Dengue/blood , Tandem Mass Spectrometry/methods , Male , Biomarkers/blood , Biomarkers/metabolism , Female , Chromatography, Liquid/methods , Adult , Metabolome , Middle Aged , Liquid Chromatography-Mass Spectrometry
12.
Microbiome ; 12(1): 172, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267132

ABSTRACT

BACKGROUND: The microbiota and metabolites in the gastrointestinal tracts of female animals at different reproductive periods are very important to the growth, development, and health of themselves and their offspring. However, the changes in the gastrointestinal microbiota and metabolites throughout reproductive period of different sheep breeds and their effects on the growth and development of offspring lambs are still unclear. Hence, this study presents an assessment of the reproductive hormone levels, immune levels, rumen microbiota, and metabolites in Hu sheep and Suffolk ewes at different reproductive periods and their effects on the growth and development of offspring lambs. RESULTS: Hu sheep and Suffolk during non-pregnancy, pregnancy, and lactation were used as the research objects to determine reproductive and immune indexes of ewes at different periods, analyze rumen microbiome and metabolome, and track the growth performance and development of offspring lambs. The results showed that the reproductive hormone and immune levels of Hu sheep and Suffolk underwent adaptive changes across different reproductive periods. Compared with non-pregnancy, the microbial energy metabolism and lipid metabolism function decreased during Hu sheep pregnancy, and energy metabolism function decreased during lactation. In Suffolk, energy metabolism, glycan biosynthesis, and metabolism function were enhanced during pregnancy, and the metabolism of cofactors and vitamins was enhanced during lactation. Prevotella increased in Suffolk during pregnancy and lactation (P < 0.05) and was positively correlated with the birth weight and body size of the lambs (P < 0.05). Moreover, the abundances of Butyrivibrio and Rikenellaceae_RC9_gut_group during pregnancy were positively correlated with the intestinal immunity of the offspring lambs (P < 0.05), thereby regulating the intestinal immunity level of the lambs. Metabolomic analysis revealed that the protein digestion, absorption, and amino acid metabolism of Hu sheep were enhanced during pregnancy, which provided amino acids for the growth and development of pregnant ewes and fetuses and was significantly correlated with the birth weight, body size, and intestinal immunity of lambs (P < 0.05). Simultaneously, there was an increase in acetate and propionate during the pregnancy and lactation period of both Hu sheep and Suffolk, providing energy for ewes during reproductive period. Moreover, the microbiota during the lactation period was significantly correlated with the milk quality and lambs daily gain (P < 0.05). CONCLUSIONS: This study revealed the characteristic succession changes in the rumen microbiota and its metabolites at different reproductive periods in sheep breeds and their regulation of reproductive hormone and immune levels and identified their potential effects on the growth and development of offspring lambs. The findings provide valuable insights into the health and feeding management of different sheep breeds during the reproductive stage. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Lactation , Reproduction , Rumen , Animals , Rumen/microbiology , Rumen/metabolism , Female , Sheep/microbiology , Pregnancy , Bacteria/classification , Bacteria/metabolism , Metabolome , Energy Metabolism , Birth Weight , Breeding
13.
Microbiome ; 12(1): 173, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267187

ABSTRACT

BACKGROUND: Trees are associated with a broad range of microorganisms colonising the diverse tissues of their host. However, the early dynamics of the microbiota assembly microbiota from the root to shoot axis and how it is linked to root exudates and metabolite contents of tissues remain unclear. Here, we characterised how fungal and bacterial communities are altering root exudates as well as root and shoot metabolomes in parallel with their establishment in poplar cuttings (Populus tremula x tremuloides clone T89) over 30 days of growth. Sterile poplar cuttings were planted in natural or gamma irradiated soils. Bulk and rhizospheric soils, root and shoot tissues were collected from day 1 to day 30 to track the dynamic changes of fungal and bacterial communities in the different habitats by DNA metabarcoding. Root exudates and root and shoot metabolites were analysed in parallel by gas chromatography-mass spectrometry. RESULTS: Our study reveals that microbial colonisation triggered rapid and substantial alterations in both the composition and quantity of root exudates, with over 70 metabolites exclusively identified in remarkably high abundances in the absence of microorganisms. Noteworthy among these were lipid-related metabolites and defence compounds. The microbial colonisation of both roots and shoots exhibited a similar dynamic response, initially involving saprophytic microorganisms and later transitioning to endophytes and symbionts. Key constituents of the shoot microbiota were also discernible at earlier time points in the rhizosphere and roots, indicating that the soil constituted a primary source for shoot microbiota. Furthermore, the microbial colonisation of belowground and aerial compartments induced a reconfiguration of plant metabolism. Specifically, microbial colonisation predominantly instigated alterations in primary metabolism in roots, while in shoots, it primarily influenced defence metabolism. CONCLUSIONS: This study highlighted the profound impact of microbial interactions on metabolic pathways of plants, shedding light on the intricate interplay between plants and their associated microbial communities. Video Abstract.


Subject(s)
Bacteria , Fungi , Metabolome , Microbiota , Plant Roots , Plant Shoots , Populus , Soil Microbiology , Populus/microbiology , Populus/metabolism , Populus/growth & development , Plant Roots/microbiology , Plant Roots/metabolism , Plant Shoots/metabolism , Plant Shoots/growth & development , Plant Shoots/microbiology , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Fungi/classification , Fungi/metabolism , Rhizosphere , Plant Exudates/metabolism
14.
Int J Mol Sci ; 25(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39273157

ABSTRACT

In the last decade, geopolitical instability across the globe has increased the risk of a large-scale radiological event, when radiation biomarkers would be needed for an effective triage of an irradiated population. Ionizing radiation elicits a complex response in the proteome, genome, and metabolome and hence can be leveraged as rapid and sensitive indicators of irradiation-induced damage. We analyzed the plasma of total-body irradiated (TBI) leukemia patients (n = 24) and nonhuman primates (NHPs; n = 10) before and 24 h after irradiation, and we performed a global metabolomic study aiming to provide plasma metabolites as candidate radiation biomarkers for biological dosimetry. Peripheral blood samples were collected according to the appropriate ethical approvals, and metabolites were extracted and analyzed by liquid chromatography mass spectrometry. We identified an array of metabolites significantly altered by irradiation, including bilirubin, cholesterol, and 18-hydroxycorticosterone, which were detected in leukemia patients and NHPs. Pathway analysis showed overlapping perturbations in steroidogenesis, porphyrin metabolism, and steroid hormone biosynthesis and metabolism. Additionally, we observed dysregulation in bile acid biosynthesis and tyrosine metabolism in the TBI patient cohort. This investigation is, to our best knowledge, among the first to provide valuable insights into a comparison between human and NHP irradiation models. The findings from this study could be leveraged for translational biological dosimetry.


Subject(s)
Metabolome , Whole-Body Irradiation , Animals , Humans , Male , Female , Adult , Biomarkers/blood , Middle Aged , Leukemia/blood , Leukemia/metabolism , Macaca mulatta , Radiation, Ionizing , Metabolomics/methods
15.
Int J Mol Sci ; 25(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39273197

ABSTRACT

Although the petals of Rosa rugosa are rich in flavonoids and their bioactivity has a significant impact on human health, the flavonoid content decreases during flower development. In this study, R. rugosa 'Feng hua' was used to investigate the effects of the melatonin foliar spray on enhancing the quality of rose by focusing on major flavonoids. The results showed that the contents of total flavonoids in rose petals at the full bloom stage induced by melatonin obeyed a bell-shaped curve, with a maximum at 0.3 mM, indicating the concentration-dependent up-regulation of flavonoid biosynthesis. In the treatment with 0.3 mM melatonin, metabolomic analyses showed that the concentrations of ten main flavonoids were identified to be increased by melatonin induction, with high levels and increases observed in three flavonols and two anthocyanins. KEGG enrichment of transcriptomic analysis revealed a remarkable enrichment of DEGs in flavonoid and flavonol biosynthesis, such as Rr4CL, RrF3H, and RrANS. Furthermore, functional validation using virus-induced gene silencing technology demonstrated that Rr4CL3 is the crucial gene regulating flavonoid biosynthesis in response to the stimulant of melatonin. This study provides insights into the exogenous melatonin regulation mechanism of biosynthesis of flavonoids, thereby offering potential industrial applications.


Subject(s)
Flavonoids , Gene Expression Profiling , Gene Expression Regulation, Plant , Melatonin , Rosa , Rosa/genetics , Rosa/metabolism , Rosa/drug effects , Melatonin/pharmacology , Flavonoids/biosynthesis , Gene Expression Regulation, Plant/drug effects , Gene Expression Profiling/methods , Flowers/genetics , Flowers/metabolism , Flowers/drug effects , Transcriptome , Metabolome/drug effects , Metabolomics/methods , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273221

ABSTRACT

Aluminum (Al) toxicity and low phosphorus availability (LP) are the top two co-existing edaphic constraints limiting agriculture productivity in acid soils. Plants have evolved versatile mechanisms to cope with the two stresses alone or simultaneously. However, the specific and common molecular mechanisms, especially those involving flavonoids and carbohydrate metabolism, remain unclear. Laboratory studies were conducted on two wheat genotypes-Fielder (Al-tolerant and P-efficient) and Ardito (Al-sensitive and P-inefficient)-exposed to 50 µM Al and 2 µM Pi (LP) in hydroponic solutions. After 4 days of stress, wheat roots were analyzed using transcriptomics and targeted metabolomics techniques. In Fielder, a total of 2296 differentially expressed genes (DEGs) were identified under Al stress, with 1535 upregulated and 761 downregulated, and 3029 DEGs were identified under LP stress, with 1591 upregulated and 1438 downregulated. Similarly, 4404 DEGs were identified in Ardito under Al stress, with 3191 upregulated and 1213 downregulated, and 1430 DEGs were identified under LP stress, with 1176 upregulated and 254 downregulated. GO annotation analysis results showed that 4079 DEGs were annotated to the metabolic processes term. These DEGs were significantly enriched in the phenylpropanoid, flavonoid, flavone and flavonol biosynthesis, and carbohydrate metabolism pathways by performing the KEGG enrichment analysis. The targeted metabolome analysis detected 19 flavonoids and 15 carbohydrate components in Fielder and Ardito under Al and LP stresses. In Fielder, more responsive genes and metabolites were involved in flavonoid metabolism under LP than Al stress, whereas the opposite trend was observed in Ardito. In the carbohydrate metabolism pathway, the gene and metabolite expression levels were higher in Fielder than in Ardito. The combined transcriptome and metabolome analysis revealed differences in flavonoid- and carbohydrate-related genes and metabolites between Fielder and Ardito under Al and LP stresses, which may contribute to Fielder's higher resistance to Al and LP. The results of this study lay a foundation for pyramiding genes and breeding multi-resistant varieties.


Subject(s)
Aluminum , Gene Expression Regulation, Plant , Metabolomics , Phosphorus , Transcriptome , Triticum , Triticum/metabolism , Triticum/genetics , Aluminum/toxicity , Phosphorus/metabolism , Gene Expression Regulation, Plant/drug effects , Metabolomics/methods , Stress, Physiological/genetics , Flavonoids/metabolism , Gene Expression Profiling , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Metabolome
17.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273311

ABSTRACT

Worldwide, 3.9 million individuals rely on kidney replacement therapy. They experience heightened susceptibility to cardiovascular diseases and mortality, alongside an increased risk of infections and malignancies, with inflammation being key to explaining this intensified risk. This study utilized semi-targeted metabolomics to explore novel metabolic pathways related to inflammation in this population. We collected pre- and post-session blood samples of patients who had already undergone one year of chronic hemodialysis and used liquid chromatography and high-resolution mass spectrometry to perform a metabolomic analysis. Afterwards, we employed both univariate (Mann-Whitney test) and multivariate (logistic regression with LASSO regularization) to identify metabolites associated with inflammation. In the univariate analysis, indole-3-acetaldehyde, 2-ketobutyric acid, and urocanic acid showed statistically significant decreases in median concentrations in the presence of inflammation. In the multivariate analysis, metabolites positively associated with inflammation included allantoin, taurodeoxycholic acid, norepinephrine, pyroglutamic acid, and L-hydroorotic acid. Conversely, metabolites showing negative associations with inflammation included benzoic acid, indole-3-acetaldehyde, methionine, citrulline, alphaketoglutarate, n-acetyl-ornithine, and 3-4-dihydroxibenzeneacetic acid. Non-inflamed patients exhibit preserved autophagy and reduced mitochondrial dysfunction. Understanding inflammation in this group hinges on the metabolism of arginine and the urea cycle. Additionally, the microbiota, particularly uricase-producing bacteria and those metabolizing tryptophan, play critical roles.


Subject(s)
Inflammation , Metabolic Networks and Pathways , Renal Dialysis , Humans , Renal Dialysis/adverse effects , Male , Female , Inflammation/metabolism , Middle Aged , Aged , Metabolomics/methods , Metabolome
18.
Int J Mol Sci ; 25(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39273456

ABSTRACT

Gastric cancer (GC) is the fifth most common cause of cancer-related death worldwide. Early detection is crucial for improving survival rates and treatment outcomes. However, accurate GC-specific biomarkers remain unknown. This study aimed to identify the metabolic differences between intestinal metaplasia (IM) and GC to determine the pathways involved in GC. A metabolic analysis of IM and tissue samples from 37 patients with GC was conducted using ultra-performance liquid chromatography with tandem mass spectrometry. Overall, 665 and 278 significant features were identified in the aqueous and 278 organic phases, respectively, using false discovery rate analysis, which controls the expected proportion of false positives among the significant results. sPLS-DA revealed a clear separation between IM and GC samples. Steroid hormone biosynthesis, tryptophan metabolism, purine metabolism, and arginine and proline metabolism were the most significantly altered pathways. The intensity of 11 metabolites, including N1, N2-diacetylspermine, creatine riboside, and N-formylkynurenine, showed significant elevation in more advanced GC. Based on pathway enrichment analysis and cancer stage-specific alterations, we identified six potential candidates as diagnostic biomarkers: aldosterone, N-formylkynurenine, guanosine triphosphate, arginine, S-adenosylmethioninamine, and creatine riboside. These metabolic differences between IM and GC provide valuable insights into gastric carcinogenesis. Further validation is needed to develop noninvasive diagnostic tools and targeted therapies to improve the outcomes of patients with GC.


Subject(s)
Biomarkers, Tumor , Metaplasia , Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/diagnosis , Metaplasia/metabolism , Metaplasia/pathology , Male , Female , Biomarkers, Tumor/metabolism , Middle Aged , Aged , Metabolome , Metabolomics/methods , Metabolic Networks and Pathways , Tandem Mass Spectrometry/methods
19.
Int J Mol Sci ; 25(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39273467

ABSTRACT

In vitro embryonic technology is crucial for improving farm animal reproduction but is hampered by the poor quality of oocytes and insufficient development potential. This study investigated the relationships among changes in the gut microbiota and metabolism, serum features, and the follicular fluid metabolome atlas. Correlation network maps were constructed to reveal how the metabolites affect follicular development by regulating gene expression in granulosa cells. The superovulation synchronization results showed that the number of follicle diameters from 4 to 8 mm, qualified oocyte number, cleavage, and blastocyst rates were improved in the dairy heifers (DH) compared with the non-lactating multiparous dairy cows (NDC) groups. The gut microbiota was decreased in Rikenellaceae_RC9_gut_group, Alistipes, and Bifidobacterium, but increased in Firmicutes, Cyanobacteria, Fibrobacterota, Desulfobacterota, and Verrucomicrobiota in the NDC group, which was highly associated with phospholipid-related metabolites of gut microbiota and serum. Metabolomic profiling of the gut microbiota, serum, and follicular fluid further demonstrated that the co-metabolites were phosphocholine and linoleic acid. Moreover, the expression of genes related to arachidonic acid metabolism in granulosa cells was significantly correlated with phosphocholine and linoleic acid. The results in granulosa cells showed that the levels of PLCB1 and COX2, participating in arachidonic acid metabolism, were increased in the DH group, which improved the concentrations of PGD2 and PGF2α in the follicular fluid. Finally, the expression levels of apoptosis-related proteins, cytokines, and steroidogenesis-related genes in granulosa cells and the concentrations of steroid hormones in follicular fluid were determinants of follicular development. According to our results, gut microbiota-related phosphocholine and linoleic acid participate in arachidonic acid metabolism in granulosa cells through the gut-follicle axis, which regulates follicular development. These findings hold promise for enhancing follicular development and optimizing oocyte quality in subfertile dairy cows.


Subject(s)
Arachidonic Acid , Gastrointestinal Microbiome , Ovarian Follicle , Animals , Cattle , Female , Arachidonic Acid/metabolism , Ovarian Follicle/metabolism , Granulosa Cells/metabolism , Follicular Fluid/metabolism , Metabolomics/methods , Metabolome , Multiomics
20.
Int J Mol Sci ; 25(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39273536

ABSTRACT

Inflammatory bowel disease (IBD) is an incurable, chronic disorder of the gastrointestinal tract whose incidence increases every year. Scientific research constantly delivers new information about the disease and its multivariate, complex etiology. Nevertheless, full discovery and understanding of the complete mechanism of IBD pathogenesis still pose a significant challenge to today's science. Recent studies have unanimously confirmed the association of gut microbial dysbiosis with IBD and its contribution to the regulation of the inflammatory process. It transpires that the altered composition of pathogenic and commensal bacteria is not only characteristic of disturbed intestinal homeostasis in IBD, but also of viruses, parasites, and fungi, which are active in the intestine. The crucial function of the microbial metabolome in the human body is altered, which causes a wide range of effects on the host, thus providing a basis for the disease. On the other hand, human genomic and functional research has revealed more loci that play an essential role in gut homeostasis regulation, the immune response, and intestinal epithelial function. This review aims to organize and summarize the currently available knowledge concerning the role and interaction of crucial factors associated with IBD pathogenesis, notably, host genetic composition, intestinal microbiota and metabolome, and immune regulation.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Metabolome , Humans , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/genetics , Dysbiosis/microbiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL