Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.553
Filter
1.
Antonie Van Leeuwenhoek ; 117(1): 94, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954064

ABSTRACT

The Aeolian archipelago is known worldwide for its volcanic activity and hydrothermal emissions, of mainly carbon dioxide and hydrogen sulfide. Hydrogen, methane, and carbon monoxide are minor components of these emissions which together can feed large quantities of bacteria and archaea that do contribute to the removal of these notorious greenhouse gases. Here we analyzed the metagenome of samples taken from the Levante bay on Vulcano Island, Italy. Using a gene-centric approach, the hydrothermal vent community appeared to be dominated by Proteobacteria, and Sulfurimonas was the most abundant genus. Metabolic reconstructions highlight a prominent role of formaldehyde oxidation and the reverse TCA cycle in carbon fixation. [NiFe]-hydrogenases seemed to constitute the preferred strategy to oxidize H2, indicating that besides H2S, H2 could be an essential electron donor in this system. Moreover, the sulfur cycle analysis showed a high abundance and diversity of sulfate reduction genes underpinning the H2S production. This study covers the diversity and metabolic potential of the microbial soil community in Levante bay and adds to our understanding of the biogeochemistry of volcanic ecosystems.


Subject(s)
Hydrogen , Metagenome , Methane , Soil Microbiology , Sulfur , Methane/metabolism , Hydrogen/metabolism , Italy , Sulfur/metabolism , Archaea/genetics , Archaea/classification , Archaea/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Hydrothermal Vents/microbiology , Islands , Phylogeny
2.
Sci Rep ; 14(1): 15096, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956049

ABSTRACT

Antibiotic resistance is a worldwide problem that imposes a devastating effect on developing countries and requires immediate interventions. Initially, most of the antibiotic drugs were identified by culturing soil microbes. However, this method is prone to discovering the same antibiotics repeatedly. The present study employed a shotgun metagenomics approach to investigate the taxonomic diversity, functional potential, and biosynthetic capacity of microbiomes from two natural agricultural farmlands located in Bekeka and Welmera Choke Kebelle in Ethiopia for the first time. Analysis of the small subunit rRNA revealed bacterial domain accounting for 83.33% and 87.24% in the two selected natural farmlands. Additionally, the analysis showed the dominance of Proteobacteria representing 27.27% and 28.79% followed by Actinobacteria making up 12.73% and 13.64% of the phyla composition. Furthermore, the analysis revealed the presence of unassigned bacteria in the studied samples. The metagenome functional analysis showed 176,961 and 104, 636 number of protein-coding sequences (pCDS) from the two samples found a match with 172,655 and 102, 275 numbers of InterPro entries, respectively. The Genome ontology annotation suggests the presence of 5517 and 3293 pCDS assigned to the "biosynthesis process". Numerous Kyoto Encyclopedia of Genes and Genomes modules (KEGG modules) involved in the biosynthesis of terpenoids and polyketides were identified. Furthermore, both known and novel Biosynthetic gene clusters, responsible for the production of secondary metabolites, such as polyketide synthases, non-ribosomal peptide synthetase, ribosomally synthesized and post-translationally modified peptides (Ripp), and Terpene, were discovered. Generally, from the results it can be concluded that the microbiomes in the selected sampling sites have a hidden functional potential for the biosynthesis of secondary metabolites. Overall, this study can serve as a strong preliminary step in the long journey of bringing new antibiotics to the market.


Subject(s)
Metagenome , Metagenomics , Microbiota , Multigene Family , Secondary Metabolism , Soil Microbiology , Metagenomics/methods , Microbiota/genetics , Secondary Metabolism/genetics , Farms , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Ethiopia , Phylogeny
3.
Microbiome ; 12(1): 117, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951915

ABSTRACT

BACKGROUND: Shotgun metagenomics for microbial community survey recovers enormous amount of information for microbial genomes that include their abundances, taxonomic, and phylogenetic information, as well as their genomic makeup, the latter of which then helps retrieve their function based on annotated gene products, mRNA, protein, and metabolites. Within the context of a specific hypothesis, additional modalities are often included, to give host-microbiome interaction. For example, in human-associated microbiome projects, it has become increasingly common to include host immunology through flow cytometry. Whilst there are plenty of software approaches available, some that utilize marker-based and assembly-based approaches, for downstream statistical analyses, there is still a dearth of statistical tools that help consolidate all such information in a single platform. By virtue of stringent computational requirements, the statistical workflow is often passive with limited visual exploration. RESULTS: In this study, we have developed a Java-based statistical framework ( https://github.com/KociOrges/cviewer ) to explore shotgun metagenomics data, which integrates seamlessly with conventional pipelines and offers exploratory as well as hypothesis-driven analyses. The end product is a highly interactive toolkit with a multiple document interface, which makes it easier for a person without specialized knowledge to perform analysis of multiomics datasets and unravel biologically relevant patterns. We have designed algorithms based on frequently used numerical ecology and machine learning principles, with value-driven from integrated omics tools which not only find correlations amongst different datasets but also provide discrimination based on case-control relationships. CONCLUSIONS: CViewer was used to analyse two distinct metagenomic datasets with varying complexities. These include a dietary intervention study to understand Crohn's disease changes during a dietary treatment to include remission, as well as a gut microbiome profile for an obesity dataset comparing subjects who suffer from obesity of different aetiologies and against controls who were lean. Complete analyses of both studies in CViewer then provide very powerful mechanistic insights that corroborate with the published literature and demonstrate its full potential. Video Abstract.


Subject(s)
Metagenomics , Software , Metagenomics/methods , Humans , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Computational Biology/methods , Metagenome , Crohn Disease/microbiology , Crohn Disease/genetics
4.
PLoS One ; 19(7): e0306582, 2024.
Article in English | MEDLINE | ID: mdl-38959253

ABSTRACT

Schizophrenia is a severe, complex and long-term psychiatric disorder with unclear etiology. Gut microbes influence the central nervous system via the gut-brain axis. Consequently, investigations of the relationship between gut microbes and schizophrenia are warranted. This study involved 29 patients with schizophrenia and 30 age-matched normal controls. After 16S rRNA gene sequencing and whole-genome shotgun metagenomic sequencing, we analyzed microbial diversity, composition, and function. According to 16S rRNA and metagenomic gene sequencing results, patients with schizophrenia had higher abundances of Clostridium and Megasphaera. Functional analysis showed that sphingolipid, phosphonates and phosphinates, as well as glutamine metabolism were associated with the occurrence and development of schizophrenia. Our data suggest that the gut microbiota exerts an effect on patients with schizophrenia, providing valuable insights into the potential regulation of in the context of this disorder.


Subject(s)
Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Schizophrenia , Schizophrenia/microbiology , Humans , Male , Female , Adult , RNA, Ribosomal, 16S/genetics , Middle Aged , Case-Control Studies , Metagenomics/methods , Metagenome
5.
Genome Biol ; 25(1): 177, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965579

ABSTRACT

Identifying viruses from metagenomes is a common step to explore the virus composition in the human gut. Here, we introduce VirRep, a hybrid language representation learning framework, for identifying viruses from human gut metagenomes. VirRep combines a context-aware encoder and an evolution-aware encoder to improve sequence representation by incorporating k-mer patterns and sequence homologies. Benchmarking on both simulated and real datasets with varying viral proportions demonstrates that VirRep outperforms state-of-the-art methods. When applied to fecal metagenomes from a colorectal cancer cohort, VirRep identifies 39 high-quality viral species associated with the disease, many of which cannot be detected by existing methods.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Humans , Viruses/genetics , Feces/virology , Metagenomics/methods , Software , Colorectal Neoplasms/virology , Colorectal Neoplasms/genetics
6.
Viruses ; 16(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38932245

ABSTRACT

BACKGROUND: Respiratory viruses significantly impact global morbidity and mortality, causing more disease in humans than any other infectious agent. Beyond pathogens, various viruses and bacteria colonize the respiratory tract without causing disease, potentially influencing respiratory diseases' pathogenesis. Nevertheless, our understanding of respiratory microbiota is limited by technical constraints, predominantly focusing on bacteria and neglecting crucial populations like viruses. Despite recent efforts to improve our understanding of viral diversity in the human body, our knowledge of viral diversity associated with the human respiratory tract remains limited. METHODS: Following a comprehensive search in bibliographic and sequencing data repositories using keyword terms, we retrieved shotgun metagenomic data from public repositories (n = 85). After manual curation, sequencing data files from 43 studies were analyzed using EVEREST (pipEline for Viral assEmbly and chaRactEriSaTion). Complete and high-quality contigs were further assessed for genomic and taxonomic characterization. RESULTS: Viral contigs were obtained from 194 out of the 868 FASTQ files processed through EVEREST. Of the 1842 contigs that were quality assessed, 8% (n = 146) were classified as complete/high-quality genomes. Most of the identified viral contigs were taxonomically classified as bacteriophages, with taxonomic resolution ranging from the superkingdom level down to the species level. Captured contigs were spread across 25 putative families and varied between RNA and DNA viruses, including previously uncharacterized viral genomes. Of note, airway samples also contained virus(es) characteristic of the human gastrointestinal tract, which have not been previously described as part of the lung virome. Additionally, by performing a meta-analysis of the integrated datasets, ecological trends within viral populations linked to human disease states and their biogeographical distribution along the respiratory tract were observed. CONCLUSION: By leveraging publicly available repositories of shotgun metagenomic data, the present study provides new insights into viral genomes associated with specimens from the human respiratory tract across different disease spectra. Further studies are required to validate our findings and evaluate the potential impact of these viral communities on respiratory tract physiology.


Subject(s)
Genome, Viral , Metagenomics , Respiratory System , Virome , Viruses , Humans , Metagenomics/methods , Respiratory System/virology , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Metagenome , Computer Simulation , Phylogeny , Computational Biology/methods , Microbiota , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification
7.
PeerJ ; 12: e17553, 2024.
Article in English | MEDLINE | ID: mdl-38938609

ABSTRACT

Background: White-rot fungi and bacteria communities are unique ecosystems with different types of symbiotic interactions occurring during wood decomposition, such as cooperation, mutualism, nutritional competition, and antagonism. The role of chitin-active lytic polysaccharide monooxygenases (LPMOs) in these symbiotic interactions is the subject of this study. Method: In this study, bioinformatics tools were used to analyze the sequence and structure of putative LPMOs mined by hidden Markov model (HMM) profiles from the bacterial metagenomic DNA database of collected humus samples around white-rot fungi in Cuc Phuong primary forest, Vietnam. Two genes encoding putative LPMOs were expressed in E. coli and purified for enzyme activity assay. Result: Thirty-one full-length proteins annotated as putative LPMOs according to HMM profiles were confirmed by amino acid sequence comparison. The comparison results showed that although the amino acid sequences of the proteins were very different, they shared nine conserved amino acids, including two histidine and one phenylalanine that characterize the H1-Hx-Yz motif of the active site of bacterial LPMOs. Structural analysis of these proteins revealed that they are multidomain proteins with different functions. Prediction of the catalytic domain 3-D structure of these putative LPMOs using Alphafold2 showed that their spatial structures were very similar in shape, although their protein sequences were very different. The results of testing the activity of proteins GL0247266 and GL0183513 show that they are chitin-active LPMOs. Prediction of the 3-D structures of these two LPMOs using Alphafold2 showed that GL0247266 had five functional domains, while GL0183513 had four functional domains, two of which that were similar to the GbpA_2 and GbpA_3 domains of protein GbpA of Vibrio cholerae bacteria. The GbpA_2 - GbpA_3 complex was also detected in 11 other proteins. Based on the structural characteristics of functional domains, it is possible to hypothesize the role of chitin-active GbpA-like LPMOs in the relationship between fungal and bacterial communities coexisting on decomposing trees in primary forests.


Subject(s)
Mixed Function Oxygenases , Vietnam , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Forests , Chitin/metabolism , Metagenomics , Metagenome , Amino Acid Sequence
8.
Environ Microbiol Rep ; 16(3): e13306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923122

ABSTRACT

Human activities are a significant contributor to the spread of antibiotic resistance genes (ARGs), which pose a serious threat to human health. These ARGs can be transmitted through various pathways, including air, within the context of One Health. This study used metagenomics to monitor the resistomes in urban air from two critical locations: a wastewater treatment plant and a hospital, both indoor and outdoor. The presence of cell-like structures was confirmed through fluorescence microscopy. The metagenomic analysis revealed a wide variety of ARGs and a high diversity of antibiotic-resistant bacteria in the airborne particles collected. The wastewater treatment plant showed higher relative abundances with 32 ARG hits per Gb and m3, followed by the main entrance of the hospital (indoor) with ≈5 ARG hits per Gb and m3. The hospital entrance exhibited the highest ARG richness, with a total of 152 different ARGs classified into nine categories of antibiotic resistance. Common commensal and pathogenic bacteria carrying ARGs, such as Moraxella, Staphylococcus and Micrococcus, were detected in the indoor airborne particles of the hospital. Interestingly, no ARGs were shared among all the samples analysed, indicating a highly variable dynamic of airborne resistomes. Furthermore, the study found no ARGs in the airborne viral fractions analysed, suggesting that airborne viruses play a negligible role in the dissemination of ARGs.


Subject(s)
Air Microbiology , Bacteria , Drug Resistance, Bacterial , Metagenomics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/drug effects , Humans , Drug Resistance, Bacterial/genetics , One Health , Metagenome , Wastewater/microbiology , Genes, Bacterial/genetics , Hospitals , Anti-Bacterial Agents/pharmacology , Cities
9.
Microbiome ; 12(1): 115, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918820

ABSTRACT

BACKGROUND: Microbial adaptation to salinity has been a classic inquiry in the field of microbiology. It has been demonstrated that microorganisms can endure salinity stress via either the "salt-in" strategy, involving inorganic ion uptake, or the "salt-out" strategy, relying on compatible solutes. While these insights are mostly based on laboratory-cultured isolates, exploring the adaptive mechanisms of microorganisms within natural salinity gradient is crucial for gaining a deeper understanding of microbial adaptation in the estuarine ecosystem. RESULTS: Here, we conducted metagenomic analyses on filtered surface water samples collected from a typical subtropical short residence-time estuary and categorized them by salinity into low-, intermediate-, and high-salinity metagenomes. Our findings highlighted salinity-driven variations in microbial community composition and function, as revealed through taxonomic and Clusters of Orthologous Group (COG) functional annotations. Through metagenomic binning, 127 bacterial and archaeal metagenome-assembled genomes (MAGs) were reconstructed. These MAGs were categorized as stenohaline-specific to low-, intermediate-, or high-salinity-based on the average relative abundance in one salinity category significantly exceeding those in the other two categories by an order of magnitude. Those that did not meet this criterion were classified as euryhaline, indicating a broader range of salinity tolerance. Applying the Boruta algorithm, a machine learning-based feature selection method, we discerned important genomic features from the stenohaline bacterial MAGs. Of the total 12,162 COGs obtained, 40 were identified as important features, with the "inorganic ion transport and metabolism" COG category emerging as the most prominent. Furthermore, eight COGs were implicated in microbial osmoregulation, of which four were related to the "salt-in" strategy, three to the "salt-out" strategy, and one to the regulation of water channel activity. COG0168, annotated as the Trk-type K+ transporter related to the "salt-in" strategy, was ranked as the most important feature. The relative abundance of COG0168 was observed to increase with rising salinity across metagenomes, the stenohaline strains, and the dominant Actinobacteriota and Proteobacteria phyla. CONCLUSIONS: We demonstrated that salinity exerts influences on both the taxonomic and functional profiles of the microbial communities inhabiting the estuarine ecosystem. Our findings shed light on diverse salinity adaptation strategies employed by the estuarine microbial communities, highlighting the crucial role of the "salt-in" strategy mediated by Trk-type K+ transporters for microorganisms thriving under osmotic stress in the short residence-time estuary. Video Abstract.


Subject(s)
Archaea , Bacteria , Estuaries , Metagenome , Metagenomics , Salinity , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Archaea/genetics , Archaea/classification , Archaea/metabolism , Adaptation, Physiological , Microbiota/genetics , Seawater/microbiology , Water Microbiology
10.
Sci Rep ; 14(1): 14720, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926415

ABSTRACT

Dental calculus is a microbial biofilm that contains biomolecules from oral commensals and pathogens, including those potentially related to cause of death (CoD). To assess the utility of calculus as a diagnostically informative substrate, in conjunction with paleopathological analysis, calculus samples from 39 individuals in the Smithsonian Institution's Robert J. Terry Collection with CoDs of either syphilis or tuberculosis were assessed via shotgun metagenomic sequencing for the presence of Treponema pallidum subsp. pallidum and Mycobacterium tuberculosis complex (MTBC) DNA. Paleopathological analysis revealed that frequencies of skeletal lesions associated with these diseases were partially inconsistent with diagnostic criteria. Although recovery of T. p. pallidum DNA from individuals with a syphilis CoD was elusive, MTBC DNA was identified in at least one individual with a tuberculosis CoD. The authenticity of MTBC DNA was confirmed using targeted quantitative PCR assays, MTBC genome enrichment, and in silico bioinformatic analyses; however, the lineage of the MTBC strain present could not be determined. Overall, our study highlights the utility of dental calculus for molecular detection of tuberculosis in the archaeological record and underscores the effect of museum preparation techniques and extensive handling on pathogen DNA preservation in skeletal collections.


Subject(s)
Dental Calculus , Metagenomics , Mycobacterium tuberculosis , Paleopathology , Tuberculosis , Dental Calculus/microbiology , Dental Calculus/history , Humans , Metagenomics/methods , Paleopathology/methods , Tuberculosis/diagnosis , Tuberculosis/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , DNA, Bacterial/genetics , Male , Treponema pallidum/genetics , Treponema pallidum/isolation & purification , Syphilis/diagnosis , Syphilis/microbiology , Syphilis/history , Female , Adult , Metagenome/genetics , Middle Aged
11.
Sci Rep ; 14(1): 14709, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926602

ABSTRACT

Natural spices play an essential role in human nutrition and well-being. However, their processing on different scales can expose them to potential sources of contamination. This study aimed to describe the bacterial community genomic footprint in spices sold in Senegal. Spice samples were collected in August 2022 in Saint-Louis, Senegal. The genomic region coding bacterial 16S rRNA was then amplified and sequenced using Oxford Nanopore Technology (ONT). Sequencing was carried out on two batches of samples, one containing part of the "Local Spices or Herbs" (n = 10), and the other, a mixture of 7 spices, Curcuma, Thyme and the other part of the "Local Spices or Herbs" (n = 39). Results showed high bacterial diversity and the predominance of Escherichia coli and Salmonella enterica in samples, with total reads of 65,744 and 165,325 for the two batches, respectively. The sample category "Homemade mixture of food condiments ", which includes all "Local Spices or Herbs" samples, showed remarkable bacterial diversity. These were followed by Curcuma, a blend of 7 spices and thyme. Also, the different categories of spices studied show similarities in their bacterial composition. These results highlight the microbial community's highly diverse genomic profile, including pathogenic bacteria, in spice samples.


Subject(s)
Metagenomics , RNA, Ribosomal, 16S , Spices , Spices/microbiology , Senegal , Metagenomics/methods , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Humans , Metagenome , Microbiota/genetics , Curcuma/genetics , Curcuma/microbiology
12.
Biomolecules ; 14(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927027

ABSTRACT

Microbiota tryptophan metabolism and the biosynthesis of indole derivatives play an important role in homeostasis and pathogenesis in the human body and can be affected by the gut microbiota. However, studies on the interplay between gut microbiota and tryptophan metabolites in patients undergoing dialysis are lacking. This study aimed to identify the gut microbiota, the indole pathway in tryptophan metabolism, and significant functional differences in ESRD patients with regular hemodialysis. We performed the shotgun metagenome sequencing of stool samples from 85 hemodialysis patients. Using the linear discriminant analysis effect size (LEfSe), we examined the composition of the gut microbiota and metabolic features across varying concentrations of tryptophan and indole metabolites. Higher tryptophan levels promoted tyrosine degradation I and pectin degradation I metabolic modules; lower tryptophan levels were associated with glutamate degradation I, fructose degradation, and valine degradation modules. Higher 3-indoxyl sulfate concentrations were characterized by alanine degradation I, anaerobic fatty acid beta-oxidation, sulfate reduction, and acetyl-CoA to crotonyl-CoA. Contrarily, lower 3-indoxyl sulfate levels were related to propionate production III, arabinoxylan degradation, the Entner-Doudoroff pathway, and glutamate degradation II. The present study provides a better understanding of the interaction between tryptophan, indole metabolites, and the gut microbiota as well as their gut metabolic modules in ESRD patients with regular hemodialysis.


Subject(s)
Gastrointestinal Microbiome , Indoles , Renal Dialysis , Tryptophan , Humans , Tryptophan/metabolism , Indoles/metabolism , Male , Female , Middle Aged , Aged , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/microbiology , Feces/microbiology , Metabolic Networks and Pathways , Adult , Metagenome
13.
Nat Commun ; 15(1): 4858, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871712

ABSTRACT

Serpentinization, a geochemical process found on modern and ancient Earth, provides an ultra-reducing environment that can support microbial methanogenesis and acetogenesis. Several groups of archaea, such as the order Methanocellales, are characterized by their ability to produce methane. Here, we generate metagenomic sequences from serpentinized springs in The Cedars, California, and construct a circularized metagenome-assembled genome of a Methanocellales archaeon, termed Met12, that lacks essential methanogenesis genes. The genome includes genes for an acetyl-CoA pathway, but lacks genes encoding methanogenesis enzymes such as methyl-coenzyme M reductase, heterodisulfide reductases and hydrogenases. In situ transcriptomic analyses reveal high expression of a multi-heme c-type cytochrome, and heterologous expression of this protein in a model bacterium demonstrates that it is capable of accepting electrons. Our results suggest that Met12, within the order Methanocellales, is not a methanogen but a CO2-reducing, electron-fueled acetogen without electron bifurcation.


Subject(s)
Methane , Methane/metabolism , Genome, Archaeal , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Metagenome/genetics , Phylogeny , Acetyl Coenzyme A/metabolism , Carbon Dioxide/metabolism , Metagenomics
14.
Microb Biotechnol ; 17(6): e14466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829370

ABSTRACT

Microbial communities from extreme environments are largely understudied, but are essential as producers of metabolites, including enzymes, for industrial processes. As cultivation of most microorganisms remains a challenge, culture-independent approaches for enzyme discovery in the form of metagenomics to analyse the genetic potential of a community are rapidly becoming the way forward. This study focused on analysing a metagenome from the cold and alkaline ikaite columns in Greenland, identifying 282 open reading frames (ORFs) that encoded putative carbohydrate-modifying enzymes with potential applications in, for example detergents and other processes where activity at low temperature and high pH is desired. Seventeen selected ORFs, representing eight enzyme families were synthesized and expressed in two host organisms, Escherichia coli and Aliivibrio wodanis. Aliivibrio wodanis demonstrated expression of a more diverse range of enzyme classes compared to E. coli, emphasizing the importance of alternative expression systems for enzymes from extremophilic microorganisms. To demonstrate the validity of the screening strategy, we chose a recombinantly expressed cellulolytic enzyme from the metagenome for further characterization. The enzyme, Cel240, exhibited close to 40% of its relative activity at low temperatures (4°C) and demonstrated endoglucanase characteristics, with a preference for cellulose substrates. Despite low sequence similarity with known enzymes, computational analysis and structural modelling confirmed its cellulase-family affiliation. Cel240 displayed activity at low temperatures and good stability at 25°C, activity at alkaline pH and increased activity in the presence of CaCl2, making it a promising candidate for detergent and washing industry applications.


Subject(s)
Cellulase , Cold Temperature , Detergents , Enzyme Stability , Escherichia coli , Metagenomics , Greenland , Detergents/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Cellulase/genetics , Cellulase/metabolism , Cellulase/chemistry , Metagenome , Hydrogen-Ion Concentration , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Gene Expression , Open Reading Frames
15.
Environ Microbiol ; 26(6): e16663, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881221

ABSTRACT

Lake Untersee, a lake in Antarctica that is perennially covered with ice, is home to unique microbial structures that are not lithified. We have evaluated the structure of the community and its metabolic potential across the pigmented upper layers and the sediment-enriched deeper layers in these pinnacle and cone-shaped microbial structures using metagenomics. These microbial structures are inhabited by distinct communities. The upper layers of the cone-shaped structures have a higher abundance of the cyanobacterial MAG Microcoleus, while the pinnacle-shaped structures have a higher abundance of Elainellacea MAG. This suggests that cyanobacteria influence the morphologies of the mats. We identified stark contrasts in the composition of the community and its metabolic potential between the upper and lower layers of the mat. The upper layers of the mat, which receive light, have an increased abundance of photosynthetic pathways. In contrast, the lower layer has an increased abundance of heterotrophic pathways. Our results also showed that Lake Untersee is the first Antarctic lake with a substantial presence of ammonia-oxidizing Nitrospiracea and amoA genes. The genomic capacity for recycling biological molecules was prevalent across metagenome-assembled genomes (MAGs) that cover 19 phyla. This highlights the importance of nutrient scavenging in ultra-oligotrophic environments. Overall, our study provides new insights into the formation of microbial structures and the potential metabolic complexity of Antarctic laminated microbial mats. These mats are important environments for biodiversity that drives biogeochemical cycling in polar deserts.


Subject(s)
Bacteria , Cyanobacteria , Lakes , Metagenomics , Antarctic Regions , Lakes/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Cyanobacteria/genetics , Cyanobacteria/classification , Cyanobacteria/metabolism , Microbiota/genetics , Phylogeny , Geologic Sediments/microbiology , Metagenome , Genome, Bacterial , Archaea/genetics , Archaea/classification , Archaea/metabolism
16.
EBioMedicine ; 104: 105166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833839

ABSTRACT

BACKGROUND: Globally, stunting affects ∼150 million children under five, while wasting affects nearly 50 million. Current interventions have had limited effectiveness in ameliorating long-term sequelae of undernutrition including stunting, cognitive deficits and immune dysfunction. Disrupted development of the gut microbiota has been linked to the pathogenesis of undernutrition, providing potentially new treatment approaches. METHODS: 124 Bangladeshi children with moderate acute malnutrition (MAM) enrolled (at 12-18 months) in a previously reported 3-month RCT of a microbiota-directed complementary food (MDCF-2) were followed for two years. Weight and length were monitored by anthropometry, the abundances of bacterial strains were assessed by quantifying metagenome-assembled genomes (MAGs) in serially collected fecal samples and levels of growth-associated proteins were measured in plasma. FINDINGS: Children who had received MDCF-2 were significantly less stunted during follow-up than those who received a standard ready-to-use supplementary food (RUSF) [linear mixed-effects model, ßtreatment group x study week (95% CI) = 0.002 (0.001, 0.003); P = 0.004]. They also had elevated fecal abundances of Agathobacter faecis, Blautia massiliensis, Lachnospira and Dialister, plus increased levels of a group of 37 plasma proteins (linear model; FDR-adjusted P < 0.1), including IGF-1, neurotrophin receptor NTRK2 and multiple proteins linked to musculoskeletal and CNS development, that persisted for 6-months post-intervention. INTERPRETATION: MDCF-2 treatment of Bangladeshi children with MAM, which produced significant improvements in wasting during intervention, also reduced stunting during follow-up. These results suggest that the effectiveness of supplementary foods for undernutrition may be improved by including ingredients that sponsor healthy microbiota-host co-development. FUNDING: This work was supported by the BMGF (Grants OPP1134649/INV-000247).


Subject(s)
Gastrointestinal Microbiome , Humans , Infant , Female , Male , Bangladesh/epidemiology , Feces/microbiology , Metagenome , Growth Disorders/etiology
17.
Microbiome ; 12(1): 107, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877573

ABSTRACT

BACKGROUND: Aquaculture is an important food source worldwide. The extensive use of antibiotics in intensive large-scale farms has resulted in resistance development. Non-intensive aquaculture is another aquatic feeding model that is conducive to ecological protection and closely related to the natural environment. However, the transmission of resistomes in non-intensive aquaculture has not been well characterized. Moreover, the influence of aquaculture resistomes on human health needs to be further understood. Here, metagenomic approach was employed to identify the mobility of aquaculture resistomes and estimate the potential risks to human health. RESULTS: The results demonstrated that antibiotic resistance genes (ARGs) were widely present in non-intensive aquaculture systems and the multidrug type was most abundant accounting for 34%. ARGs of non-intensive aquaculture environments were mainly shaped by microbial communities accounting for 51%. Seventy-seven genera and 36 mobile genetic elements (MGEs) were significantly associated with 23 ARG types (p < 0.05) according to network analysis. Six ARGs were defined as core ARGs (top 3% most abundant with occurrence frequency > 80%) which occupied 40% of ARG abundance in fish gut samples. Seventy-one ARG-carrying contigs were identified and 75% of them carried MGEs simultaneously. The qacEdelta1 and sul1 formed a stable combination and were detected simultaneously in aquaculture environments and humans. Additionally, 475 high-quality metagenomic-assembled genomes (MAGs) were recovered and 81 MAGs carried ARGs. The multidrug and bacitracin resistance genes were the most abundant ARG types carried by MAGs. Strikingly, Fusobacterium_A (opportunistic human pathogen) carrying ARGs and MGEs were identified in both the aquaculture system and human guts, which indicated the potential risks of ARG transfer. CONCLUSIONS: The mobility and pathogenicity of aquaculture resistomes were explored by a metagenomic approach. Given the observed co-occurrence of resistomes between the aquaculture environment and human, more stringent regulation of resistomes in non-intensive aquaculture systems may be required. Video Abstract.


Subject(s)
Anti-Bacterial Agents , Aquaculture , Metagenomics , Humans , Metagenomics/methods , Anti-Bacterial Agents/pharmacology , Animals , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Metagenome , Fishes/microbiology , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial/genetics , Interspersed Repetitive Sequences/genetics
18.
Ann Clin Microbiol Antimicrob ; 23(1): 52, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879505

ABSTRACT

BACKGROUND: Emerging evidence has indicated a link between the gut microbiota and acute lymphoblastic leukaemia (ALL). However, the acute changes in gut microbiota during chemotherapy and the predictive value of baseline gut microbiota in infectious complication remain largely unknown. METHODS: Faecal samples (n = 126) from children with ALL (n = 49) undergoing induction chemotherapy were collected at three timepoints, i.e., initiation of chemotherapy (baseline, T0), 7 days (T1) and 33 days (T2) after initiation of chemotherapy. Gut microbiome profile was performed via metagenomic shotgun sequencing. The bioBakery3 pipeline (Kneaddata, Metaphlan 3 and HUMAnN) was performed to assign taxonomy and functional annotations. Gut microbiome at T0 were used to predict infection during chemotherapy. RESULTS: The microbial diversities and composition changed significantly during chemotherapy, with Escherichia coli, Klebsiella pneumoniae and Bifidobacterium longum being the most prominent species. The microbial metabolic pathways were also significantly altered during chemotherapy, including the pathway of pyruvate fermentation to acetate and lactate, and assimilatory sulfate reduction pathway. The receiver operating characteristic (ROC) models based on Bifidobacterium longum at T0 could predict infectious complications during the first month of chemotherapy with the area under the curve (AUC) of 0.720. CONCLUSIONS: Our study provides new insights into the acute changes in microbial and functional characteristics in children with ALL during chemotherapy. The baseline gut microbiota could be potential biomarkers for infections during chemotherapy. TRIAL REGISTRATION: The study was approved by the Ethics Committee of Zhujiang Hospital, Southern Medical University (2021-KY-171-01) and registered on http://www.chictr.org.cn (ChiCTR2200065406, Registration Date: November 4, 2022).


Subject(s)
Feces , Gastrointestinal Microbiome , Metagenomics , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Gastrointestinal Microbiome/drug effects , Female , Male , Feces/microbiology , Child , Child, Preschool , Induction Chemotherapy , Biomarkers , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Metagenome , Escherichia coli/genetics , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects
19.
Nat Commun ; 15(1): 5256, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898040

ABSTRACT

Archaea possess characteristic membrane-spanning lipids that are thought to contribute to the adaptation to extreme environments. However, the biosynthesis of these lipids is poorly understood. Here, we identify a radical S-adenosyl-L-methionine (SAM) enzyme that synthesizes glycerol monoalkyl glycerol tetraethers (GMGTs). The enzyme, which we name GMGT synthase (Gms), catalyzes the formation of a C(sp3)-C(sp3) linkage between the two isoprenoid chains of glycerol dialkyl glycerol tetraethers (GDGTs). This conclusion is supported by heterologous expression of gene gms from a GMGT-producing species in a methanogen, as well as demonstration of in vitro activity using purified Gms enzyme. Additionally, we show that genes encoding putative Gms homologs are present in obligate anaerobic archaea and in metagenomes obtained from oxygen-deficient environments, and appear to be absent in metagenomes from oxic settings.


Subject(s)
Archaea , Oxygen , S-Adenosylmethionine , S-Adenosylmethionine/metabolism , Archaea/genetics , Archaea/metabolism , Archaea/enzymology , Oxygen/metabolism , Anaerobiosis , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Glycerol/metabolism , Metagenome , Phylogeny
20.
NPJ Biofilms Microbiomes ; 10(1): 48, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898104

ABSTRACT

As the central members of the microbiome networks, viruses regulate the composition of microbial communities and drive the nutrient cycles of ecosystems by lysing host cells. Therefore, uncovering the dynamic patterns and the underlying ecological mechanisms mediating the tiniest viral communities across space and through time in natural ecosystems is of crucial importance for better understanding the complex microbial world. Here, the temporal dynamics of intertidal viral communities were investigated via a time-series sampling effort. A total of 1911 viral operational taxonomic units were recovered from 36 bimonthly collected shotgun metagenomes. Functionally important auxiliary metabolic genes involved in carbohydrate, sulfur, and phosphorus metabolism were detected, some of which (e.g., cysH gene) were stably present within viral genomes over time. Over the sampling period, strong and comparable temporal turnovers were observed for intertidal viromes and their host microbes. Winter was determined as the pivotal point for the shifts in viral diversity patterns. Notably, the viral micro-diversity covaried with the macro-diversity, following similar temporal patterns. The relative abundances of viral taxa also covaried with their host prokaryotes. Meanwhile, the virus-host relationships at the whole community level were relatively stable. Further statistical analyses demonstrated that the dynamic patterns of viral communities were highly deterministic, for which temperature was the major driver. This study provided valuable mechanistic insights into the temporal turnover of viral communities in complex ecosystems such as intertidal wetlands.


Subject(s)
Biodiversity , Metagenome , Viruses , Wetlands , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Seasons , Microbiota , Genome, Viral , Metagenomics/methods , Virome/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...