Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.586
Filter
1.
Biomolecules ; 14(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38927054

ABSTRACT

Zinc (Zn) is the second most abundant metal in the human body and is essential for the function of 10% of all proteins. As metals cannot be synthesized or degraded, they must be assimilated from the diet by specialized transport proteins, which unfortunately also provide an entry route for the toxic metal pollutant cadmium (Cd). The intestinal absorption of Zn depends on the composition of food that is consumed, firstly the amount of Zn itself and then the quantity of other food constituents such as phytate, protein, and calcium (Ca). In cells, Zn is involved in the regulation of intermediary metabolism, gene expression, cell growth, differentiation, apoptosis, and antioxidant defense mechanisms. The cellular influx, efflux, subcellular compartmentalization, and trafficking of Zn are coordinated by transporter proteins, solute-linked carriers 30A and 39A (SLC30A and SLC39A), known as the ZnT and Zrt/Irt-like protein (ZIP). Because of its chemical similarity with Zn and Ca, Cd disrupts the physiological functions of both. The concurrent induction of a Zn efflux transporter ZnT1 (SLC30A1) and metallothionein by Cd disrupts the homeostasis and reduces the bioavailability of Zn. The present review highlights the increased mortality and the severity of various diseases among Cd-exposed persons and the roles of Zn and other transport proteins in the manifestation of Cd cytotoxicity. Special emphasis is given to Zn intake levels that may lower the risk of vision loss and bone fracture associated with Cd exposure. The difficult challenge of determining a permissible intake level of Cd is discussed in relation to the recommended dietary Zn intake levels.


Subject(s)
Cadmium , Zinc , Humans , Cadmium/toxicity , Cadmium/metabolism , Zinc/metabolism , Environmental Exposure/adverse effects , Animals , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Metallothionein/metabolism
2.
BMC Genomics ; 25(1): 563, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840042

ABSTRACT

BACKGROUND: Broussonetia papyrifera is an economically significant tree with high utilization value, yet its cultivation is often constrained by soil contamination with heavy metals (HMs). Effective scientific cultivation management, which enhances the yield and quality of B. papyrifera, necessitates an understanding of its regulatory mechanisms in response to HM stress. RESULTS: Twelve Metallothionein (MT) genes were identified in B. papyrifera. Their open reading frames ranged from 186 to 372 bp, encoding proteins of 61 to 123 amino acids with molecular weights between 15,473.77 and 29,546.96 Da, and theoretical isoelectric points from 5.24 to 5.32. Phylogenetic analysis classified these BpMTs into three subclasses: MT1, MT2, and MT3, with MT2 containing seven members and MT3 only one. The expression of most BpMT genes was inducible by Cd, Mn, Cu, Zn, and abscisic acid (ABA) treatments, particularly BpMT2e, BpMT2d, BpMT2c, and BpMT1c, which showed significant responses and warrant further study. Yeast cells expressing these BpMT genes exhibited enhanced tolerance to Cd, Mn, Cu, and Zn stresses compared to control cells. Yeasts harboring BpMT1c, BpMT2e, and BpMT2d demonstrated higher accumulation of Cd, Cu, Mn, and Zn, suggesting a chelation and binding capacity of BpMTs towards HMs. Site-directed mutagenesis of cysteine (Cys) residues indicated that mutations in the C domain of type 1 BpMT led to increased sensitivity to HMs and reduced HM accumulation in yeast cells; While in type 2 BpMTs, the contribution of N and C domain to HMs' chelation possibly corelated to the quantity of Cys residues. CONCLUSION: The BpMT genes are crucial in responding to diverse HM stresses and are involved in ABA signaling. The Cys-rich domains of BpMTs are pivotal for HM tolerance and chelation. This study offers new insights into the structure-function relationships and metal-binding capabilities of type-1 and - 2 plant MTs, enhancing our understanding of their roles in plant adaptation to HM stresses.


Subject(s)
Broussonetia , Metallothionein , Metals, Heavy , Phylogeny , Metallothionein/genetics , Metallothionein/metabolism , Metallothionein/chemistry , Metals, Heavy/metabolism , Broussonetia/genetics , Broussonetia/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Stress, Physiological , Amino Acid Sequence , Protein Binding
3.
Int J Biol Sci ; 20(8): 2904-2921, 2024.
Article in English | MEDLINE | ID: mdl-38904023

ABSTRACT

Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the critical pathological mechanisms of pulmonary hypertension (PH), and therefore is gradually being adopted as an important direction for the treatment of PH. Metallothioneins (MTs) have been reported to be associated with PH, but the underlying mechanisms are not fully understood. Here, we demonstrated that the expression level of metallothionein 3 (MT3) was significantly increased in pulmonary arterioles from PH patients and chronic hypoxia-induced rat and mouse PH models, as well as in hypoxia-treated human PASMCs. Knockdown of MT3 significantly inhibited the proliferation of human PASMCs by arresting the cell cycle in the G1 phase, while overexpression of MT3 had the opposite effect. Mechanistically, we found that MT3 increased the intracellular zinc (Zn2+) concentration to enhance the transcriptional activity of metal-regulated transcription factor 1 (MTF1), which promoted the expression of autophagy-related gene 5 (ATG5), facilitating autophagosome formation. More importantly, MT3-induced autophagy and proliferation of human PASMCs were largely prevented by knockdown of MTF1 and ATG5. Therefore, in this study, we identified MT3-Zinc-MTF1-ATG5 as a novel pathway that affects PASMC proliferation by regulating autophagosome formation, suggesting that MT3 may be a novel target for the treatment of PH.


Subject(s)
Cell Proliferation , Metallothionein 3 , Myocytes, Smooth Muscle , Pulmonary Artery , Zinc , Pulmonary Artery/cytology , Pulmonary Artery/metabolism , Animals , Humans , Zinc/metabolism , Mice , Rats , Myocytes, Smooth Muscle/metabolism , Male , Autophagosomes/metabolism , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Rats, Sprague-Dawley , Transcription Factors/metabolism , Transcription Factors/genetics , Autophagy , Hypertension, Pulmonary/metabolism , Mice, Inbred C57BL , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factor MTF-1 , Metallothionein/metabolism , Metallothionein/genetics
4.
Ecotoxicol Environ Saf ; 280: 116529, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38843745

ABSTRACT

The contamination of water by arsenic (As) has emerged as a significant environmental concern due to its well-documented toxicity. Environmentally relevant concentrations of As have been reported to pose a considerable threat to fish. However, previous studies mainly focused on the impacts of As at environmentally relevant concentrations on adult fish, and limited information is available regarding its impacts on fish at early life stage. In this study, zebrafish embryos were employed to evaluate the environmental risks following exposure to different concentrations (0, 25, 50, 75 and 150 µg/L) of pentavalent arsenate (AsV) for 120 hours post fertilization. Our findings indicated that concentrations ≤ 150 µg/L AsV did not exert significant effects on survival or aberration; however, it conspicuously inhibited heart rate of zebrafish larvae. Furthermore, exposure to AsV significantly disrupted mRNA transcription of genes associated with cardiac development, and elongated the distance between the sinus venosus and bulbus arteriosus at 75 µg/L and 150 µg/L treatments. Additionally, AsV exposure enhanced superoxide dismutase (SOD) activity at 50, 75 and 150 µg/L treatments, and increased mRNA transcriptional levels of Cu/ZnSOD and MnSOD at 75 and 150 µg/L treatments. Concurrently, AsV suppressed metallothionein1 (MT1) and MT2 mRNA transcriptions while elevating heat shock protein70 mRNA transcription levels in zebrafish larvae resulting in elevated malondialdehyde (MDA) levels. These findings provide novel insights into the toxic effects exerted by low concentrations of AsV on fish at early life stage, thereby contributing to an exploration into the environmental risks associated with environmentally relevant concentrations.


Subject(s)
Arsenates , Embryo, Nonmammalian , Heart , Oxidative Stress , Water Pollutants, Chemical , Zebrafish , Animals , Arsenates/toxicity , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Embryo, Nonmammalian/drug effects , Heart/drug effects , Superoxide Dismutase/metabolism , Metallothionein/metabolism , Metallothionein/genetics , Larva/drug effects , Heart Rate/drug effects , Dose-Response Relationship, Drug
5.
J Hazard Mater ; 474: 134762, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38823099

ABSTRACT

Bioremediation of cadmium (Cd) pollution, a recognized low-carbon green environmental protection technology, is significantly enhanced by the discovery of Cd-tolerant microorganisms and their underlying tolerance mechanisms. This study presents Colpoda sp., a soil ciliate with widespread distribution, as a novel bioindicator and bioremediator for Cd contamination. With a 24 h-LC50 of 5.39 mg l-1 and an IC50 of 24.85 µg l-1 in Cd-contaminated water, Colpoda sp. achieves a maximum bioaccumulation factor (BAF) of 3.58 and a Cd removal rate of 32.98 ± 0.74 % within 96 h. The toxic responses of Colpoda sp. to Cd stress were assessed through cytological observation with transmission electron microscopy (TEM), oxidative stress kinase activity, and analysis of Cd-metallothionein (Cd-MTs) and the cd-mt gene via qRT-PCR. The integrated biomarker response index version 2 (IBRv2) and structural equation models (SEM) were utilized to analyze key factors and mechanisms, revealing that the up-regulation of Cd-MTs and cd-mt expression, rather than the oxidative stress system, is the primary determinant of Cd accumulation and tolerance in Colpoda sp. The ciliate's ability to maintain growth under 24.85 µg l-1 Cd stress and its capacity to absorb and accumulate Cd particles from water into cells are pivotal for bioremediation. A new mathematical formula and regression equations based on Colpoda sp.'s response parameters have been established to evaluate environmental Cd removal levels and design remediation schemes for contaminated sites. These findings provide a novel bioremediation and monitoring pathway for Cd remobilization and accumulation in soil and water, potentially revolutionizing the governance of Cd pollution.


Subject(s)
Biodegradation, Environmental , Cadmium , Ciliophora , Metallothionein , Soil Pollutants , Cadmium/toxicity , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Ciliophora/drug effects , Ciliophora/metabolism , Metallothionein/metabolism , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity
6.
Protein Expr Purif ; 221: 106519, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38830441

ABSTRACT

Sinopotamon Henanense expresses two metal‒induced metallothioneins (MTs), Cd‒induced MT and Cu‒induced MT (ShCuMT). The Cd‒induced MT has been characterized as a Cd‒thiolate MT. However, it is unknown whether ShCuMT is a Cu‒thiolate MT. In the present study, ShCuMT was expressed heterologously in Escherichia coli and purified by Ni‒NTA column and superdex‒75 column. And its metal‒binding feature was evaluated by DTNB reaction, circular dichroism spectroscopy (CD), isothermal microtitration (ITC), electrospray flight mass spectrometry (ESI‒TOF‒MS), and matrix‒assisted laser desorption ionization flight mass spectrometry (MALDI‒TOF‒MS). Bioinformatics analysis demonstrated that ShCuMT possessed the cysteine‒triplet motif of a Cu‒specific MT. Expression and purification of ShCuMT illustrated that SUMO tag used as the production system for ShCuMT resulted in a high production yield. The stability order of ShCuMT binding metal ions were Cu (Ⅰ) > Cd (Ⅱ) > Zn (Ⅱ). The CD spectrum indicated that ShCuMT binding with Cu (I) exhibited a compact thiol metal clusters structure. Besides, there emerged no a visible nickel‒thiol absorption after Ni‒NTA column affinity chromatography. The ITC results implied that Cu‒ShCuMT possessed the optimal thermodynamic conformation and the highest stoichiometric number of Cu (Ⅰ). Overall, the results suggested that SUMO fusion system is a robust and inexpensive approach for ShCuMT expression and Ni‒NTA column had no influence on metal binding of ShCuMT and Cu(Ⅰ) was considered its cognate metal ion, and ShCuMT possessed canonical Cu‒thiolate characteristics. The metal binding feature of ShCuMT reported here contributes to elucidating the structure‒function relationship of ShCuMT in S. Henanense.


Subject(s)
Copper , Metallothionein , Metallothionein/genetics , Metallothionein/chemistry , Metallothionein/metabolism , Metallothionein/isolation & purification , Animals , Copper/metabolism , Copper/chemistry , Brachyura/genetics , Brachyura/metabolism , Brachyura/chemistry , Arthropod Proteins/genetics , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , Cadmium/metabolism , Cadmium/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Amino Acid Sequence , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/biosynthesis
7.
Aging (Albany NY) ; 16(9): 8155-8170, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38747739

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is a primary malignant bone tumor arising from mesenchymal cells. The standard clinical treatment for OS involves extensive tumor resection combined with neoadjuvant chemotherapy or radiotherapy. OS's invasiveness, lung metastasis, and drug resistance contribute to a low cure rate and poor prognosis with this treatment. Metallothionein 1G (MT1G), observed in various cancers, may serve as a potential therapeutic target for OS. METHODS: OS samples in GSE33382 and TARGET datasets were selected as the test cohorts. As the external validation cohort, 13 OS tissues and 13 adjacent cancerous tissues from The Second Affiliated Hospital of Nanchang University were collected. Patients with OS were divided into high and low MT1G mRNA-expression groups; differentially expressed genes (DEGs) were identified as MT1G-related genes. The biological function of MT1G was annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) and gene set enrichment analysis (GSEA). Gene expression correlation analysis and competing endogenous RNA (ceRNA) regulatory network construction were used to determine potential biological regulatory relationships of DEGs. Survival analysis assessed the prognostic value of MT1G. RESULTS: MT1G expression increased in OS samples and presented higher in metastatic OS compared with non-metastatic OS. Functional analyses indicated that MT1G was mainly associated with spliceosome. A ceRNA network with DEGs was constructed. MT1G is an effective biomarker predicting survival and correlated with increased recurrence rates and poorer survival. CONCLUSIONS: This research identified MT1G as a potential biomarker for OS prognosis, highlighting its potential as a therapy target.


Subject(s)
Bone Neoplasms , Computational Biology , Gene Expression Regulation, Neoplastic , Mesenchymal Stem Cells , Metallothionein , Osteosarcoma , Female , Humans , Male , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/mortality , Gene Expression Profiling , Gene Regulatory Networks , Mesenchymal Stem Cells/metabolism , Metallothionein/genetics , Metallothionein/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Prognosis
8.
mSphere ; 9(5): e0021024, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38712943

ABSTRACT

Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in homeostasis and protection against heavy metal toxicity and oxidative stress. The opportunistic pathogen, Pseudomonas aeruginosa, expresses a bacterial MT known as PmtA. Utilizing genetically modified P. aeruginosa PAO1 strains (a human clinical wound isolate), we show that inducing pmtA increases levels of pyocyanin and biofilm compared to other PAO1 isogenic strains, supporting previous results that pmtA is important for pyocyanin and biofilm production. We also show that overexpression of pmtA in vitro provides protection for cells exposed to oxidants, which is a characteristic of inflammation, indicating a role for PmtA as an antioxidant in inflammation. We found that a pmtA clean deletion mutant is phagocytized faster than other PAO1 isogenic strains in THP-1 human macrophage cells, indicating that PmtA provides protection from the phagocytic attack. Interestingly, we observed that monoclonal anti-PmtA antibody binds to PmtA, which is accessible on the surface of PAO1 strains using both flow cytometry and enzyme-linked immunosorbent assay techniques. Finally, we investigated intracellular persistence of these PAO1 strains within THP-1 macrophages cells and found that the phagocytic endurance of PAO1 strains is affected by pmtA expression. These data show for the first time that a bacterial MT (pmtA) can play a role in the phagocytic process and can be found on the outer surface of PAO1. Our results suggest that PmtA plays a role both in protection from oxidative stress and in the resistance to the host's innate immune response, identifying PmtA as a potential therapeutic target in P. aeruginosa infection. IMPORTANCE: The pathogen Pseudomonas aeruginosa is a highly problematic multidrug-resistant (MDR) pathogen with complex virulence networks. MDR P. aeruginosa infections have been associated with increased clinical visits, very poor healthcare outcomes, and these infections are ranked as critical on priority lists of both the Centers for Disease Control and Prevention and the World Health Organization. Known P. aeruginosa virulence factors have been extensively studied and are implicated in counteracting host defenses, causing direct damage to the host tissues, and increased microbial competitiveness. Targeting virulence factors has emerged as a new line of defense in the battle against MDR P. aeruginosa strains. Bacterial metallothionein is a newly recognized virulence factor that enables evasion of the host immune response. The studies described here identify mechanisms in which bacterial metallothionein (PmtA) plays a part in P. aeruginosa pathogenicity and identifies PmtA as a potential therapeutic target.


Subject(s)
Bacterial Proteins , Biofilms , Macrophages , Metallothionein , Oxidative Stress , Phagocytosis , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/metabolism , Humans , Metallothionein/genetics , Metallothionein/metabolism , Macrophages/microbiology , Macrophages/immunology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , THP-1 Cells , Pyocyanine/metabolism
9.
Environ Sci Pollut Res Int ; 31(25): 37125-37135, 2024 May.
Article in English | MEDLINE | ID: mdl-38760608

ABSTRACT

Rare earth elements (REE) are essential components of many electronic devices that could end-up in solid waste disposal sites and inadvertently released in the environment. The purpose of this study was to examine the toxicity of two heavy REEs, erbium (Er) and lutetium (Lu), in freshwater mussels Dreissena polymorpha. Mussels were exposed to 14 days to increasing concentration (10, 50, 250, and 1250 µg/L) of either Er and Lu at 15 °C and analyzed for gene expression in catalase (CAT), superoxide dismutase (SOD), metallothionein (MT), cytochrome c oxidase (CO1), and cyclin D for cell cycle. In addition, lipid peroxidation (LPO), DNA damage (DNAd), and arachidonate cyclooxygenase were also determined. The data revealed that mussels accumulated Er and Lu similarly and both REEs induced changes in mitochondrial COI activity. Er increased cell division, MT, and LPO, while Lu increased DNAd and decreased cell division. Tissue levels of Er were related to changes in MT (r = 0.7), LPO (r = 0.42), CO1 (r = 0.69), and CycD (r = 0.31). Lu tissue levels were related to changes in CO1 (r = 0.73), CycD (r = - 0.61), CAT (r = 0.31), DNAd (r = 0.43), and SOD (r = 0.34). Although the lethal threshold was similar between Er and Lu, the threshold response for LPO revealed that Er produced toxicity at concentrations 25 times lower than Lu suggesting that Er was more harmful than Lu in mussels. In conclusions, the data supports that the toxicity pattern differed between Er and Lu although they are accumulated in the same fashion.


Subject(s)
Dreissena , Metals, Rare Earth , Water Pollutants, Chemical , Animals , Dreissena/drug effects , Water Pollutants, Chemical/toxicity , Metals, Rare Earth/toxicity , Fresh Water , Metallothionein/metabolism , Lipid Peroxidation/drug effects
10.
Environ Toxicol Pharmacol ; 108: 104473, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759846

ABSTRACT

The most recent dam rupture in Brazil released tons of mining tailings into the upper course of the Paraopeba River, affecting this river in an unprecedented way. The present study aimed to evaluate the influence of heavy metals on Prochilodus costatus, an important commercial species in Brazil, four years after the dam colapse. To this end, biomarkers of heavy metals, oxidative stress, and environmental stress were analyzed, and histological analyses of target organs were performed. The results demonstrated critical contamination of fish from the Paraopeba River. Increased expression of Metallothioneins - MTs, Heat Shock Protein - HSP70, and inducible nitric oxide synthase - iNOS, as well as greater rates of histological changes in the liver, spleen, and gonads, were observed in P. costatus. These findings demonstrate that, despite past contamination, the metals present in mining tailings have significantly increased the contamination of the Paraopeba River basin.


Subject(s)
Liver , Metallothionein , Metals, Heavy , Nitric Oxide Synthase Type II , Rivers , Water Pollutants, Chemical , Animals , Metallothionein/metabolism , Water Pollutants, Chemical/toxicity , Metals, Heavy/toxicity , Nitric Oxide Synthase Type II/metabolism , Brazil , Liver/drug effects , Liver/metabolism , Spleen/drug effects , Spleen/metabolism , Characiformes/metabolism , Male , Gonads/drug effects , Gonads/metabolism , Heat-Shock Proteins/metabolism , Fish Proteins/metabolism , Female
11.
Clin Nutr ; 43(6): 1475-1487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723301

ABSTRACT

BACKGROUND & AIMS: The past few decades have witnessed a rapid growth in the prevalence of nonalcoholic fatty liver disease (NAFLD). While the ketogenic diet (KD) is considered for managing NAFLD, the safety and efficacy of the KD on NAFLD has been a controversial topic. Here, we aimed to investigate the effect of KD of different durations on metabolic endpoints in mice with NAFLD and explore the underlying mechanisms. METHODS: NAFLD mice were fed with KD for 1, 2, 4 and 6 weeks, respectively. The blood biochemical indexes (blood lipids, AST, ALT and etc.) and liver fat were measured. The LC-MS/MS based proteomic analysis was performed on liver tissues. Metallothionein-2 (MT2) was knocked down with adeno-associated virus (AAV) or small interfering RNA (siRNA) in NAFLD mice and AML-12 cells, respectively. H&E, BODIPY and ROS staining were performed to examine lipid deposition and oxidative stress. Furthermore, MT2 protein levels, nucleus/cytoplasm distribution and DNA binding activity of peroxisome proliferators-activated receptors α (PPARα) were evaluated. RESULTS: KD feeding for 2 weeks showed the best improvement on NAFLD phenotype. Proteomic analysis revealed that MT2 was a key candidate for different metabolic endpoints of NAFLD affected by different durations of KD feeding. MT2 knockdown in NAFLD mice blocked the effects of 2 weeks of KD feeding on HFD-induced steatosis. In mouse primary hepatocytes and AML-12 cells, MT2 protein levels were induced by ß-hydroxybutyric acid (ß-OHB). MT2 Knockdown blunted the effects of ß-OHB on alleviating PA-induced lipid deposition. Mechanistically, 2 weeks of KD or ß-OHB treatment reduced oxidative stress and upregulated the protein levels of MT2 in nucleus, which subsequently increased its DNA binding activity and PPARα protein expression. CONCLUSIONS: Collectively, these findings indicated that KD feeding prevented NAFLD in a time dependent manner and MT2 is a potential target contributing to KD improvement on steatosis.


Subject(s)
Diet, Ketogenic , Metallothionein , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Oxidative Stress , Up-Regulation , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/genetics , Metallothionein/genetics , Metallothionein/metabolism , Diet, Ketogenic/methods , Mice , Male , Liver/metabolism , Antioxidants/metabolism , PPAR alpha/metabolism , PPAR alpha/genetics , Disease Models, Animal , Lipid Metabolism , Time Factors
12.
Environ Sci Pollut Res Int ; 31(24): 35320-35331, 2024 May.
Article in English | MEDLINE | ID: mdl-38730214

ABSTRACT

A multibiomarker approach helps assess environmental health as it provides a complete tool to understand the effects of environmental stressors on ecosystems and human health. We applied this approach in the central Atlantic Ocean of Morocco, an area subjected to the impact of many types of pollutants, threatening the durability of its resources. In this study, four biomarkers acetylcholinesterase (AChE), glutathione-s-transferase (GST), metallothioneins (MTs), and catalase (CAT) were measured in the digestive gland of the mussel Mytilus galloprovincialis collected from four sites: Imsouane (S1), Cap Ghir (S2), Imi Ouaddar (S3), and Douira (S4). These sites were chosen due to the diversity of impacts ranging from industrial to agricultural and touristic. We also assembled all the enzymatic responses (AChE, GST, CAT, and MTs), using the integrated biomarker response (IBR), to estimate the degree of impact of pollutants at the prospected sites to reveal all the complex interactions between biomarkers and to classify sites via the integrated approach. Results show a seasonal change in biomarker responses with variability between sites. We also recorded the highest levels of AChE inhibition and GST induction in S1, higher levels of catalase activity in S4, and a significant impact on metallothionein concentration in S1 and S3. This project highlights the interest in using a multibiomarker approach to ensure accurate interpretation of biomarker variation to protect the Moroccan coast and its resources.


Subject(s)
Acetylcholinesterase , Biomarkers , Catalase , Environmental Monitoring , Glutathione Transferase , Metallothionein , Mytilus , Animals , Morocco , Biomarkers/metabolism , Environmental Monitoring/methods , Acetylcholinesterase/metabolism , Glutathione Transferase/metabolism , Metallothionein/metabolism , Catalase/metabolism , Atlantic Ocean , Water Pollutants, Chemical/analysis
13.
Nanoscale ; 16(20): 9985-9997, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38695726

ABSTRACT

Silver nanoparticles (AgNPs) hold great promise for several different applications, from colorimetric sensors to antimicrobial agents. Despite their widespread incorporation in consumer products, limited understanding of the detrimental effects and cellular antioxidant responses associated with AgNPs at sublethal concentrations persists, raising concerns for human and ecological well-being. To address this gap, we synthesized AgNPs of varying sizes and evaluated their cytotoxicity against human dermal fibroblasts (HDF). Our study revealed that toxicity of AgNPs is a time- and size-dependent process, even at low exposure levels. AgNPs exhibited low short-term cytotoxicity but high long-term impact, particularly for the smallest NPs tested. Raman microspectroscopy was employed for in-time investigations of intracellular molecular variations during the first 24 h of exposure to AgNPs of 35 nm. Subtle protein and lipid degradations were detected, but no discernible damage to the DNA was observed. Signals associated with antioxidant proteins, such as superoxide dismutase (SOD), catalase (CAT) and metallothioneins (MTs), increased over time, reflecting the heightened production of these defense agents. Fluorescence microscopy further confirmed the efficacy of overexpressed antioxidant proteins in mitigating ROS formation during short-term exposure to AgNPs. This work provides valuable insights into the molecular changes and remedial strategies within the cellular environment, utilizing Raman microspectroscopy as an advanced analytical technique. These findings offer a novel perspective on the cytotoxicity mechanism of AgNPs, contributing to the development of safer materials and advice on regulatory guidelines for their biomedical applications.


Subject(s)
Antioxidants , Fibroblasts , Metal Nanoparticles , Silver , Spectrum Analysis, Raman , Superoxide Dismutase , Silver/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/cytology , Superoxide Dismutase/metabolism , Catalase/metabolism , Cell Survival/drug effects , Metallothionein/metabolism , Reactive Oxygen Species/metabolism
14.
Ecotoxicol Environ Saf ; 278: 116421, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705041

ABSTRACT

Subcellular metal distribution assessments are the most adequate biomonitoring approach to evaluate metal toxicity, instead of total metal assessments This study aimed to assess subcellular metal distributions and associations to the main metal exposure biomarker, metallothionein (MT), in two bromeliad species (Tillandsia usneoides and Tillandsia stricta) exposed established in industrial, urban, and port areas in the metropolitan region of Rio de Janeiro, southeastern Brazil, through an active biomonitoring approach conducted one year. Metals and metalloids in three subcellular fractions (insoluble, thermolabile and thermostable) obtained from the MT purification process were determined by inductively coupled plasma mass spectrometry (ICP-MS). Lower MT concentrations were observed both during the dry sampling periods, associated to the crassulacean acid metabolism (CAM) and during the COVID-19 pandemic, due to reduced urban mobility, decreasing pollutant emissions. The percentage of non-bioavailable metals detected in the insoluble fraction increased throughout the sampling period for both species. Several metals (Cr, Co, Cu, Cd, Mn, Ni, Se, and Zn), most associated with vehicle emissions, the main pollutant source in urban centers, were detected in the thermostable fraction and are, thus, associated with MT through the MT-metal detoxification route. Insoluble metal concentrations were higher in T. stricta, indicating that this species seems less susceptible to cellular metal exposure damage. A potential protective effect of Se and Fe was detected against Pb, suggested by a strong negative correlation, which may be attributed to antioxidant roles and similar uptake routes, respectively.


Subject(s)
Air Pollutants , Cities , Environmental Monitoring , Metallothionein , Tillandsia , Brazil , Metallothionein/metabolism , Metallothionein/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Air Pollutants/toxicity , Tillandsia/drug effects , Ecotoxicology/methods , Metals/analysis , Metals/toxicity , Biomarkers/analysis , Metals, Heavy/analysis , Metals, Heavy/toxicity
15.
Nutrients ; 16(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794706

ABSTRACT

Cadmium (Cd) is recognized as being linked to several liver diseases. Currently, due to the limited spectrum of drugs available for the treatment of Cd intoxication, developing and designing antidotes with superior detoxification capacity and revealing their underlying mechanisms remains a major challenge. Therefore, we developed the first next-generation probiotic E. coli 1917-pSK18a-MT that delivers metallothionein (MT) to overcome Cd-induced liver injury in C57BL/6 mice by utilizing bacterial surface display technology. The results demonstrate that E. coli 1917-pSK18a-MT could efficiently express MT without altering the growth and probiotic properties of the strain. Moreover, we found that E. coli 1917-pSK18a-MT ameliorated Cd contamination-induced hepatic steatosis, inflammatory cell infiltration, and liver fibrosis by decreasing the expression of aminotransferases along with inflammatory factors. Activation of the Nrf2-Keap1 signaling pathway also further illustrated the hepatoprotective effects of the engineered bacteria. Finally, we showed that E. coli 1917-pSK18a-MT improved the colonic barrier function impaired by Cd induction and ameliorated intestinal flora dysbiosis in Cd-poisoned mice by increasing the relative abundance of the Verrucomicrobiota. These data revealed that the combination of E. coli 1917 and MT both alleviated Cd-induced liver injury to a greater extent and restored the integrity of colonic epithelial tissues and bacterial dysbiosis.


Subject(s)
Cadmium , Chemical and Drug Induced Liver Injury , Escherichia coli , Gastrointestinal Microbiome , Metallothionein , Mice, Inbred C57BL , Probiotics , Animals , Probiotics/pharmacology , Gastrointestinal Microbiome/drug effects , Metallothionein/metabolism , Cadmium/toxicity , Mice , Chemical and Drug Induced Liver Injury/prevention & control , Dysbiosis , Male , Liver/drug effects , Liver/metabolism , Signal Transduction/drug effects
16.
Acta Neuropathol Commun ; 12(1): 68, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664739

ABSTRACT

Some individuals show a discrepancy between cognition and the amount of neuropathological changes characteristic for Alzheimer's disease (AD). This phenomenon has been referred to as 'resilience'. The molecular and cellular underpinnings of resilience remain poorly understood. To obtain an unbiased understanding of the molecular changes underlying resilience, we investigated global changes in gene expression in the superior frontal gyrus of a cohort of cognitively and pathologically well-defined AD patients, resilient individuals and age-matched controls (n = 11-12 per group). 897 genes were significantly altered between AD and control, 1121 between resilient and control and 6 between resilient and AD. Gene set enrichment analysis (GSEA) revealed that the expression of metallothionein (MT) and of genes related to mitochondrial processes was higher in the resilient donors. Weighted gene co-expression network analysis (WGCNA) identified gene modules related to the unfolded protein response, mitochondrial processes and synaptic signaling to be differentially associated with resilience or dementia. As changes in MT, mitochondria, heat shock proteins and the unfolded protein response (UPR) were the most pronounced changes in the GSEA and/or WGCNA, immunohistochemistry was used to further validate these processes. MT was significantly increased in astrocytes in resilient individuals. A higher proportion of the mitochondrial gene MT-CO1 was detected outside the cell body versus inside the cell body in the resilient compared to the control group and there were higher levels of heat shock protein 70 (HSP70) and X-box-binding protein 1 spliced (XBP1s), two proteins related to heat shock proteins and the UPR, in the AD donors. Finally, we show evidence for putative sex-specific alterations in resilience, including gene expression differences related to autophagy in females compared to males. Taken together, these results show possible mechanisms involving MTs, mitochondrial processes and the UPR by which individuals might maintain cognition despite the presence of AD pathology.


Subject(s)
Alzheimer Disease , Gene Expression Profiling , Metallothionein , Mitochondria , Unfolded Protein Response , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Metallothionein/genetics , Metallothionein/metabolism , Female , Male , Aged , Unfolded Protein Response/genetics , Unfolded Protein Response/physiology , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Aged, 80 and over , Resilience, Psychological
17.
Endocr J ; 71(6): 623-633, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38644219

ABSTRACT

Interleukin 17A (IL-17A) is a key cytokine promoting osteoblast formation, which contributes to osteogenesis. IL-17A functions in autophagy inhibition within osteoblasts. Metallothionein-2 (MT-2), as an important reactive oxygen species (ROS)-scavenging molecule, prevents oxidative stress from damaging osteoblast formation. The relationship between IL-17A-regulated autophagy and MT-2 production under oxidative stress deserves further exploration. In this study, we first investigated the roles of IL-17A in osteoblastic differentiation and ROS production in osteoblast precursors in the presence of hydrogen peroxide (H2O2). Next, we explored the effects of IL-17A on autophagic activity and MT-2 protein expression in osteoblast precursors in the presence of H2O2. Ultimately, by using autophagic pharmacological agonist (rapamycin) and lentiviral transduction technology, the relationship between autophagy, IL-17A-regulated MT-2 protein expression and IL-17A-regulated ROS production was further elucidated. Our results showed that in the presence of H2O2, IL-17A promoted osteoblastic differentiation and inhibited ROS production. Moreover, in the presence of H2O2, IL-17A inhibited autophagic activity and promoted MT-2 protein expression in osteoblast precursors. Importantly, IL-17A-promoted MT-2 protein levels and -inhibited ROS production were reversed by autophagy activation with rapamycin. Furthermore, IL-17A-inhibited ROS production were blocked by MT-2 silencing. In conclusion, IL-17A promotes ROS clearance by inhibiting autophagic degradation of MT-2, thereby protecting osteoblast formation from oxidative stress.


Subject(s)
Autophagy , Cell Differentiation , Hydrogen Peroxide , Interleukin-17 , Metallothionein , Osteoblasts , Osteogenesis , Oxidative Stress , Reactive Oxygen Species , Oxidative Stress/drug effects , Osteoblasts/drug effects , Osteoblasts/metabolism , Interleukin-17/metabolism , Interleukin-17/pharmacology , Autophagy/drug effects , Metallothionein/metabolism , Metallothionein/genetics , Animals , Mice , Cell Differentiation/drug effects , Hydrogen Peroxide/pharmacology , Osteogenesis/drug effects , Reactive Oxygen Species/metabolism , Cells, Cultured
18.
Talanta ; 274: 125920, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574532

ABSTRACT

Herby, the interaction of metallothioneins with commonly used Pt-based anticancer drugs - cisplatin, carboplatin, and oxaliplatin - was investigated using the combined power of elemental (i.e. LA-ICP-MS, CE-ICP-MS) and molecular (i.e. MALDI-TOF-MS) analytical techniques providing not only required information about the interaction, but also the benefit of low sample consumption. The amount of Cd and Pt incorporated within the protein was determined for protein monomers and dimer/oligomers formed by non-oxidative dimerization. Moreover, fluorescence spectrometry using Zn2+-selective fluorescent indicator - FluoZin3 - was employed to monitor the ability of Pt drugs to release natively occurring Zn from the protein molecule. The investigation was carried out using two protein isoforms (i.e. MT2, MT3), and significant differences in behaviour of these two isoforms were observed. The main attention was paid to elucidating whether the protein dimerization/oligomerization may be the reason for the potential failure of the anticancer therapy based on these drugs. Based on the results, it was demonstrated that the interaction of MT2 (both monomers and dimers) interacted with Pt drugs significantly less compared to MT3 (both monomers and dimers). Also, a significant difference between monomeric and dimeric forms (both MT2 and MT3) was not observed. This may suggest that dimer formation is not the key factor leading to the inactivation of Pt drugs.


Subject(s)
Metallothionein , Spectrometry, Fluorescence , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Metallothionein/metabolism , Metallothionein/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrometry, Fluorescence/methods , Carboplatin/pharmacology , Oxaliplatin/pharmacology , Cisplatin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Platinum/chemistry , Metallothionein 3 , Cytostatic Agents/pharmacology , Cytostatic Agents/chemistry , Mass Spectrometry/methods , Humans
19.
Biomed Pharmacother ; 174: 116555, 2024 May.
Article in English | MEDLINE | ID: mdl-38593708

ABSTRACT

Calprotectin (CP), a heterodimer of S100A8 and S100A9, is expressed by neutrophils and a number of innate immune cells and is used widely as a marker of inflammation, particularly intestinal inflammation. CP is a ligand for toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products (RAGE). In addition, CP can act as a microbial modulatory agent via a mechanism termed nutritional immunity, depending on metal binding, most notably Zn2+. The effects on the intestinal epithelium are largely unknown. In this study we aimed to characterize the effect of calprotectin on mouse jejunal organoids as a model epithelium, focusing on Zn2+ metabolism and cell proliferation. CP addition upregulated the expression of the Zn2+ absorptive transporter Slc39a4 and of methallothionein Mt1 in a Zn2+-sensitive manner, while downregulating the expression of the Zn2+ exporter Slc30a2 and of methallothionein 2 (Mt2). These effects were greatly attenuated with a CP variant lacking the metal binding capacity. Globally, these observations indicate adaptation to low Zn2+ levels. CP had antiproliferative effects and reduced the expression of proliferative and stemness genes in jejunal organoids, effects that were largely independent of Zn2+ chelation. In addition, CP induced apoptosis modestly and modulated antimicrobial gene expression. CP had no effect on epithelial differentiation. Overall, CP exerts modulatory effects in murine jejunal organoids that are in part related to Zn2+ sequestration and partially reproduced in vivo, supporting the validity of mouse jejunal organoids as a model for mouse epithelium.


Subject(s)
Cell Proliferation , Intestinal Mucosa , Jejunum , Leukocyte L1 Antigen Complex , Organoids , Zinc , Animals , Zinc/metabolism , Organoids/metabolism , Organoids/drug effects , Leukocyte L1 Antigen Complex/metabolism , Jejunum/metabolism , Jejunum/drug effects , Cell Proliferation/drug effects , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Mice, Inbred C57BL , Metallothionein/metabolism , Metallothionein/genetics , Inflammation/metabolism , Inflammation/pathology , Biomarkers/metabolism , Male
20.
Protein J ; 43(3): 503-512, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488956

ABSTRACT

Metallothioneins are a group of cysteine-rich proteins that play an important role in the homeostasis and detoxification of heavy metals. The objective of this research was to explore the significance of metallothionein in Trichoderma harzianum tolerance to zinc. At the inhibitory concentration of 1000 ppm, the fungus adsorbed 16.7 ± 0.4 mg/g of metal. The HPLC and SDS-PAGE electrophoresis data suggested that the fungus production of metallothionein was twice as high in the presence of zinc as in the control group. The examination of the genes; metallothionein expression activator (MEA) and Cu fist revealed that the MEA, with a C2H2 zinc finger domain, increased significantly in the presence of zinc. It was observed that in T. harzianum, the enhanced expression of the metallothionein gene was managed by the metallothionein activator under zinc overload conditions. According to our knowledge, this is the first report on the role of metallothionein in the resistance of T. harzianum to zinc.


Subject(s)
Fungal Proteins , Metallothionein , Zinc , Metallothionein/metabolism , Metallothionein/genetics , Metallothionein/chemistry , Zinc/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Hypocreales/metabolism , Hypocreales/genetics , Hypocreales/chemistry , Gene Expression Regulation, Fungal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...